Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.344
Filter
1.
Cells ; 13(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891097

ABSTRACT

UVA exposure disturbs the metabolism of skin cells, often inducing oxidative stress and inflammation. Therefore, there is a need for bioactive compounds that limit such consequences without causing undesirable side effects. The aim of this study was to analyse in vitro the effects of the phytocannabinoids cannabigerol (CBG) and cannabidiol (CBD), which differ in terms of biological effects. Furthermore, the combined use of both compounds (CBG+CBD) has been analysed in order to increase their effectiveness in human skin fibroblasts and keratinocytes protection against UVA-induced alternation. The results obtained indicate that the effects of CBG and CBD on the redox balance might indeed be enhanced when both phytocannabinoids are applied concurrently. Those effects include a reduction in NOX activity, ROS levels, and a modification of thioredoxin-dependent antioxidant systems. The reduction in the UVA-induced lipid peroxidation and protein modification has been confirmed through lower levels of 4-HNE-protein adducts and protein carbonyl groups as well as through the recovery of collagen expression. Modification of antioxidant signalling (Nrf2/HO-1) through the administration of CBG+CBD has been proven to be associated with reduced proinflammatory signalling (NFκB/TNFα). Differential metabolic responses of keratinocytes and fibroblasts to the effects of the UVA and phytocannabinoids have indicated possible beneficial protective and regenerative effects of the phytocannabinoids, suggesting their possible application for the purpose of limiting the harmful impact of the UVA on skin cells.


Subject(s)
Cannabidiol , Cannabinoids , Fibroblasts , Inflammation , Keratinocytes , Oxidation-Reduction , Signal Transduction , Skin , Ultraviolet Rays , Humans , Oxidation-Reduction/drug effects , Skin/drug effects , Skin/radiation effects , Skin/metabolism , Skin/pathology , Ultraviolet Rays/adverse effects , Cannabinoids/pharmacology , Signal Transduction/drug effects , Cannabidiol/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/radiation effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Keratinocytes/metabolism , Inflammation/pathology , Inflammation/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/radiation effects
2.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891771

ABSTRACT

Photoprotective properties of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to reduce UV-induced DNA damage have been established in several studies. UV-induced DNA damage in skin such as single or double strand breaks is known to initiate several cellular mechanisms including activation of poly(ADP-ribose) (pADPr) polymerase-1 (PARP-1). DNA damage from UV also increases extracellular signal-related kinase (ERK) phosphorylation, which further increases PARP activity. PARP-1 functions by using cellular nicotinamide adenine dinucleotide (NAD+) to synthesise pADPr moieties and attach these to target proteins involved in DNA repair. Excessive PARP-1 activation following cellular stress such as UV irradiation may result in excessive levels of cellular pADPr. This can also have deleterious effects on cellular energy levels due to depletion of NAD+ to suboptimal levels. Since our previous work indicated that 1,25(OH)2D3 reduced UV-induced DNA damage in part through increased repair via increased energy availability, the current study investigated the effect of 1,25(OH)2D3 on UV-induced PARP-1 activity using a novel whole-cell enzyme- linked immunosorbent assay (ELISA) which quantified levels of the enzymatic product of PARP-1, pADPr. This whole cell assay used around 5000 cells per replicate measurement, which represents a 200-400-fold decrease in cell requirement compared to current commercial assays that measure in vitro pADPr levels. Using our assay, we observed that UV exposure significantly increased pADPr levels in human keratinocytes, while 1,25(OH)2D3 significantly reduced levels of UV-induced pADPr in primary human keratinocytes to a similar extent as a known PARP-1 inhibitor, 3-aminobenzamide (3AB). Further, both 1,25(OH)2D3 and 3AB as well as a peptide inhibitor of ERK-phosphorylation significantly reduced DNA damage in UV-exposed keratinocytes. The current findings support the proposal that reduction in pADPr levels may be critical for the function of 1,25(OH)2D3 in skin to reduce UV-induced DNA damage.


Subject(s)
DNA Damage , Poly (ADP-Ribose) Polymerase-1 , Ultraviolet Rays , Vitamin D , Humans , Ultraviolet Rays/adverse effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Vitamin D/pharmacology , Vitamin D/metabolism , Vitamin D/analogs & derivatives , DNA Damage/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Keratinocytes/drug effects , Calcitriol/pharmacology , Calcitriol/metabolism , DNA Repair/drug effects , Phosphorylation/drug effects
3.
Cell Death Dis ; 15(6): 404, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858355

ABSTRACT

Senescent cells exhibit a diverse spectrum of changes in their morphology, proliferative capacity, senescence-associated secretory phenotype (SASP) production, and mitochondrial homeostasis. These cells often manifest with elongated mitochondria, a hallmark of cellular senescence. However, the precise regulatory mechanisms orchestrating this phenomenon remain predominantly unexplored. In this study, we provide compelling evidence for decreases in TIA-1, a pivotal regulator of mitochondrial dynamics, in models of both replicative senescence and ionizing radiation (IR)-induced senescence. The downregulation of TIA-1 was determined to trigger mitochondrial elongation and enhance the expression of senescence-associated ß-galactosidase, a marker of cellular senescence, in human foreskin fibroblast HS27 cells and human keratinocyte HaCaT cells. Conversely, the overexpression of TIA-1 mitigated IR-induced cellular senescence. Notably, we identified the miR-30-5p family as a novel factor regulating TIA-1 expression. Augmented expression of the miR-30-5p family was responsible for driving mitochondrial elongation and promoting cellular senescence in response to IR. Taken together, our findings underscore the significance of the miR-30-5p/TIA-1 axis in governing mitochondrial dynamics and cellular senescence.


Subject(s)
Cellular Senescence , MicroRNAs , Mitochondria , Mitochondrial Dynamics , T-Cell Intracellular Antigen-1 , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Cellular Senescence/radiation effects , Cellular Senescence/genetics , Mitochondrial Dynamics/genetics , T-Cell Intracellular Antigen-1/metabolism , T-Cell Intracellular Antigen-1/genetics , Mitochondria/metabolism , Fibroblasts/metabolism , Fibroblasts/radiation effects , Cell Line , Keratinocytes/metabolism , Keratinocytes/radiation effects , Keratinocytes/cytology , Signal Transduction , Radiation, Ionizing
4.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892148

ABSTRACT

The primary emphasis of photoimmunology is the impact of nonionizing radiation on the immune system. With the development of terahertz (THz) and sub-terahertz (sub-THz) technology, the biological effects of this emerging nonionizing radiation, particularly its influence on immune function, remain insufficiently explored but are progressively attracting attention. Here, we demonstrated that 0.1 sub-THz radiation can modulate the immune system and alleviate symptoms of arthritis in collagen-induced arthritis (CIA) mice through a nonthermal manner. The application of 0.1 sub-THz irradiation led to a decrease in proinflammatory factors within the joints and serum, reducing the levels of blood immune cells and the quantity of splenic CD4+ T cells. Notably, 0.1 sub-THz irradiation restored depleted Treg cells in CIA mice and re-established the Th17/Treg equilibrium. These findings suggested that sub-THz irradiation plays a crucial role in systemic immunoregulation. Further exploration of its immune modulation mechanisms revealed the anti-inflammatory properties of 0.1 sub-THz on LPS-stimulated skin keratinocytes. Through the reduction in NF-κB signaling and NLRP3 inflammasome activation, 0.1 sub-THz irradiation effectively decreased the production of inflammatory factors and immune-active substances, including IL-1ß and PGE2, in HaCaT cells. Consequently, 0.1 sub-THz irradiation mitigated the inflammatory response and contributed to the maintenance of immune tolerance in CIA mice. This research provided significant new evidence supporting the systemic impacts of 0.1 sub-THz radiation, particularly on the immune system. It also enhanced the field of photoimmunology and offered valuable insights into the potential biomedical applications of 0.1 sub-THz radiation for treating autoimmune diseases.


Subject(s)
Arthritis, Experimental , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/radiotherapy , Arthritis, Experimental/pathology , Mice , Terahertz Radiation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Inflammasomes/immunology , NF-kappa B/metabolism , Mice, Inbred DBA , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/radiation effects , Humans , Signal Transduction/radiation effects , Keratinocytes/radiation effects , Keratinocytes/immunology , Keratinocytes/metabolism
5.
Aging (Albany NY) ; 16(9): 7511-7522, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38700499

ABSTRACT

The battle against the COVID-19 pandemic has spurred a heightened state of vigilance in global healthcare, leading to the proliferation of diverse sanitization methods. Among these approaches, germicidal lamps utilizing ultraviolet (UV) rays, particularly UV-C (wavelength ranging from 280 to 100 nm), have gained prominence for domestic use. These light-emitting diode (LED) lamps are designed to sanitize the air, objects, and surfaces. However, the prevailing concern is that these UV lamps are often introduced into the market without adequate accompanying information to ensure their safe utilization. Importantly, exposure to absorbed UV light can potentially trigger adverse biological responses, encompassing cell death and senescence. Our research encompassed a series of investigations aimed at comprehending the biological repercussions of UV-C radiation exposure from readily available domestic lamps. Our focus centered on epithelial retinal cells, keratinocytes, and fibroblasts, components of the skin and ocular targets frequently exposed to UV irradiation. Our findings underscore the potential harm associated with even brief exposure to UV, leading to irreversible and detrimental alterations in both skin cells and retinal cells of the eye. Notably, epithelial retinal cells exhibited heightened sensitivity, marked by substantial apoptosis. In contrast, keratinocytes demonstrated resilience to apoptosis even at elevated UV doses, though they were prone to senescence. Meanwhile, fibroblasts displayed a gradual amplification of both senescence and apoptosis as radiation doses escalated. In summary, despite the potential benefits offered by UV-C in deactivating pathogens like SARS-CoV-2, it remains evident that the concurrent risks posed by UV-C to human health cannot be ignored.


Subject(s)
Apoptosis , COVID-19 , Cellular Senescence , SARS-CoV-2 , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Apoptosis/radiation effects , Humans , Cellular Senescence/radiation effects , SARS-CoV-2/radiation effects , Keratinocytes/radiation effects , Fibroblasts/radiation effects
6.
J Ethnopharmacol ; 332: 118374, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38789093

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY: The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS: We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS: In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS: In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Apoptosis , Melanins , Picrasma , Plant Extracts , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Apoptosis/drug effects , Humans , Mice , Picrasma/chemistry , Antioxidants/pharmacology , Melanins/metabolism , Ethanol/chemistry , HaCaT Cells , Keratinocytes/drug effects , Keratinocytes/radiation effects , Cell Line, Tumor , Melanoma, Experimental/drug therapy , Cell Survival/drug effects , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics
7.
J Photochem Photobiol B ; 256: 112937, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743989

ABSTRACT

As the outermost layer of the human body, the skin suffers from various external factors especially light damage, among which ultraviolet B (UVB) irradiation is common and possesses a relatively high biological damage capacity. Pyroptosis is a newly discovered type of programmed cell death, which can induce cell rupture and induce local inflammatory response. However, the molecular mechanisms of pyroptosis in photodamaged skin is poorly understood. Baicalin, a flavonoid extracted from the desiccated root of Scutellaria baicalensis Georgi (Huang Qin). Despite its antioxidant abilities, whether baicalin protects skin by attenuating UVB-induced pyroptosis remains unclear, which was the aim of this study. The UVB-induced acute skin damage model was established by using human immortalized keratinocytes (HaCaT cells) and Kunming (KM) strain mice. The protective dose selection for baicalin is 50 µM in vitro and 100 mg/kg in vivo. In in vitro study, UVB irradiation significantly decreased cell viability, increased cell death and oxidative stress in HaCaT cells, while pretreatment with baicalin improved these phenomena. Furthermore, the baicalin pretreatment notably suppressed nuclear factor kappa B (NF-κB) translocation, the NLRP3 inflammasome activation and gasdermin D (GSDMD) maturation, thus effectively attenuating UVB-induced pyroptosis. In in vivo study, the baicalin pretreatment mitigated epidermal hyperplasia, collagen fiber fragmentation, oxidative stress and pyroptosis in UVB-irradiated mouse skin. In a nutshell, this study suggests that baicalin could be a potential protective agent to attenuate acute skin damage induced by UVB irradiation through decreasing oxidative stress and suppressing NF-κB/NLRP3/GSDMD-involved pyroptosis.


Subject(s)
Flavonoids , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Skin , Ultraviolet Rays , Pyroptosis/drug effects , Pyroptosis/radiation effects , Flavonoids/pharmacology , Flavonoids/chemistry , Animals , Humans , Mice , Skin/radiation effects , Skin/drug effects , Skin/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Keratinocytes/metabolism , HaCaT Cells , Cell Survival/drug effects , Cell Survival/radiation effects , Phosphate-Binding Proteins/metabolism , Inflammasomes/metabolism , Cell Line
8.
J Dermatol Sci ; 114(3): 124-132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749796

ABSTRACT

BACKGROUND: Ultraviolet (UV) damage is closely related to skin photoaging and many skin diseases, including dermatic tumors. N6-methyladenosine (m6A) modification is an important epigenetic regulatory mechanism. However, the role of m6A methylation in apoptosis induced by repeated UV irradiation has not been characterized. OBJECTIVE: To explore m6A methylation changes and regulatory mechanisms in the repeated UV-induced skin damage process, especially apoptosis. METHODS: HaCaT cells and BALB/c-Nu nude mice were exposed to repeated UVB/UVA+UVB irradiation. Colorimetry and flow cytometry were used to measure cellular viability and apoptosis. m6A-modified genes were detected via colorimetry and methylated RNA immunoprecipitation (MeRIP) sequencing. Methyltransferases and demethylases were detected via RT-PCR, western blotting and immunohistochemistry. Transfection of siRNA and plasmid was performed to knock down or overexpress the selected genes. RESULTS: After UVB irradiation, 861 m6A peaks were increased and 425 m6A peaks were decreased in HaCaT cells. The differentially modified genes were enriched in apoptosis-related pathways. The m6A demethylase FTO was decreased in both HaCaT cells and mouse skin after UV damage. Overexpressing FTO could improve cell viability, inhibit apoptosis and decrease RNA-m6A methylation, including LPCAT3-m6A, which increase LPCAT3 expression, cell viability promotion and apoptosis inhibition. CONCLUSION: Our study identified the cell m6A methylation change lists after repeated UVB irradiation, and revealed that FTO and LPCAT3 play key roles in the m6A methylation pathogenesis of UV-induced skin cell apoptosis. FTO-m6A-LPCAT3 might serve as a novel upstream target for preventing and treating photoaging and UV-induced skin diseases.


Subject(s)
Adenosine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Apoptosis , HaCaT Cells , Mice, Inbred BALB C , Mice, Nude , Skin Aging , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Animals , Apoptosis/radiation effects , Apoptosis/genetics , Humans , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Methylation/radiation effects , Skin Aging/radiation effects , Skin Aging/genetics , Skin/radiation effects , Skin/pathology , Skin/metabolism , Keratinocytes/radiation effects , Keratinocytes/metabolism , Cell Survival/radiation effects , Epigenesis, Genetic/radiation effects , Female
9.
J Dent Res ; 103(7): 745-754, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38700089

ABSTRACT

The oral cavity, a unique ecosystem harboring diverse microorganisms, maintains health through a balanced microflora. Disruption may lead to disease, emphasizing the protective role of gingival epithelial cells (GECs) in preventing harm from pathogenic oral microbes. Shifting GECs' response from proinflammatory to antimicrobial could be a novel strategy for periodontitis. Photobiomodulation therapy (PBMT), a nonpharmacologic host modulatory approach, is considered an alternative to drugs. While the host cell response induced by a single type of pathogen-associated molecular patterns (PAMPs) was widely studied, this model does not address the cellular response to intact microbes that exhibit multiple PAMPs that might modulate the response. Inspired by this, we developed an in vitro model that simulates direct interactions between host cells and intact pathogens and evaluated the effect of PBMT on the response of human gingival keratinocytes (HGKs) to challenge viable oral microbes at both the cellular and molecular levels. Our data demonstrated that LED pretreatment on microbially challenged HGKs with specific continuous wavelengths (red: 615 nm; near-infrared: 880 nm) induced the production of various antimicrobial peptides, enhanced cell viability and proliferation, promoted reactive oxygen species scavenging, and down-modulated proinflammatory activity. The data also suggest a potential explanation regarding the superior efficacy of near-infrared light treatment compared with red light in enhancing antimicrobial activity and reducing cellular inflammation of HGKs. Taken together, the findings suggest that PBMT enhances the overall barrier function of gingival epithelium while minimizing inflammation-mediated breakdown of the underlying structures.


Subject(s)
Gingiva , Keratinocytes , Low-Level Light Therapy , Humans , Gingiva/cytology , Gingiva/microbiology , Low-Level Light Therapy/methods , Keratinocytes/radiation effects , Cells, Cultured , Epithelial Cells/radiation effects , Epithelial Cells/microbiology , Periodontitis/microbiology , Periodontitis/therapy , Periodontitis/radiotherapy , Periodontitis/immunology , In Vitro Techniques , Reactive Oxygen Species/metabolism
10.
ACS Sens ; 9(5): 2440-2446, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38743437

ABSTRACT

Ultraviolet (UV) radiation is known to cause skin issues, such as dryness, aging, and even cancer. Among UV rays, UVB stands out for its ability to trigger problems within cells, including mitochondrial dysfunction, oxidative stress, and DNA damage. Free radicals are implicated in these cellular responses, but they are challenging to measure due to their short lifetime and limited diffusion range. In our study, we used a quantum sensing technique (T1 relaxometry) involving fluorescent nanodiamonds (FNDs) that change their optical properties in response to magnetic noise. This allowed us to monitor the free radical presence in real time. To measure radicals near mitochondria, we coated FNDs with antibodies, targeting mitochondrial protein voltage-dependent anion channel 2 (anti-VDAC2). Our findings revealed a dynamic rise in radical levels on the mitochondrial membrane as cells were exposed to UVB (3 J/cm2), with a significant increase observed after 17 min.


Subject(s)
Keratinocytes , Mitochondria , Ultraviolet Rays , Humans , Mitochondria/metabolism , Mitochondria/radiation effects , Free Radicals/chemistry , Keratinocytes/radiation effects , Keratinocytes/metabolism , Quantum Dots/chemistry , Quantum Dots/radiation effects
11.
FASEB J ; 38(9): e23641, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690717

ABSTRACT

Cholinergic urticaria is a dermatological disease characterized by the presence of large patches of red skin and transient hives triggered by factors, such as exercise, sweating, and psychological tension. This skin problem is hypothesized to be attributed to a reduced expression of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing acetylcholine (ACh). Consequently, ACh is thought to the leak from sympathetic nerves to skin epidermis. The redundant ACh stimulates the mast cells to release histamine, triggering immune responses in skin. Here, the exposure of ultraviolet B in skin suppressed the expression of AChE in keratinocytes, both in in vivo and in vitro models. The decrease of the enzyme was resulted from a declined transcription of ACHE gene mediated by micro-RNAs, that is, miR-132 and miR-212. The levels of miR-132 and miR-212 were markedly induced by exposure to ultraviolet B, which subsequently suppressed the transcriptional rate of ACHE. In the presence of low level of AChE, the overflow ACh caused the pro-inflammatory responses in skin epidermis, including increased secretion of cytokines and COX-2. These findings suggest that ultraviolet B exposure is one of the factors contributing to cholinergic urticaria in skin.


Subject(s)
Acetylcholinesterase , Keratinocytes , MicroRNAs , Skin , Ultraviolet Rays , Urticaria , Acetylcholinesterase/metabolism , Acetylcholinesterase/genetics , Keratinocytes/metabolism , Keratinocytes/radiation effects , Ultraviolet Rays/adverse effects , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Skin/radiation effects , Skin/metabolism , Urticaria/metabolism , Urticaria/etiology , Mice , Acetylcholine/metabolism , Male
12.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731895

ABSTRACT

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Subject(s)
Agaricus , Cell Proliferation , Filaggrin Proteins , HaCaT Cells , Ultraviolet Rays , Agaricus/chemistry , Humans , Ultraviolet Rays/adverse effects , Cell Proliferation/drug effects , Membrane Potential, Mitochondrial/drug effects , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Cytokines/metabolism
13.
Exp Dermatol ; 33(5): e15109, 2024 May.
Article in English | MEDLINE | ID: mdl-38794812

ABSTRACT

Cornulin (CRNN) and repetin (RPTN) belong to the fused-type S100 protein family. Although these proteins have been reported to be expressed in the granular layer of the epidermis and have been suggested to be associated with barrier formation in the epidermis, their exact function remains unclear. This study examined the effects of ultraviolet B (UVB) irradiation on CRNN and RPTN expression in human skin xenotransplantation. The CRNN expression increased in the granular layer of UVB-irradiated skin 2 days after UVB irradiation compared to that in sham-irradiated skin. Interestingly, CRNN signals were observed not only in the cytoplasm, but also in the peripheral regions of granular keratinocytes. In contrast, RPTN was rarely expressed in sham-irradiated skin; however, RPTN signals were markedly increased in the granular layer of the UVB-irradiated skin. In addition, activation of ERK1/2 and STAT3 was observed in UVB-irradiated skin. Accordingly, the present study demonstrated that CRNN and RPTN are novel proteins whose expression can be increased by UVB irradiation. The activation of ERK1/2 and STAT3 may be associated with the regeneration of a UVB-damaged epidermis, and CRNN and RPTN may be induced to repair any dysfunction in the epidermal barrier during this regeneration process.


Subject(s)
STAT3 Transcription Factor , Ultraviolet Rays , Humans , STAT3 Transcription Factor/metabolism , Transplantation, Heterologous , Keratinocytes/metabolism , Keratinocytes/radiation effects , Animals , Skin/metabolism , Skin/radiation effects , Epidermis/metabolism , Epidermis/radiation effects , Skin Transplantation , Cornified Envelope Proline-Rich Proteins/metabolism , Cornified Envelope Proline-Rich Proteins/genetics , Heterografts , S100 Proteins/metabolism , S100 Proteins/genetics , Mice
14.
J Radiat Res ; 65(3): 279-290, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38682896

ABSTRACT

Combined radiation-trauma skin injury represents a severe and intractable condition that urgently requires effective therapeutic interventions. In this context, hepatocyte growth factor (HGF), a multifunctional growth factor with regulating cell survival, angiogenesis, anti-inflammation and antioxidation, may be valuable for the treatment of combined radiation-trauma injury. This study investigated the protective effects of a recombinant plasmid encoding human HGF (pHGF) on irradiated human immortalized keratinocytes (HaCaT) cells in vitro, and its capability to promote the healing of combined radiation-trauma injuries in mice. The pHGF radioprotection on irradiated HaCaT cells in vitro was assessed by cell viability, the expression of Nrf2, Bcl-2 and Bax, as well as the secretion of inflammatory cytokines. In vivo therapeutic treatment, the irradiated mice with full-thickness skin wounds received pHGF local injection. The injuries were appraised based on relative wound area, pathology, immunohistochemical detection, terminal deoxynucleotidyl transferase dUTP nick end labelling assay and cytokine content. The transfection of pHGF increased the cell viability and Nrf2 expression in irradiated HaCaT cells. pHGF also significantly upregulated Bcl-2 expression, decreased the Bax/Bcl-2 ratio and inhibited the expression of interleukin-1ß and tumor necrosis factor-α in irradiated cells. Local pHGF injection in vivo caused high HGF protein expression and noticeable accelerated healing of combined radiation-trauma injury. Moreover, pHGF administration upregulated Nrf2, vascular endothelial growth factor, Bcl-2 expression, downregulated Bax expression and mitigated inflammatory response. In conclusion, the protective effect of pHGF may be related to inhibiting apoptosis and inflammation involving by upregulating Nrf2. Local pHGF injection distinctly promoted the healing of combined radiation-trauma injury and demonstrates potential as a gene therapy intervention for combined radiation-trauma injury in clinic.


Subject(s)
Hepatocyte Growth Factor , NF-E2-Related Factor 2 , Plasmids , Signal Transduction , Skin , Wound Healing , Animals , NF-E2-Related Factor 2/metabolism , Humans , Hepatocyte Growth Factor/genetics , Wound Healing/drug effects , Skin/pathology , Skin/radiation effects , Mice , Radiation Injuries , Apoptosis , Cell Survival/drug effects , Cell Survival/radiation effects , Cytokines/metabolism , HaCaT Cells , Male , Keratinocytes/radiation effects
15.
Photochem Photobiol Sci ; 23(6): 1051-1065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38684635

ABSTRACT

As a member of the SMAD family, SMAD4 plays a crucial role in several cellular biological processes. However, its function in UVB radiation-induced keratinocyte damage is not yet clarified. Our study aims to provide mechanistic insight for the development of future UVB protective therapies and therapeutics involving SMAD4. HaCaT cells were treated with UVB, and the dose dependence and time dependence of UVB were measured. The cell function of UVB-treated HaCaT cells and the activity of epithelial-mesenchymal transition (EMT) after overexpression or silencing of SMAD4 was observed by flow cytometry, quantitative reverse transcription PCR (qRT-PCR) and Western Blots (WB). We found that a significant decrease in SMAD4 was observed in HaCaT cells induced by UVB. Our data confirm SMAD4 as a direct downstream target of miR-664. The down-regulation of SMAD4 preserved the viability of the UVB-treated HaCaT cells by inhibiting autophagy or apoptosis. Furthermore, the silencing of SMAD4 activated the EMT process in UVB-treated HaCaT cells. Down-regulation of SMAD4 plays a protective role in UVB-treated HaCaT cells via the activation of EMT.


Subject(s)
Down-Regulation , Epithelial-Mesenchymal Transition , HaCaT Cells , Oxidative Stress , Smad4 Protein , Ultraviolet Rays , Smad4 Protein/metabolism , Humans , Epithelial-Mesenchymal Transition/radiation effects , Oxidative Stress/radiation effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Keratinocytes/cytology , Cell Survival/radiation effects , Apoptosis/radiation effects
16.
Front Immunol ; 15: 1384606, 2024.
Article in English | MEDLINE | ID: mdl-38660315

ABSTRACT

Introduction: Ultraviolet (UV) light is a known trigger of both cutaneous and systemic disease manifestations in lupus patients. Lupus skin has elevated expression of type I interferons (IFNs) that promote increased keratinocyte (KC) death after UV exposure. The mechanisms by which KC cell death is increased by type I IFNs are unknown. Methods: Here, we examine the specific cell death pathways that are activated in KCs by type I IFN priming and UVB exposure using a variety of pharmacological and genetic approaches. Mice that overexpress Ifnk in the epidermis were exposed to UVB light and cell death was measured. RNA-sequencing from IFN-treated KCs was analyzed to identify candidate genes for further analysis that could drive enhanced cell death responses after UVB exposure. Results: We identify enhanced activation of caspase-8 dependent apoptosis, but not other cell death pathways, in type I IFN and UVB-exposed KCs. In vivo, overexpression of epidermal Ifnk resulted in increased apoptosis in murine skin after UVB treatment. This increase in KC apoptosis was not dependent on known death ligands but rather dependent on type I IFN-upregulation of interferon regulatory factor 1 (IRF1). Discussion: These data suggest that enhanced sensitivity to UV light exhibited by lupus patients results from type I IFN priming of KCs that drives IRF1 expression resulting in caspase-8 activation and increased apoptosis after minimal exposures to UVB.


Subject(s)
Caspase 8 , Interferon-alpha , Keratinocytes , Animals , Mice , Apoptosis , Caspase 8/metabolism , Caspase 8/genetics , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon-alpha/metabolism , Keratinocytes/metabolism , Keratinocytes/radiation effects , Mice, Inbred C57BL , Ultraviolet Rays/adverse effects
17.
Virology ; 595: 110063, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38564935

ABSTRACT

This experimental study aimed to evaluate the antiviral and synergistic effects of photoenergy irradiation on human herpes simplex virus type I (HSV-1) infection. We assessed viral replication, plaque formation, and relevant viral gene expression to examine the antiviral and synergistic effects of blue light (BL) with acyclovir treatment. Our results showed that daily BL (10 J/cm2) irradiation inhibited plaque-forming ability and decreased viral copy numbers in HSV-1-infected monkey kidney epithelial Vero cells and primary human oral keratinocyte (HOK) cells. Combined treatment with the antiviral agent acyclovir and BL irradiation increased anti-viral activity, reducing viral titers and copy numbers. In particular, accumulated BL irradiation suppressed characteristic viral genes including UL19 and US6, and viral DNA replication-essential genes including UL9, UL30, UL42, and UL52 in HOK cells. Our results suggest that BL irradiation has anti-viral and synergistic properties, making it a promising therapeutic candidate for suppressing viral infections in clinical trials.


Subject(s)
Acyclovir , Antiviral Agents , Herpesvirus 1, Human , Virus Replication , Antiviral Agents/pharmacology , Animals , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/radiation effects , Herpesvirus 1, Human/physiology , Herpesvirus 1, Human/genetics , Chlorocebus aethiops , Vero Cells , Humans , Virus Replication/drug effects , Virus Replication/radiation effects , Acyclovir/pharmacology , Light , Herpes Simplex/virology , Herpes Simplex/drug therapy , Keratinocytes/virology , Keratinocytes/radiation effects , Keratinocytes/drug effects , Viral Plaque Assay
18.
Int Immunopharmacol ; 132: 111971, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38565040

ABSTRACT

DNA damage resulting from UV irradiation on the skin has been extensively documented in numerous studies. In our prior investigations, we demonstrated that UVB-induced DNA breakage from keratinocytes can activate the cGAS-STING pathway in macrophages. The cGAS-STING signaling pathway serves as the principal effector for detecting and responding to abnormal double-stranded DNA in the cytoplasm. Expanding on our previous findings, we have further validated that STING knockout significantly diminishes UVB-induced skin damage, emphasizing the critical role of cGAS-STING activation in this context. Salvianolic acid A, a principal active constituent of Salvia miltiorrhiza Burge, has been extensively studied for its therapeutic effects in conditions such as coronary heart disease, angina pectoris, and diabetic peripheral neuropathy. However, its effect on cGAS-STING pathway and its ability to alleviate skin damage have not been previously reported. In a co-culture system, supernatant from UVB-treated keratinocytes induced IRF3 activation in macrophages, and this activation was inhibited by salvianolic acid A. Our investigation, employing photodamage and photoaging models, establishes that salvianolic acid A effectively mitigates UV-induced epidermal thickening and collagen degeneration. Treatment with salvianolic acid A significantly reduced skin damage, epidermal thickness increase, and keratinocyte hyperproliferation compared to the untreated photo-damage and photoaging model groups. In summary, salvianolic acid A emerges as a promising candidate for preventing UV-induced skin damage by inhibiting cGAS-STING activation. This research enhances our understanding of the intricate mechanisms underlying skin photodamage and provides a potential avenue for the development of therapeutic interventions.


Subject(s)
Caffeic Acids , Keratinocytes , Lactates , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Skin , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Signal Transduction/drug effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Skin/drug effects , Skin/pathology , Skin/radiation effects , Nucleotidyltransferases/metabolism , Caffeic Acids/pharmacology , Humans , Mice , Macrophages/drug effects , Macrophages/immunology , Mice, Inbred C57BL , Skin Aging/drug effects , Skin Aging/radiation effects , DNA Damage/drug effects , Interferon Regulatory Factor-3/metabolism , Female , RAW 264.7 Cells
19.
Aging (Albany NY) ; 16(8): 7153-7173, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38643459

ABSTRACT

Application of retinol (Vitamin A, VA) in skincare is limited for instability, poor water solubility, and skin intolerance that combats skin aging. We employed computer-aided virtual screening and cell experiments with transcriptomics, thereby unveiling the comprehensive gene expression and regulation pathway of photoaging HaCaT cell treated with ferulic acid (FA) in synergizing with VA. Through network pharmacology analysis, the combined use of VA and FA exhibited highly correlated cross-targets with skin aging acting on EGFR, PTPN1, ESR2, GSK3B, BACE1, PYGL, PTGS2 and APP. The indicators of oxidative stress, such as SOD, GSH, MDA, CAT and ROS in HaCaT cells after co-administration, were significantly improved from those in photoaging group (p<0.0001). 155 differential expressed genes (DEGs) were specific between groups, while reducing the expression of PTGS2 was identified as an important regulatory factor in photoaging HaCaT cells by VA and FA. Those DEGs of co-administration group focused on oxidative-reduction enzyme activity, skin growth, keratinization, and steroid biosynthesis. Apparently, the co-administration of VA and FA effectively mitigated the process of UVB-induced photoaging by reducing oxidative stress injury, inflammation responses, and regulating cell growth. This synergistic approach significantly slowed down the photoaging progression and improved the applied performance of VA in HaCaT cells.


Subject(s)
Coumaric Acids , Drug Synergism , HaCaT Cells , Oxidative Stress , Skin Aging , Ultraviolet Rays , Vitamin A , Humans , Skin Aging/drug effects , Skin Aging/radiation effects , Coumaric Acids/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Ultraviolet Rays/adverse effects , Vitamin A/pharmacology , Keratinocytes/drug effects , Keratinocytes/radiation effects , Keratinocytes/metabolism , Antioxidants/pharmacology
20.
J Hazard Mater ; 471: 134386, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38663297

ABSTRACT

Anthracene, a polycyclic aromatic hydrocarbon (PAH), is a widespread environmental pollutant that poses potential risks to human health. Exposure to anthracene can result in various adverse health effects, including skin-related disorders. Photo exposure sufficiently removes the anthracene from the environment but also generates more degradation products which can be more toxic. The goal of this study was to assess the change in anthracene dermotoxicity caused by photodegradation and understand the mechanism of this change. In the present study, over 99.99% of anthracene was degraded within 24 h of sunlight exposure, while producing many intermediate products including 9,10-anthraquinone and phthalic acid. The anthracene products with different durations of photo exposure were applied to 2D and 3D human keratinocyte cultures. Although the non-degraded anthracene significantly delayed the cell migration, the cell viability and differentiation decreased dramatically in the presence of the photodegraded anthracene. Anthracene photodegradation products also altered the expression patterns of a number of inflammation-related genes in comparison to the control cells. Among these genes, il1a, il1b, il8, cxcl2, s100a9, and mmp1 were upregulated whereas the tlr4 and mmp3 were downregulated by the photodegraded anthracene. Topical deliveries of the photodegraded and non-degraded anthracene to the dorsal skin of hairless mice showed more toxic effects by the photodegraded anthracene. The 4-hour photodegradation products of anthracene thickened the epidermal layer, increased the dermal cellularity, and induced the upregulation of inflammatory markers, il1a, il1b, s100a9, and mmp1. In addition, it also prevented the production of a gap junction protein, Connexin-43. All the evidence suggested that photodegradation enhanced the toxicities of anthracene to the skin. The 4-hour photodegradation products of anthracene led to clinical signs similar to acute inflammatory skin diseases, such as atopic and contact dermatitis, eczema, and psoriasis. Therefore, the potential risk of skin irritation by anthracene should be also considered when an individual is exposed to PAHs, especially in environments with strong sunlight.


Subject(s)
Anthracenes , Keratinocytes , Photolysis , Skin , Anthracenes/toxicity , Anthracenes/chemistry , Humans , Keratinocytes/drug effects , Keratinocytes/radiation effects , Animals , Skin/drug effects , Skin/radiation effects , Skin/metabolism , Cell Survival/drug effects , Mice , Cell Movement/drug effects , Sunlight , Mice, Hairless , Anthraquinones/toxicity , Anthraquinones/chemistry , Cell Differentiation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...