Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.067
Filter
1.
J Neuroimmunol ; 394: 578419, 2024 09 15.
Article in English | MEDLINE | ID: mdl-39088908

ABSTRACT

Oxytocin can regulate immunological activity directly or indirectly; however, immunological functions and mechanisms of oxytocin actions under chronic stress like cesarean delivery (CD) are poorly understood. Our study found that abnormal oxytocin production and secretion in CD rats caused atrophy of thymic tissues. Neurotoxin kainic acid microinjected into the dorsolateral supraoptic nucleus in male rats selectively reduced hypothalamic oxytocin levels, increased corticotrophin-releasing hormone and plasma interleukin-1ß while reducing plasma oxytocin, thyroxine and testosterone levels and causing atrophy of immune tissues. Thus, plasma oxytocin is essential for immunological homeostasis, which involves oxytocin facilitation of thyroid hormone and sex steroid secretion.


Subject(s)
Hypothalamo-Hypophyseal System , Oxytocin , Animals , Oxytocin/blood , Oxytocin/metabolism , Rats , Male , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/metabolism , Female , Rats, Sprague-Dawley , Kainic Acid/toxicity , Interleukin-1beta/metabolism , Interleukin-1beta/blood , Testosterone/blood , Corticotropin-Releasing Hormone/metabolism , Thymus Gland/drug effects , Thymus Gland/metabolism
2.
Exp Neurol ; 380: 114911, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094767

ABSTRACT

Collagen VI (Col-VI) is an extracellular matrix protein primarily known for its bridging role in connective tissues that has been suggested to play a neuroprotective role. In the present study we report increased mRNA and protein expression of Col-VI in the hippocampus and cortex at a late stage of epileptogenesis in a post-status epilepticus (SE) model of epilepsy and in brain tissue from patients with epilepsy. We further present a novel finding that exposure of mouse hippocampal slices to Col-VI augments paired-pulse facilitation in Schaffer collateral-CA1 excitatory synapses indicating decreased release probability of glutamate. In line with this finding, lack of Col-VI expression in the knock-out mice show paired-pulse depression in these synapses, suggesting increased release probability of glutamate. In addition, we observed dynamic changes in Col-VI blood plasma levels in rats after Kainate-induced SE, and increased levels of Col-VI mRNA and protein in autopsy or postmortem brain of humans suffering from epilepsy. Thus, our data indicate that elevated levels of ColVI following seizures leads to attenuated glutamatergic transmission, ultimately resulting in less overall network excitability. Presumably, increased Col-VI may act as part of endogenous compensatory mechanism against enhanced excitability during epileptogenic processes in the hippocampus, and could be further investigated as a potential functional biomarker of epileptogenesis, and/or a novel target for therapeutic intervention.


Subject(s)
Collagen Type VI , Mice, Knockout , Seizures , Synaptic Transmission , Animals , Humans , Male , Mice , Rats , Collagen Type VI/metabolism , Collagen Type VI/genetics , Disease Models, Animal , Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Kainic Acid/toxicity , Mice, Inbred C57BL , Rats, Sprague-Dawley , Seizures/metabolism , Seizures/physiopathology , Seizures/chemically induced , Synaptic Transmission/physiology
3.
CNS Neurosci Ther ; 30(8): e14911, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39145422

ABSTRACT

BACKGROUND: Epilepsy is a widespread central nervous system disorder with an estimated 50 million people affected globally. It is characterized by a bimodal incidence peak among infants and the elderly and is influenced by a variety of risk factors, including a significant genetic component. Despite the use of anti-epileptic drugs (AEDs), drug-refractory epilepsy develops in about one-third of patients, highlighting the need for alternative therapeutic approaches. AIMS: The primary aim of this study was to evaluate the neuroprotective effects of troglitazone (TGZ) in epilepsy and to explore the potential mechanisms underlying its action. METHODS: We employed both in vitro and in vivo models to assess TGZ's effects. The in vitro model involved glutamate-induced toxicity in HT22 mouse hippocampal neurons, while the in vivo model used kainic acid (KA) to induce epilepsy in mice. A range of methods, including Hoechst/PI staining, CCK-8 assay, flow cytometry, RT-PCR analysis, Nissl staining, scanning electron microscopy, and RNA sequencing, were utilized to assess various parameters such as cellular damage, viability, lipid-ROS levels, mitochondrial membrane potential, mRNA expression, seizure grade, and mitochondrial morphology. RESULTS: Our results indicate that TGZ, at doses of 5 or 20 mg/kg/day, significantly reduces KA-induced seizures and neuronal damage in mice by inhibiting the process of ferroptosis. Furthermore, TGZ was found to prevent changes in mitochondrial morphology. In the glutamate-induced HT22 cell damage model, 2.5 µM TGZ effectively suppressed neuronal ferroptosis, as shown by a reduction in lipid-ROS accumulation, a decrease in mitochondrial membrane potential, and an increase in PTGS2 expression. The anti-ferroptotic effect of TGZ was confirmed in an erastin-induced HT22 cell damage model as well. Additionally, TGZ reversed the upregulation of Plaur expression in HT22 cells treated with glutamate or erastin. The downregulation of Plaur expression was found to alleviate seizures and reduce neuronal damage in the mouse hippocampus. CONCLUSION: This study demonstrates that troglitazone has significant therapeutic potential in the treatment of epilepsy by reducing epileptic seizures and the associated brain damage through the inhibition of neuronal ferroptosis. The downregulation of Plaur expression plays a crucial role in TGZ's anti-ferroptotic effect, offering a promising avenue for the development of new epilepsy treatments.


Subject(s)
Epilepsy , Ferroptosis , Neuroprotective Agents , Troglitazone , Animals , Mice , Epilepsy/drug therapy , Epilepsy/chemically induced , Ferroptosis/drug effects , Ferroptosis/physiology , Neuroprotective Agents/pharmacology , Neurons/drug effects , Neurons/metabolism , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/metabolism , Glutamic Acid/metabolism , Male , Kainic Acid/toxicity , Mice, Inbred C57BL , Membrane Potential, Mitochondrial/drug effects , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use
4.
Biochem Pharmacol ; 226: 116409, 2024 08.
Article in English | MEDLINE | ID: mdl-38969300

ABSTRACT

Epilepsy is a central nervous system (CNS) disorder causing repeated seizures due to a transient excessive or synchronous alteration in the electrical activity of the brain. Several neurological disorders have been associated to gluten-related diseases (GRD), including epilepsy. However, the molecular mechanisms that associate GRD and epileptogenesis are still unknown. Our previous data have shown that the gliadin peptide 31-43 (p31-43) enhanced number and duration of seizures induced by kainate in mice and exacerbated CA3-kainate-induced neurotoxicity in organotypic hippocampal slices. Here, we investigated whether another important gliadin peptide p57-68 may exerts effects similar to p31-43 on kainate-induced neurotoxicity. We find that both peptides exacerbate kainate-induced damage in the CA3 region once simultaneously challenged. However, after pre-incubation, p31-43 additionally exacerbates neurotoxicity in the CA1 region, while p57-68 does not. These data suggested differential intracellular mechanisms activated by the peptides. Indeed, analysing intracellular signalling pathways we discover that p31-43 induces significant intracellular changes, including increased phosphorylation of Akt, Erk1/2, and p65, decreased p38 phosphorylation, and deacetylation of nuclear histone-3. Based on these observations, we demonstrate that p31-43 likely activates specific intracellular signaling pathways involved in neuronal excitability, inflammation, and epigenetic regulation, which may contribute to its exacerbation of kainate-induced neurotoxicity. In contrast, p57-68 appears to exert its effects through different mechanisms. Further research is necessary to elucidate the precise mechanisms by which these peptides influence neurotoxicity and understand their implications for neurological disorders.


Subject(s)
Epilepsy , Gliadin , Animals , Epilepsy/metabolism , Epilepsy/chemically induced , Gliadin/toxicity , Gliadin/metabolism , Peptide Fragments/toxicity , Peptide Fragments/metabolism , Kainic Acid/toxicity , Mice , Hippocampus/metabolism , Hippocampus/drug effects
5.
Neuroreport ; 35(10): 612-620, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38813900

ABSTRACT

Epilepsy is a common neurologic disorder. While a good clinical solution is still missing, studies have confirmed that exosomes (Exos) derived from adipose-derived stem cells (ADSCs) had a therapeutic effect on various diseases, including neurological diseases. Therefore, this study aimed to reveal whether ADSC-Exo treatment could improve kainic acid (KA)-induced seizures in epileptic mice. ADSCs and Exos were isolated. Mice were generated with KA-induced epileptic seizures. ELISA was used to detect inflammatory factor expression. Luciferase reporter analysis detection showed a relationship among miR-23b-3p, STAT1, and glyoxylate reductase 1 (GlyR1). ADSC-Exos had a protective effect on KA-induced seizures by inhibiting inflammatory factor expression and the M1 microglia phenotype. The result showed that miR-23b-3p played an important role in the Exo-mediated protective effect in KA-induced seizures in epileptic mice by regulating STAT1 and GlyR1. Luciferase reporter analysis confirmed that miR-23b-3p interacted with the 3'-UTR of STAT1 and GlyR1. The miR-23b-3p inhibited M1 microglia-mediated inflammatory factor expression in microglial cells by regulating STAT1 and GlyR1. The downregulation of miR-23b-3p decreased the protective effect of ADSC-Exos on KA-induced seizures in epileptic mice. The miR-23b-3p from ADSC-Exos alleviated inflammation in mice with KA-induced epileptic seizures.


Subject(s)
Exosomes , Inflammation , Kainic Acid , MicroRNAs , Seizures , Animals , Kainic Acid/toxicity , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Mice , Inflammation/metabolism , Seizures/chemically induced , Seizures/metabolism , Male , Microglia/metabolism , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy/therapy , STAT1 Transcription Factor/metabolism , Adipose Tissue/metabolism , Mice, Inbred C57BL
6.
J Toxicol Sci ; 49(5): 231-240, 2024.
Article in English | MEDLINE | ID: mdl-38692910

ABSTRACT

Drug-induced convulsions are a major challenge to drug development because of the lack of reliable biomarkers. Using machine learning, our previous research indicated the potential use of an index derived from heart rate variability (HRV) analysis in non-human primates as a biomarker for convulsions induced by GABAA receptor antagonists. The present study aimed to explore the application of this methodology to other convulsants and evaluate its specificity by testing non-convulsants that affect the autonomic nervous system. Telemetry-implanted males were administered various convulsants (4-aminopyridine, bupropion, kainic acid, and ranolazine) at different doses. Electrocardiogram data gathered during the pre-dose period were employed as training data, and the convulsive potential was evaluated using HRV and multivariate statistical process control. Our findings show that the Q-statistic-derived convulsive index for 4-aminopyridine increased at doses lower than that of the convulsive dose. Increases were also observed for kainic acid and ranolazine at convulsive doses, whereas bupropion did not change the index up to the highest dose (1/3 of the convulsive dose). When the same analysis was applied to non-convulsants (atropine, atenolol, and clonidine), an increase in the index was noted. Thus, the index elevation appeared to correlate with or even predict alterations in autonomic nerve activity indices, implying that this method might be regarded as a sensitive index to fluctuations within the autonomic nervous system. Despite potential false positives, this methodology offers valuable insights into predicting drug-induced convulsions when the pharmacological profile is used to carefully choose a compound.


Subject(s)
4-Aminopyridine , Heart Rate , Machine Learning , Seizures , Animals , Male , Seizures/chemically induced , Heart Rate/drug effects , 4-Aminopyridine/adverse effects , Kainic Acid/toxicity , Convulsants/toxicity , Ranolazine , Bupropion/toxicity , Bupropion/adverse effects , Electrocardiography/drug effects , Dose-Response Relationship, Drug , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiopathology , Telemetry , Biomarkers
7.
Biomolecules ; 14(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38785996

ABSTRACT

Excitotoxicity is a common pathological process in neurological diseases caused by excess glutamate. The purpose of this study was to evaluate the effect of gypenoside XVII (GP-17), a gypenoside monomer, on the glutamatergic system. In vitro, in rat cortical nerve terminals (synaptosomes), GP-17 dose-dependently decreased glutamate release with an IC50 value of 16 µM. The removal of extracellular Ca2+ or blockade of N-and P/Q-type Ca2+ channels and protein kinase A (PKA) abolished the inhibitory effect of GP-17 on glutamate release from cortical synaptosomes. GP-17 also significantly reduced the phosphorylation of PKA, SNAP-25, and synapsin I in cortical synaptosomes. In an in vivo rat model of glutamate excitotoxicity induced by kainic acid (KA), GP-17 pretreatment significantly prevented seizures and rescued neuronal cell injury and glutamate elevation in the cortex. GP-17 pretreatment decreased the expression levels of sodium-coupled neutral amino acid transporter 1, glutamate synthesis enzyme glutaminase and vesicular glutamate transporter 1 but increased the expression level of glutamate metabolism enzyme glutamate dehydrogenase in the cortex of KA-treated rats. In addition, the KA-induced alterations in the N-methyl-D-aspartate receptor subunits GluN2A and GluN2B in the cortex were prevented by GP-17 pretreatment. GP-17 also prevented the KA-induced decrease in cerebral blood flow and arginase II expression. These results suggest that (i) GP-17, through the suppression of N- and P/Q-type Ca2+ channels and consequent PKA-mediated SNAP-25 and synapsin I phosphorylation, reduces glutamate exocytosis from cortical synaptosomes; and (ii) GP-17 has a neuroprotective effect on KA-induced glutamate excitotoxicity in rats through regulating synaptic glutamate release and cerebral blood flow.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Glutamic Acid , Gynostemma , Animals , Glutamic Acid/metabolism , Rats , Male , Gynostemma/chemistry , Cyclic AMP-Dependent Protein Kinases/metabolism , Rats, Sprague-Dawley , Synaptosomes/metabolism , Synaptosomes/drug effects , Neuroprotective Agents/pharmacology , Kainic Acid/toxicity , Seizures/chemically induced , Seizures/metabolism , Seizures/drug therapy , Seizures/prevention & control , Synapses/drug effects , Synapses/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synapsins/metabolism , Phosphorylation/drug effects , Calcium/metabolism , Plant Extracts
8.
Brain Res ; 1838: 148991, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754803

ABSTRACT

BACKGROUND: The study aimed to investigate the potential pharmacological and toxicological differences between Vigabatrin (VGB) and its enantiomers S-VGB and R-VGB. The researchers focused on the toxic effects and antiepileptic activity of these compounds in a rat model. METHODS: The epileptic rat model was established by intraperitoneal injection of kainic acid, and the antiepileptic activity of VGB, S-VGB, and VGB was observed, focusing on the improvements in seizure latency, seizure frequency and sensory, motor, learning and memory deficits in epileptic rats, as well as the hippocampal expression of key molecular associated with synaptic plasticity and the Wnt/ß-catenin/GSK 3ß signaling pathway. The acute toxic test was carried out and the LD50 was calculated, and tretinal damages in epileptic rats were also evaluated. RESULT: The results showed that S-VGB exhibited stronger antiepileptic and neuroprotective effects with lower toxicity compared to VGB raceme. These findings suggest that S-VGB and VGB may modulate neuronal damage, glial cell activation, and synaptic plasticity related to epilepsy through the Wnt/ß-catenin/GSK 3ß signaling pathway. The study provides valuable insights into the potential differential effects of VGB enantiomers, highlighting the potential of S-VGB as an antiepileptic drug with reduced side effects. CONCLUSION: S-VGB has the highest antiepileptic effect and lowest toxicity compared to VGB and R-VGB.


Subject(s)
Anticonvulsants , Epilepsy , Vigabatrin , Wnt Signaling Pathway , Animals , Anticonvulsants/pharmacology , Vigabatrin/pharmacology , Rats , Male , Epilepsy/drug therapy , Epilepsy/chemically induced , Stereoisomerism , Wnt Signaling Pathway/drug effects , Kainic Acid/toxicity , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Neuronal Plasticity/drug effects , Disease Models, Animal , Neuroprotective Agents/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism
9.
J Proteome Res ; 23(7): 2419-2430, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38807289

ABSTRACT

Since 1998, California sea lion (Zalophus californianus) stranding events associated with domoic acid toxicosis (DAT) have consistently increased. Outside of direct measurement of domoic acid in bodily fluids at the time of stranding, there are no practical nonlethal clinical tests for the diagnosis of DAT that can be utilized in a rehabilitation facility. Proteomics analysis was conducted to discover candidate protein markers of DAT using cerebrospinal fluid from stranded California sea lions with acute DAT (n = 8), chronic DAT (n = 19), or without DAT (n = 13). A total of 2005 protein families were identified experiment-wide. A total of 83 proteins were significantly different in abundance across the three groups (adj. p < 0.05). MDH1, PLD3, ADAM22, YWHAG, VGF, and CLSTN1 could discriminate California sea lions with or without DAT (AuROC > 0.75). IGKV2D-28, PTRPF, KNG1, F2, and SNCB were able to discriminate acute DAT from chronic DAT (AuROC > 0.75). Proteins involved in alpha synuclein deposition were over-represented as classifiers of DAT, and many of these proteins have been implicated in a variety of neurodegenerative diseases. These proteins should be considered potential markers for DAT in California sea lions and should be prioritized for future validation studies as biomarkers.


Subject(s)
Biomarkers , Kainic Acid , Sea Lions , Animals , Kainic Acid/analogs & derivatives , Kainic Acid/toxicity , Biomarkers/cerebrospinal fluid , Proteomics/methods
10.
Free Radic Res ; 58(4): 276-292, 2024.
Article in English | MEDLINE | ID: mdl-38613520

ABSTRACT

It was demonstrated that ginsenosides exert anti-convulsive potentials and interleukin-6 (IL-6) is protective from excitotoxicity induced by kainate (KA), a model of temporal lobe epilepsy. Ginsenosides-mediated mitochondrial recovery is essential for attenuating KA-induced neurotoxicity, however, little is known about the effects of ginsenoside Re (GRe), one of the major ginsenosides. In this study, GRe significantly attenuated KA-induced seizures in mice. KA-induced redox changes were more evident in mitochondrial fraction than in cytosolic fraction in the hippocampus of mice. GRe significantly attenuated KA-induced mitochondrial oxidative stress (i.e. increases in reactive oxygen species, 4-hydroxynonenal, and protein carbonyl) and mitochondrial dysfunction (i.e. the increase in intra-mitochondrial Ca2+ and the decrease in mitochondrial membrane potential). GRe or mitochondrial protectant cyclosporin A restored phospho-signal transducers and activators of transcription 3 (STAT3) and IL-6 levels reduced by KA, and the effects of GRe were reversed by the JAK2 inhibitor AG490 and the mitochondrial toxin 3-nitropropionic acid (3-NP). Thus, we used IL-6 knockout (KO) mice to investigate whether the interaction between STAT3 and IL-6 is involved in the GRe effects. Importantly, KA-induced reduction of manganese superoxide dismutase (SOD-2) levels and neurodegeneration (i.e. astroglial inhibition, microglial activation, and neuronal loss) were more prominent in IL-6 KO than in wild-type (WT) mice. These KA-induced detrimental effects were attenuated by GRe in WT and, unexpectedly, IL-6 KO mice, which were counteracted by AG490 and 3-NP. Our results suggest that GRe attenuates KA-induced neurodegeneration via modulating mitochondrial oxidative burden, mitochondrial dysfunction, and STAT3 signaling in mice.


Subject(s)
Ginsenosides , Kainic Acid , Mitochondria , STAT3 Transcription Factor , Signal Transduction , Animals , Kainic Acid/toxicity , Mice , Mitochondria/metabolism , Mitochondria/drug effects , STAT3 Transcription Factor/metabolism , Ginsenosides/pharmacology , Signal Transduction/drug effects , Male , Mice, Knockout , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects
11.
Exp Neurol ; 376: 114767, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522659

ABSTRACT

The Wnt signaling pathway mediates the development of dentate granule cell neurons in the hippocampus. These neurons are central to the development of temporal lobe epilepsy and undergo structural and physiological remodeling during epileptogenesis, which results in the formation of epileptic circuits. The pathways responsible for granule cell remodeling during epileptogenesis have yet to be well defined, and represent therapeutic targets for the prevention of epilepsy. The current study explores Wnt signaling during epileptogenesis and for the first time describes the effect of Wnt activation using Wnt activator Chir99021 as a novel anti-epileptogenic therapeutic approach. Focal mesial temporal lobe epilepsy was induced by intrahippocampal kainate (IHK) injection in wild-type and POMC-eGFP transgenic mice. Wnt activator Chir99021 was administered daily, beginning 3 h after seizure induction, and continued up to 21-days. Immature granule cell morphology was quantified in the ipsilateral epileptogenic zone and the contralateral peri-ictal zone 14 days after IHK, targeting the end of the latent period. Bilateral hippocampal electrocorticographic recordings were performed for 28-days, 7-days beyond treatment cessation. Hippocampal behavioral tests were performed after completion of Chir99021 treatment. Consistent with previous studies, IHK resulted in the development of epilepsy after a 14 day latent period in this well-described mouse model. Activation of the canonical Wnt pathway with Chir99021 significantly reduced bilateral hippocampal seizure number and duration. Critically, this effect was retained after treatment cessation, suggesting a durable antiepileptogenic change in epileptic circuitry. Morphological analyses demonstrated that Wnt activation prevented pathological remodeling of the primary dendrite in both the epileptogenic zone and peri-ictal zone, changes in which may serve as a biomarker of epileptogenesis and anti-epileptogenic treatment response in pre-clinical studies. These findings were associated with improved object location memory with Chir99021 treatment after IHK. This study provides novel evidence that canonical Wnt activation prevents epileptogenesis in the IHK mouse model of mesial temporal lobe epilepsy, preventing pathological remodeling of dentate granule cells. Wnt signaling may therefore play a key role in mesial temporal lobe epileptogenesis, and Wnt modulation may represent a novel therapeutic strategy in the prevention of epilepsy.


Subject(s)
Disease Models, Animal , Epilepsy, Temporal Lobe , Hippocampus , Kainic Acid , Mice, Transgenic , Pyridines , Pyrimidines , Animals , Pyridines/pharmacology , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/prevention & control , Mice , Kainic Acid/toxicity , Pyrimidines/pharmacology , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/metabolism , Wnt Signaling Pathway/drug effects , Male , Mice, Inbred C57BL
12.
Neurobiol Dis ; 194: 106482, 2024 May.
Article in English | MEDLINE | ID: mdl-38522590

ABSTRACT

A growing number of clinical and animal studies suggest that the nucleus accumbens (NAc), especially the shell, is involved in the pathogenesis of temporal lobe epilepsy (TLE). However, the role of parvalbumin (PV) GABAergic neurons in the NAc shell involved in TLE is still unclear. In this study, we induced a spontaneous TLE model by intrahippocampal administration of kainic acid (KA), which generally induce acute seizures in first 2 h (acute phase) and then lead to spontaneous recurrent seizures after two months (chronic phase). We found that chemogenetic activation of NAc shell PV neurons could alleviate TLE seizures by reducing the number and period of focal seizures (FSs) and secondary generalized seizures (sGSs), while selective inhibition of PV exacerbated seizure activity. Ruby-virus mapping results identified that the hippocampus (ventral and dorsal) is one of the projection targets of NAc shell PV neurons. Chemogenetic activation of the NAc-Hip PV projection fibers can mitigate seizures while inhibition has no effect on seizure ictogenesis. In summary, our findings reveal that PV neurons in the NAc shell could modulate the seizures in TLE via a long-range NAc-Hip circuit. All of these results enriched the investigation between NAc and epilepsy, offering new targets for future epileptogenesis research and precision therapy.


Subject(s)
Epilepsy, Temporal Lobe , Animals , Epilepsy, Temporal Lobe/pathology , Nucleus Accumbens/metabolism , Parvalbumins/metabolism , Seizures/pathology , Hippocampus/pathology , GABAergic Neurons/metabolism , Kainic Acid/toxicity , Disease Models, Animal
13.
Neuropharmacology ; 250: 109906, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494123

ABSTRACT

Excitotoxicity, characterized by over-activation of glutamate receptors, is a major contributor to spinal cord injury (SCI) pathophysiology, resulting in neuronal death and loss of locomotor function. In our previous in vitro studies, we showed that excitotoxicity induced by the glutamate analogue kainate (KA) leads to a significant reduction in the number of neurons, providing a model for SCI. Our current objective was to assess the neuroprotective role of resveratrol (RESV), a natural polyphenol, following KA-induced SCI. In vivo excitotoxicity was induced by intraspinal injection of KA immediately followed by RESV administration to Balb/C adult male mice. In neonatal mouse spinal cord preparations, excitotoxicity was transiently induced by bath-applied KA, either with or without RESV. KA administration resulted in a significant deterioration in hindlimb motor coordination and balance during locomotion, which was partially reverted by RESV. Additionally, RESV preserved neurons in both dorsal and ventral regions. Sirtuin 2 (SIRT2) immunoreactive signal was increased by RESV, while the selective SIRT1 inhibitor 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (EX-527) attenuated RESV neuroprotective effects. These findings suggest that RESV attenuation of excitotoxic-induced neuronal loss and locomotor deficits is mediated, at least in part, through the activation of SIRT1, potentially involving SIRT2 as well. Indeed, our results highlight the potential use of RESV to enhance neuroprotective strategies for SCI.


Subject(s)
Neuroprotective Agents , Spinal Cord Injuries , Animals , Mice , Male , Kainic Acid/toxicity , Spinal Cord , Motor Neurons , Resveratrol/pharmacology , Sirtuin 1 , Sirtuin 2/pharmacology
14.
CNS Neurosci Ther ; 30(3): e14663, 2024 03.
Article in English | MEDLINE | ID: mdl-38439636

ABSTRACT

BACKGROUND: Epilepsy is a widespread and chronic disease of the central nervous system caused by a variety of factors. Mitochondrial ferritin (FtMt) refers to ferritin located within the mitochondria that may protect neurons against oxidative stress by binding excess free iron ions in the cytoplasm. However, the potential role of FtMt in epilepsy remains unclear. We aimed to investigate whether FtMt and its related mechanisms can regulate epilepsy by modulating ferroptosis. METHODS: Three weeks after injection of adeno-associated virus (AAV) in the skull of adult male C57BL/6 mice, kainic acid (KA) was injected into the hippocampus to induce seizures. Primary hippocampal neurons were transfected with siRNA using a glutamate-mediated epilepsy model. After specific treatments, Western blot analysis, immunofluorescence, EEG recording, transmission electron microscopy, iron staining, silver staining, and Nissl staining were performed. RESULTS: At different time points after KA injection, the expression of FtMt protein in the hippocampus of mice showed varying degrees of increase. Knockdown of the FtMt gene by AAV resulted in an increase in intracellular free iron levels and a decrease in the function of iron transport-related proteins, promoting neuronal ferroptosis and exacerbating epileptic brain activity in the hippocampus of seizure mice. Additionally, increasing the expression level of FtMt protein was achieved by AAV-mediated upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene in the hippocampus of seizure mice. CONCLUSIONS: In epilepsy, Nrf2 modulates ferroptosis by involving the expression of FtMt and may be a potential therapeutic mechanism of neuronal injury after epilepsy. Targeting this relevant process for treatment may be a therapeutic strategy to prevent epilepsy.


Subject(s)
Epilepsy , Ferroptosis , Male , Animals , Mice , Mice, Inbred C57BL , Kainic Acid/toxicity , NF-E2-Related Factor 2/genetics , Epilepsy/chemically induced , Seizures , Glutamic Acid , Dependovirus , Disease Models, Animal , Ferritins , Homeostasis
15.
Exp Neurol ; 376: 114749, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467356

ABSTRACT

Despite special challenges in the medical treatment of women with epilepsy, in particular preclinical animal studies were focused on males for decades and females have only recently moved into the focus of scientific interest. The intrahippocampal kainic acid (IHKA) mouse model of temporal lobe epilepsy (TLE) is one of the most studied models in males reproducing electroencephalographic (EEG) and histopathological features of human TLE. Hippocampal paroxysmal discharges (HPDs) were described as drug resistant focal seizures in males. Here, we investigated the IHKA model in female mice, in particular drug-resistance of HPDs and the influence of antiseizure medications (ASMs) on the power spectrum. After injecting kainic acid (KA) unilaterally into the hippocampus of female mice, we monitored the development of epileptiform activity by local field potential (LFP) recordings. Subsequently, we evaluated the effect of the commonly prescribed ASMs lamotrigine (LTG), oxcarbazepine (OXC) and levetiracetam (LEV), as well as the benzodiazepine diazepam (DZP) with a focus on HPDs and power spectral analysis and assessed neuropathological alterations of the hippocampus. In the IHKA model, female mice replicated key features of human TLE as previously described in males. Importantly, HPDs in female mice did not respond to commonly prescribed ASMs in line with the drug-resistance in males, thus representing a suitable model of drug-resistant seizures. Intriguingly, we observed an increased occurrence of generalized seizures after LTG. Power spectral analysis revealed a pronounced increase in the delta frequency range after the higher dose of 30 mg/kg LTG. DZP abolished HPDs and caused a marked reduction over a wide frequency range (delta, theta, and alpha) of the power spectrum. By characterizing the IHKA model of TLE in female mice we address an important gap in basic research. Considering the special challenges complicating the therapeutic management of epilepsy in women, inclusion of females in preclinical studies is imperative. A well-characterized female model is a prerequisite for the development of novel therapeutic strategies tailored to sex-specific needs and for studies on the effect of epilepsy and ASMs during pregnancy.


Subject(s)
Anticonvulsants , Disease Models, Animal , Epilepsy, Temporal Lobe , Hippocampus , Kainic Acid , Seizures , Animals , Kainic Acid/toxicity , Female , Anticonvulsants/pharmacology , Mice , Hippocampus/drug effects , Hippocampus/pathology , Seizures/chemically induced , Seizures/drug therapy , Seizures/pathology , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/pathology , Epilepsy, Temporal Lobe/physiopathology , Mice, Inbred C57BL , Electroencephalography , Diazepam/pharmacology
16.
Neurochem Int ; 176: 105727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555055

ABSTRACT

Temporal lobe epilepsy (TLE), the most common type of drug-resistant epilepsy, severely affects quality of life. However, the underlying mechanism of TLE remains unclear and deserves further exploration. Sorbs2, a key synaptic regulatory protein, plays an important role in the regulation of synaptic transmission in the mammalian brain. In this study, we aimed to investigate the expression pattern of Sorbs2 in a kainic acid (KA)-induced TLE mouse model and in patients with TLE to further determine whether Sorbs2 is involved in seizure activity and to explore the potential mechanism by which Sorbs2 affects seizures in this TLE mouse model. First, we found that the expression of Sorbs2 was obviously increased in the hippocampus and cortex of a TLE mouse model and in the temporal cortex of TLE patients, indicating an abnormal expression pattern of Sorbs2 in TLE. Importantly, subsequent behavioral analyses and local field potential (LFP) analyses of a TLE mouse model demonstrated that the downregulation of hippocampal Sorbs2 could prolong the latency to spontaneous recurrent seizures (SRSs) and protect against SRSs. We also found that the knockdown of Sorbs2 in the hippocampus could decrease excitatory synaptic transmission in pyramidal neurons (PNs) in the hippocampal CA1 region and reduce the expression levels of the AMPAR subunits GluA1 and GluA2. Thus, we speculated that Sorbs2 may promote epileptogenesis and the development of TLE by affecting AMPAR-mediated excitatory synaptic transmission in PNs in the CA1 region. Therefore, reducing the expression of hippocampal Sorbs2 could restrain epileptogenesis and the development of TLE.


Subject(s)
Epilepsy, Temporal Lobe , RNA-Binding Proteins , Receptors, AMPA , Seizures , Synaptic Transmission , Animals , Female , Humans , Male , Mice , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/chemically induced , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Hippocampus/drug effects , Kainic Acid/pharmacology , Kainic Acid/toxicity , Mice, Inbred C57BL , Receptors, AMPA/metabolism , Seizures/metabolism , Seizures/chemically induced , Synaptic Transmission/drug effects , Synaptic Transmission/genetics , Synaptic Transmission/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
17.
J Cell Physiol ; 239(5): e31249, 2024 May.
Article in English | MEDLINE | ID: mdl-38501376

ABSTRACT

The hippocampal dentate gyrus, responds to diverse pathological stimuli through neurogenesis. This phenomenon, observed following brain injury or neurodegeneration, is postulated to contribute to neuronal repair and functional recovery, thereby presenting an avenue for endogenous neuronal restoration. This study investigated the extent of regenerative response in hippocampal neurogenesis by leveraging the well-established kainic acid-induced status epilepticus model in vivo. In our study, we observed the activation and proliferation of neuronal progenitors or neural stem cell (NSC) and their subsequent migration to the injury sites following the seizure. At the injury sites, new neurons (Tuj1+BrdU+ and NeuN+BrdU+) have been generated indicating regenerative and reparative roles of the progenitor cells. We further detected whether this transient neurogenic burst, which might be a response towards an attempt to repair the brain, is associated with persistent long-term exhaustion of the dentate progenitor cells and impairment of adult neurogenesis marked by downregulation of Ki67, HoPX, and Sox2 with BrdU+ cell in the later part of life. Our studies suggest that the adult brain has the constitutive endogenous regenerative potential for brain repair to restore the damaged neurons, meanwhile, in the long term, it accelerates the depletion of the finite NSC pool in the hippocampal neurogenic niche by changing its proliferative and neurogenic capacity. A thorough understanding of the impact of modulating adult neurogenesis will eventually be required to design novel therapeutics to stimulate or assist brain repair while simultaneously preventing the adverse effects of early robust neurogenesis on the proliferative potential of endogenous neuronal progenitors.


Subject(s)
Hippocampus , Neural Stem Cells , Neurogenesis , Animals , Neural Stem Cells/metabolism , Hippocampus/pathology , Hippocampus/metabolism , Cell Proliferation , Male , Stem Cell Niche , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Neurons/metabolism , Neurons/pathology , Kainic Acid/toxicity , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Status Epilepticus/metabolism , Nerve Regeneration , Disease Models, Animal , Mice , Cell Movement
18.
Neurobiol Dis ; 192: 106424, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290566

ABSTRACT

BACKGROUND: Managing refractory epilepsy presents a significant a substantial clinical challenge. Deep brain stimulation (DBS) has emerged as a promising avenue for addressing refractory epilepsy. However, the optimal stimulation targets and effective parameters of DBS to reduce seizures remian unidentified. OBJECTIVES: This study endeavors to scrutinize the therapeutic potential of DBS within the zona incerta (ZI) across diverse seizure models and elucidate the associated underlying mechanisms. METHODS: We evaluated the therapeutic potential of DBS with different frequencies in the ZI on kainic acid (KA)-induced TLE model or M1-cortical seizures model, pilocarpine-induced M1-cortical seizure models, and KA-induced epilepsy model. Further, employing calcium fiber photometry combined with cell-specific ablation, we sought to clarified the causal role of ZI GABAergic neurons in mediating the therapeutic effects of DBS. RESULTS: Our findings reveal that DBS in the ZI alleviated the severity of seizure activities in the KA-induced TLE model. Meanwhile, DBS attenuated seizure activities in KA- or pilocarpine-induced M1-cortical seizure model. In addition, DBS exerts a mitigating influence on KA induced epilepsy model. DBS in the ZI showed anti-seizure effects at low frequency spectrum, with 5 Hz exhibiting optimal efficacy. The low-frequency DBS significantly increased the calcium activities of ZI GABAergic neurons. Furthermore, selective ablation of ZI GABAergic neurons with taCasp3 blocked the anti-seizure effect of low-frequency DBS, indicating the anti-seizure effect of DBS is mediated by the activation of ZI GABAergic neurons. CONCLUSION: Our results demonstrate that low-frequency DBS in the ZI attenuates seizure via driving GABAergic neuronal activity. This suggests that the ZI represents a potential DBS target for treating both hippocampal and cortical seizure through the activation of GABAergic neurons, thereby holding therapeutic significance for seizure treatment.


Subject(s)
Deep Brain Stimulation , Drug Resistant Epilepsy , Epilepsy , Zona Incerta , Humans , Pilocarpine/toxicity , Calcium , Deep Brain Stimulation/methods , GABAergic Neurons , Epilepsy/therapy , Kainic Acid/toxicity , Seizures/therapy
19.
Am J Physiol Cell Physiol ; 326(3): C893-C904, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38284124

ABSTRACT

Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.


Subject(s)
Blood-Brain Barrier , Carbamates , Epilepsy , Phenylenediamines , Animals , Rats , Endothelial Cells , Kainic Acid/toxicity , Brain
20.
J Pineal Res ; 76(1): e12921, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37846173

ABSTRACT

Evidence suggests that the neuroprotective effects of melatonin involve both receptor-dependent and -independent actions. However, little is known about the effects of melatonin receptor activation on the kainate (KA) neurotoxicity. This study examined the effects of repeated post-KA treatment with ramelteon, a selective agonist of melatonin receptors, on neuronal loss, cognitive impairment, and depression-like behaviors following KA-induced seizures. The expression of melatonin receptors decreased in neurons, whereas it was induced in astrocytes 3 and 7 days after seizures elicited by KA (0.12 µg/µL) in the hippocampus of mice. Ramelteon (3 or 10 mg/kg, i.p.) and melatonin (10 mg/kg, i.p.) mitigated KA-induced oxidative stress and impairment of glutathione homeostasis and promoted the nuclear translocation and DNA binding activity of Nrf2 in the hippocampus after KA treatment. Ramelteon and melatonin also attenuated microglial activation but did not significantly affect astroglial activation induced by KA, despite the astroglial induction of melatonin receptors after KA treatment. However, ramelteon attenuated KA-induced proinflammatory phenotypic changes in astrocytes. Considering the reciprocal regulation of astroglial and microglial activation, these results suggest ramelteon inhibits microglial activation by regulating astrocyte phenotypic changes. These effects were accompanied by the attenuation of the nuclear translocation and DNA binding activity of nuclear factor κB (NFκB) induced by KA. Consequently, ramelteon attenuated the KA-induced hippocampal neuronal loss, memory impairment, and depression-like behaviors; the effects were comparable to those of melatonin. These results suggest that ramelteon-mediated activation of melatonin receptors provides neuroprotection against KA-induced neurotoxicity in the mouse hippocampus by activating Nrf2 signaling to attenuate oxidative stress and restore glutathione homeostasis and by inhibiting NFκB signaling to attenuate neuroinflammatory changes.


Subject(s)
Indenes , Melatonin , Mice , Animals , Melatonin/pharmacology , Melatonin/metabolism , Receptors, Melatonin/metabolism , Kainic Acid/toxicity , Kainic Acid/metabolism , NF-E2-Related Factor 2/metabolism , Hippocampus , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Glutathione/metabolism , DNA
SELECTION OF CITATIONS
SEARCH DETAIL