Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.976
Filter
1.
Mycoses ; 67(8): e13774, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092516

ABSTRACT

BACKGROUND: Fungi clinically relevant to human skin comprise prevalent commensals and well-known pathogens. Only rarely human skin harbours fungi that evade identification. OBJECTIVE: To characterise an enigmatic specimen isolated from a skin lesion. METHODS: A comprehensive clinical and mycological workup including conventional methods for phenotypic characterisation and sequencing based on internal transcribed spacer (ITS) and large subunit (LSU) regions to infer a phylogenetic tree. RESULTS: Cultures on common solid media were macroscopically inconspicuous initially until mycelial tufts developed on the surface, notably on potato dextrose agar. Polymorphous chlamydospores were detected but no aleurospores and ascomata. At 26°C, the isolate grew on standard agars, plant materials and garden soil and utilised peptone, keratins, lipids, inulin, erythrocytes and cellulose. It also grew at 5°C and at 37°C. Nucleotide sequences of its ITS region showed 93% similarity to sequences of different Malbranchea species. The closest matches among LSU rRNA sequences were obtained with the genera Amauroascus, Arthroderma, Auxarthronopsis and Malbranchea (93%-95%). A combined phylogenetic analysis placed the fungus in a sister clade to Neogymnomycetaceae, classified as incertae sedis in Onygenales, on a large distance to either Diploospora rosea or 'Amauroascus' aureus. CONCLUSIONS: The genus Inopinatus gen. nov. (MB854685) with the species Inopinatus corneliae sp. nov. (MB854687) is introduced to accommodate our isolate (holotype: DSM 116806; isotypes: CBS 151104, IHEM 29063). Probably Inopinatus corneliae is a geophilic species that, although potentially harmful, was no relevant pathogen in our case. Its ecology, epidemiology and pathogenicity need to be further clarified.


Subject(s)
DNA, Fungal , DNA, Ribosomal Spacer , Onygenales , Phylogeny , Sequence Analysis, DNA , Skin , Humans , Skin/microbiology , Onygenales/genetics , Onygenales/classification , Onygenales/isolation & purification , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Dermatomycoses/microbiology , Keratins/metabolism , DNA, Ribosomal/genetics , Male , Mycological Typing Techniques
2.
Wounds ; 36(6): 183-188, 2024 06.
Article in English | MEDLINE | ID: mdl-39018361

ABSTRACT

BACKGROUND: Lower extremity wounds in patients with diabetes are difficult to heal due to an overabundance of pro-inflammatory M1 macrophages, reduced phagocytosis of necrosed cells, and circulatory issues. Keratin biomaterials have been shown to address some of these concerns by encouraging the proliferation of anti-inflammatory M2 macrophages, thereby creating more favorable conditions for wound healing resembling those of patients without diabetes. OBJECTIVE: To investigate the effect of a novel human keratin matrix (HKM) on wound healing. MATERIALS AND METHODS: Ten patients with diabetes with lower extremity wounds at risk for delayed healing underwent wound debridement and application of HKM. Patients received weekly follow-up care and reapplication of HKM until healing occurred; wound size at each visit was used to calculate healing rate. RESULTS: Increased healing rates were noted with HKM compared with standard of care (SOC), including debridement and collagen treatment in all 8 patients who had received SOC prior to HKM treatment. When HKM treatment was alternated with SOC in 2 patients due to other medical conditions, healing rates decreased with SOC and then increased after reintroduction of HKM applications. CONCLUSIONS: These results suggest that HKM may help regulate the pathological processes that contribute to wound chronicity to "kick-start" wound healing. This case series demonstrates that HKM is a promising technology to improve healing rates in nonhealing lower extremity wounds in patients with diabetes.


Subject(s)
Debridement , Diabetic Foot , Keratins , Wound Healing , Humans , Wound Healing/physiology , Wound Healing/drug effects , Male , Female , Diabetic Foot/therapy , Middle Aged , Aged , Debridement/methods , Keratins/metabolism , Treatment Outcome , Lower Extremity
3.
Clin Exp Dent Res ; 10(4): e932, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38973200

ABSTRACT

OBJECTIVES: There is a growing evidence to suggest augmenting peri-implant keratinized mucosa in the presence of ≤ 2 mm of keratinized mucosa. However, the most appropriate surgical technique and augmentation materials have yet to be defined. The aim of this systematic review and meta-analyses was to evaluate the clinical and patient-reported outcomes of augmenting keratinized mucosa around implants using free gingival graft (FGG) versus xenogeneic collagen matrix (XCM) before commencing prosthetic implant treatment. MATERIAL AND METHODS: Electronic databases were searched to identify observational studies comparing implant sites augmented with FGG to those augmented with XCM. The risk of bias was assessed using the Cochrane Collaboration's Risk of Bias tool. RESULTS: Six studies with 174 participants were included in the present review. Of these, 87 participants had FGG, whereas the remaining participants had XCM. At 6 months, sites augmented with FGG were associated with less changes in the gained width of peri-implant keratinized mucosa compared to those augmented with XCM (mean difference 1.06; 95% confidence interval -0.01 to 2.13; p = 0.05). The difference, however, was marginally significant. The difference between the two groups in changes in thickness of peri-implant keratinized mucosa at 6 months was statistically significantly in favor of FGG. On the other hand, XCM had significantly shorter surgical time, lower postoperative pain score, and higher color match compared to FGG. CONCLUSIONS: Within the limitation of this review, the augmentation of keratinized mucosa using FGG before the placement of the final prosthesis may have short-term positive effects on soft tissue thickness. XCM might be considered in aesthetically demanding implant sites and where patient comfort or shorter surgical time is a priority. The evidence support, however, is of low to moderate certainty; therefore, further studies are needed to support the findings of the present review.


Subject(s)
Collagen , Dental Implants , Gingiva , Humans , Collagen/therapeutic use , Gingiva/transplantation , Gingiva/pathology , Gingiva/surgery , Keratins , Mouth Mucosa/transplantation , Gingivoplasty/methods , Dental Implantation, Endosseous/methods , Heterografts
4.
Microb Physiol ; 34(1): 170-181, 2024.
Article in English | MEDLINE | ID: mdl-38955164

ABSTRACT

INTRODUCTION: The global poultry industry produces millions of tons of waste feathers every year, which can be bio-degraded to make feed, fertilizer, and daily chemicals. However, feather bio-degradation is a complex process that is not yet fully understood. This results in low degradation efficiency and difficulty in industrial applications. Omics-driven system biology research offers an effective solution to quickly and comprehensively understand the molecularmechanisms involved in a metabolic pathway. METHODS: In the early stage of this process, feathers are hydrolyzed into water-soluble keratin monomers. In this study, we used high-throughput RNA-seq technology to analyze the genes involved in the internalization and degradation of keratin monomers in Stenotrophomonas maltophilia DHHJ strain cells. Moreover, we used Co-IP with LC-MS/MS technology to search for proteins that interact with recombinant keratin monomers. RESULTS: We discovered TonB transports and molecular chaperones associating with the keratin monomer, which may play a crucial role in the transmembrane transport of keratin. Meanwhile, multiple proteases belonging to distinct families were identified as binding partners of keratin monomers, among which ATPases associated with diverse cellular activity (AAA+) family proteases are overrepresented. Four genes, including JJL50_15620, JJL50_17955 (TonB-dependent receptors), JJL50_03260 (ABC transporter ATP-binding protein), and JJL50_20035 (ABC transporter substrate-binding protein), were selected as representatives for determining their expressions under different culture conditions using qRT-PCR, and they were found to be upregulated in response to keratin degradation consistent with the data from RNA-seq and Co-IP. CONCLUSION: This study highlights the complexity of keratin biodegradation in S. maltophilia DHHJ, in which multiple pathways are involved such as protein folding, protein transport, and several protease systems. Our findings provide new insights into the mechanism of feather degradation.


Subject(s)
Bacterial Proteins , Biodegradation, Environmental , Keratins , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/metabolism , Stenotrophomonas maltophilia/genetics , Keratins/metabolism , Keratins/genetics , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Feathers/metabolism , Feathers/microbiology , Tandem Mass Spectrometry , Gene Expression Regulation, Bacterial , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics
5.
Gene ; 927: 148751, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38971547

ABSTRACT

By analyzing the expression patterns of inner root sheath (IRS) specific genes during different developmental stages of hair follicle (HF) in Tan sheep embryos and at birth, this study aims to reveal the influence of the IRS on crimped wool. Skin tissues from the scapular region of male Tan sheep were collected at 85 days (E85) and 120 days (E120) of fetal development, and at 0 days (D0), 35 days (D35), and 60 days (D60) after birth, with four samples at each stage. Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to determine the relative expression levels of IRS type I keratin genes (KRT25, KRT26, KRT27, KRT28), type II keratin genes (KRT71, KRT72, KRT73, KRT74), and the trichohyalin gene (TCHH) in the skin of Tan sheep at different stages. Results showed that the expression levels of all IRS-specific genes peaked at D0, with the expression of all genes significantly higher than at E85 (P < 0.01), except for KRT73 and TCHH. The expression levels of KRT25, KRT26, and KRT72 were also significantly higher than at E120 (P < 0.01). Furthermore, the expression levels of KRT27, KRT28, KRT71, and KRT74 were significantly higher than both at E120 and D35 (P < 0.01). The expression levels of other genes at different stages showed no significant difference (P > 0.05). Conclusion: The IRS-specific genes exhibit the highest expression levels in Tan sheep at the neonatal stage. The expression levels of KRT71, KRT72, and TCHH, which are consistent with the pattern of wool crimp, may influence the morphology of the IRS and thereby affect the crimp of Tan sheep wool.


Subject(s)
Gene Expression Regulation, Developmental , Hair Follicle , Animals , Hair Follicle/metabolism , Hair Follicle/growth & development , Sheep/genetics , Sheep/growth & development , Male , Wool/metabolism , Wool/growth & development , Keratins, Type II/genetics , Keratins, Type II/metabolism , Keratins/genetics , Keratins/metabolism , Keratins, Type I/genetics , Keratins, Type I/metabolism , Intermediate Filament Proteins
6.
Medicina (Kaunas) ; 60(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064586

ABSTRACT

Background and Objectives: The key factor that enables osteoblastic activity and the formation of new bone, as well as gingiva, during orthodontic tooth extrusion (OE) is the periodontal ligament. The reaction of periodontal tissues associated with changes in the gingiva is a part of orthodontic tooth displacement. The aim of this study was to examine the effect of OE on the width of the zone of the keratinized and attached gingiva, the position of the mucogingival junction, and the height of the interdental papillae in the region where the OE was performed as well as in the adjacent region. Materials and Methods: This research included 28 adult patients (both orthodontically treated and untreated). The treated group included 15 patients, in whom orthodontic extrusion of the upper or lower frontal teeth was indicated and performed. The untreated group included 13 patients, with no previous or undergoing orthodontic treatment. Patients with periodontal disease and periodontal pockets in the frontal region and patients allergic to iodine were excluded from the study. Gingivomorphometric measurements were performed on two occasions in three groups of teeth (24 extruded and 30 agonist teeth in the treated patients; 66 teeth in the untreated patients). Statistical analysis of the obtained data was performed using the software package SPSS version 26.0. Results: Orthodontic extrusion induced changes in the position of the mucogingival line and an increase in the width of the keratinized gingiva. There were no statistically significant effects on the depth of the gingival sulcus, the attached gingiva width, or the height of the interdental papillae. Conclusions: Orthodontic tooth extrusion has an effect on the periodontium in the observed region. Vertical orthodontic force, directed towards the coronal plane, affects the surrounding soft oral tissues.


Subject(s)
Gingiva , Orthodontic Extrusion , Humans , Female , Adult , Male , Orthodontic Extrusion/methods , Keratins , Young Adult , Periodontal Ligament
7.
Molecules ; 29(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39064958

ABSTRACT

The volume of difficult-to-process keratin waste is increasing as a result of rising global meat production. If not properly managed, this waste can contribute to environmental pollution and pose a threat to human and animal welfare. An interesting and more sustainable alternative is therefore the bioconversion of keratin using microorganisms and their enzymes. This work aimed to isolate bacteria from soil samples and zoonotic keratins and to evaluate their enzymatic capacity to degrade α- and ß-keratin wastes. A total of 113 bacterial strains were isolated from environmental samples and subjected to taxonomic identification using the MALDI-TOF MS technique and to a two-step screening for proteolytic and keratinolytic activity. The ability to degrade a ß-rich keratin substrate was observed in almost all of the strains isolated from soil and horsehairs. In contrast, when an α-rich keratin substrate was used, the highest levels of hydrolysis were observed only for Ker39, Ker66, Ker85, Ker100, and Ker101. Strains with the highest biodegradation potential were identified using molecular biology methods. Phylogenetic analysis of 16S rDNA gene sequences allowed the assignment of selected keratinolytic microorganisms to the genera Exiguobacterium, Priestia, Curtobacterium, Stenotrophomonas, Bacillus, Kocuria, or Pseudomonas. The results of this study are a promising precursor for the development of new, more sustainable methods of managing keratin waste to produce high-value hydrolysates.


Subject(s)
Bacteria , Biodegradation, Environmental , Keratins , Phylogeny , Keratins/metabolism , Bacteria/metabolism , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Animals , Peptide Hydrolases/metabolism
8.
Cell Rep ; 43(7): 114480, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39003737

ABSTRACT

The cytoskeleton of the cell is constantly exposed to physical forces that regulate cellular functions. Selected members of the LIM (Lin-11, Isl-1, and Mec-3) domain-containing protein family accumulate along force-bearing actin fibers, with evidence supporting that the LIM domain is solely responsible for this force-induced interaction. However, LIM domain's force-induced interactions are not limited to actin. LIMK1 and LMO1, both containing only two tandem LIM domains, are recruited to force-bearing keratin fibers in epithelial cells. This unique recruitment is mediated by their LIM domains and regulated by the sequences outside the LIM domains. Based on in vitro reconstitution of this interaction, LIMK1 and LMO1 directly interact with stretched keratin 8/18 fibers. These results show that LIM domain's mechano-sensing abilities extend to the keratin cytoskeleton, highlighting the diverse role of LIM proteins in force-regulated signaling.


Subject(s)
Intermediate Filaments , Keratins , LIM Domain Proteins , Lim Kinases , LIM Domain Proteins/metabolism , Humans , Lim Kinases/metabolism , Keratins/metabolism , Intermediate Filaments/metabolism , Protein Binding , Animals , Transcription Factors/metabolism
9.
Nat Commun ; 15(1): 6259, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048559

ABSTRACT

Pityriasis rubra pilaris (PRP) is an inflammatory papulosquamous dermatosis, characterized by hyperkeratotic follicular papules and erythematous desquamative plaques. The precise pathogenic mechanism underlying PRP remains incompletely understood. Herein, we conduct a case-control study involving a cohort of 102 patients with sporadic PRP and 800 healthy controls of Han Chinese population and identify significant associations (P = 1.73 × 10-6) between PRP and heterozygous mutations in the Keratin 32 gene (KRT32). KRT32 is found to be predominantly localized in basal keratinocytes and exhibits an inhibitory effect on skin inflammation by antagonizing the NF-κB pathway. Mechanistically, KRT32 binds to NEMO, promoting excessive K48-linked polyubiquitination and NEMO degradation, which hinders IKK complex formation. Conversely, loss-of-function mutations in KRT32 among PRP patients result in NF-κB hyperactivation. Importantly, Krt32 knockout mice exhibit a PRP-like dermatitis phenotype, suggesting compromised anti-inflammatory function of keratinocytes in response to external pro-inflammatory stimuli. This study proposes a role for KRT32 in regulating inflammatory immune responses, with damaging variants in KRT32 being an important driver in PRP development. These findings offer insights into the regulation of skin immune homeostasis by keratin and open up the possibility of using KRT32 as a therapeutic target for PRP.


Subject(s)
Homeostasis , Keratinocytes , Loss of Function Mutation , Mice, Knockout , NF-kappa B , Pityriasis Rubra Pilaris , Skin , Humans , Pityriasis Rubra Pilaris/genetics , Pityriasis Rubra Pilaris/immunology , Pityriasis Rubra Pilaris/pathology , Pityriasis Rubra Pilaris/metabolism , Animals , Keratinocytes/immunology , Keratinocytes/metabolism , Skin/pathology , Skin/immunology , Skin/metabolism , NF-kappa B/metabolism , Female , Case-Control Studies , Mice , Male , Adult , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Middle Aged , Ubiquitination , Signal Transduction , Keratins/metabolism , Keratins/genetics , Young Adult
10.
Int J Pharm ; 661: 124451, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38992735

ABSTRACT

We extended a mechanistic, physics-based framework of the dry down process, previously developed for liquids and electrolytes, to solids and coded it into the latest UB/UC/P&G skin permeation model, herein renamed DigiSkin. The framework accounts for the phase change of the permeant from dissolved in a solvent (liquid) to precipitated on the skin surface (solid). The evaporation rate for the solid is reduced due to lower vapor pressure for the solid state versus subcooled liquid. These vapor pressures may differ by two orders of magnitude. The solid may gradually redissolve and penetrate the skin. The framework was tested by simulating the in vitro human skin permeation of the 38 cosmetically relevant solid compounds reported by Hewitt et al., J. Appl. Toxicol. 2019, 1-13. The more detailed handling of the evaporation process greatly improved DigiSkin evaporation predictions (r2 = 0.89). Further, we developed a model reliability prediction score classification using diverse protein reactivity data and identified that 15 of 38 compounds are out of model scope. Dermal delivery predictions for the remaining chemicals have excellent agreement with experimental data. The analysis highlighted the sensitivity of water solubility and equilibrium vapor pressure values on the DigiSkin predictions outcomes influencing agreement with the experimental observations.


Subject(s)
Cosmetics , Keratins , Skin Absorption , Skin , Solvents , Solvents/chemistry , Humans , Hydrogen-Ion Concentration , Skin/metabolism , Keratins/chemistry , Cosmetics/chemistry , Cosmetics/pharmacokinetics , Administration, Cutaneous , Solubility , Models, Biological , Pharmaceutical Vehicles/chemistry , Phase Transition
12.
Invest Ophthalmol Vis Sci ; 65(6): 28, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38888283

ABSTRACT

Purpose: The current study evaluated the lid margin microbiome of keratinized lid margins of patients with chronic Stevens-Johnson syndrome (SJS) and compared it with healthy controls and historically reported lid margin microbiome of patients with meibomian gland dysfunction (MGD). Methods: Eyelid margin swabs of 20 asymptomatic adults (mean age = 29 ± 12 years) and 10 patients with chronic SJS (mean age = 31.2 ± 14 years) with lid margin keratinization were sequenced using next generation of 16S rDNA V3 to V4 variable region. Within SJS, the keratinized lid margin microbiome was compared with adjacent eyelid skin. Results: All patients had obstructive MGD, and mean Schirmer I value was 2.8 ± 1.9 mm. The phyla were similar in two groups, whereas at the genera level, an increase in the relative abundance of Corynebacterium, Haemophilus, Azotobacter, and Afipia and a decrease of Acinetobacter was noted in SJS compared to healthy lid margins. SJS-associated microbiota displayed lesser diversity and more heterogeneity than healthy controls. The Principal Components Analysis (PCA) plot revealed wide separation in the SJS and the control groups. Correlational network analysis revealed Corynebacterium and Sphingomonas forming a major hub of negative interactions with other bacterial genera in the SJS group. Significant differences exist in the prevalent genera between keratinized lid margins and historically reported meibum microbiome of patients with MGD. In addition, the eyelid skin of patients with SJS had predominant Staphylococcus, whereas Corynebacterium and Pseudomonas were more in the keratinized lid margins compared to the eyelid skin microbiome. Conclusions: Lid margin microbiome is significantly altered in the keratinized lid margins of patients with SJS compared to the eyelid skin of patients with SJS, normal lid margins, and patients with MGD.


Subject(s)
Dry Eye Syndromes , Eyelids , Microbiota , Stevens-Johnson Syndrome , Humans , Male , Female , Adult , Dry Eye Syndromes/microbiology , Eyelids/microbiology , Stevens-Johnson Syndrome/microbiology , Middle Aged , Young Adult , Bacteria/genetics , Bacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , DNA, Bacterial/analysis , Adolescent , Meibomian Glands/microbiology , Meibomian Glands/pathology , Meibomian Gland Dysfunction/microbiology , Keratins/metabolism
13.
Genes (Basel) ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927617

ABSTRACT

Keratins are the main structural protein components of wool fibres, and variation in them and their genes (KRTs) is thought to influence wool structure and characteristics. The PCR-single strand conformation polymorphism technique has been used previously to investigate genetic variation in selected coding and intron regions of the type II sheep keratin gene KRT81, but no variation was identified. In this study, we used the same technique to explore the 5' untranslated region of KRT81 and detected three sequence variants (A, B and C) that contain four single nucleotide polymorphisms. Among the 389 Merino × Southdown cross sheep investigated, variant B was linked to a reduction in clean fleece weight, while C was associated with an increase in both greasy fleece weight and clean fleece weight. No discernible effects on staple length or mean-fibre-diameter-related traits were observed. These findings suggest that variation in ovine KRT81 might influence wool growth by changing the density of wool follicles in the skin, the density of individual fibres, or the area of the skin producing fibre, as opposed to changing the rate of extrusion of fibres or their diameter.


Subject(s)
Polymorphism, Single Nucleotide , Wool Fiber , Wool , Animals , Sheep/genetics , Sheep/growth & development , Wool/growth & development , Keratins, Type II/genetics , Keratins, Type II/metabolism , Keratins/genetics , Keratins/metabolism , Sheep, Domestic/genetics , Sheep, Domestic/growth & development
14.
J Microorg Control ; 29(2): 63-73, 2024.
Article in English | MEDLINE | ID: mdl-38880618

ABSTRACT

Cutibacterium acnes is an opportunistic pathogen recognized as a contributing factor to acne vulgaris. The accumulation of keratin and sebum plugs in hair follicles facilitates C. acnes proliferation, leading to inflammatory acne. Although numerous antimicrobial cosmetic products for acne-prone skin are available, their efficacy is commonly evaluated against planktonic cells of C. acnes. Limited research has assessed the antimicrobial effects on microorganisms within keratin and sebum plugs. This study investigates whether an antibacterial toner can penetrate keratin and sebum plugs, exhibiting bactericidal effects against C. acnes. Scanning electron microscopy and next-generation sequencing analysis of the keratin and sebum plug suggest that C. acnes proliferate within the plug, predominantly in a biofilm-like morphology. To clarify the potential bactericidal effect of the antibacterial toner against C. acnes inside keratin and sebum plugs, we immersed the plugs in the toner, stained them with LIVE/DEAD BacLight Bacterial Viability Kit to visualize microorganism viability, and observed them using confocal laser scanning microscopy. Results indicate that most microorganisms in the plugs were killed by the antibacterial toner. To quantitatively evaluate the bactericidal efficacy of the toner against C. acnes within keratin and sebum, we immersed an artificial plug with inoculated C. acnes type strain and an isolate collected from acne-prone skin into the toner and obtained viable cell counts. The number of the type strain and the isolate inside the artificial plug decreased by over 2.2 log and 1.2 log, respectively, showing that the antibacterial toner exhibits bactericidal effects against C. acnes via keratin and sebum plug penetration.


Subject(s)
Acne Vulgaris , Anti-Bacterial Agents , Keratins , Sebum , Sebum/metabolism , Anti-Bacterial Agents/pharmacology , Humans , Keratins/metabolism , Acne Vulgaris/microbiology , Acne Vulgaris/drug therapy , Biofilms/drug effects , Microbial Viability/drug effects , Propionibacteriaceae/drug effects , Propionibacteriaceae/metabolism , Propionibacteriaceae/genetics , Propionibacterium acnes/drug effects , Propionibacterium acnes/metabolism , Hair Follicle/microbiology , Hair Follicle/metabolism , Microscopy, Electron, Scanning
15.
Sci Rep ; 14(1): 13066, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844764

ABSTRACT

The aim of this study was to assess the surface and tissue quality of keratinized mucosa grafts (KMG) obtained using the conventional scalpel and mucotome techniques. This was an experimental in vitro/ex vivo study involving six porcine hemi-mandibles. Specimens were harvested using both the mucotome and conventional scalpel techniques, with randomization determining the choice of technique for tissue removal. The specimens were prepared following predefined laboratory protocols and subsequently subjected to optical microscopy for evaluating epithelial and connective tissue and scanning electron microscopy for topographical and 3D profilometry analysis. Tissues harvested using the mucotome exhibited a linear base and uniform thickness, along with the presence of submucosa and fibrous connective tissue, all of which are ideal for graft success. Differences in the surface characteristics of specimens obtained through the two techniques were observed during a comparative analysis of images obtained through both microscopy types. KMG obtained using the mucotome technique displayed greater uniformity and reduced undesirable cell presence compared to the scalpel technique, thereby enhancing the likelihood of success in soft tissue graft surgical procedures. This study provides valuable insights to oral healthcare professionals and may contribute to future research aimed at achieving more successful surgeries, shorter postoperative recovery times, reduced discomfort, and an overall more positive patient experience.


Subject(s)
Mandible , Mouth Mucosa , Animals , Swine , Mouth Mucosa/transplantation , Mouth Mucosa/cytology , Mandible/surgery , Keratins/metabolism , Microscopy, Electron, Scanning , Tissue and Organ Harvesting/methods
17.
Curr Microbiol ; 81(8): 227, 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38879855

ABSTRACT

Microbial degradation of keratin is characterized by its inherent safety, remarkable efficiency, and the production of copious degradation products. All these attributes contribute to the effective management of waste materials at high value-added and in a sustainable manner. Microbial degradation of keratin materials remains unclear, however, with variations observed in the degradation genes and pathways among different microorganisms. In this study, we sequenced the transcriptome of Purpureocillium lilacinum GZAC18-2JMP mycelia on control medium and the medium containing 1% feather powder, analyzed the differentially expressed genes, and revealed the degradation mechanism of chicken feathers by P. lilacinum GZAC18-2JMP. The results showed that the chicken feather degradation rate of P. lilacinum GZAC18-2JMP reached 64% after 216 h of incubation in the fermentation medium, reaching a peak value of 148.9 µg·mL-1 at 192 h, and the keratinase enzyme activity reached a peak value of 211 U·mL-1 at 168 h, which revealed that P. lilacinum GZAC18-2JMP had a better keratin degradation effect. A total of 1001 differentially expressed genes (DEGs) were identified from the transcriptome database, including 475 upregulated genes and 577 downregulated genes. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the DEGs revealed that the metabolic pathways related to keratin degradation were mainly sulfur metabolism, ABC transporters, and amino acid metabolism. Therefore, the results of this study provide an opportunity to gain further insight into keratin degradation and promote the biotransformation of feather wastes.


Subject(s)
Feathers , Hypocreales , Keratins , Transcriptome , Keratins/metabolism , Hypocreales/genetics , Hypocreales/metabolism , Animals , Feathers/metabolism , Chickens , Gene Expression Profiling , Fungal Proteins/genetics , Fungal Proteins/metabolism , Peptide Hydrolases/metabolism , Peptide Hydrolases/genetics , Mycelium/genetics , Mycelium/metabolism , Mycelium/growth & development , Fermentation , Biodegradation, Environmental
18.
Anticancer Res ; 44(7): 3105-3113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38925804

ABSTRACT

BACKGROUND/AIM: Classical serum cancer biomarkers, such as carcinoembryonic antigen (CEA) and cancer antigen 19-9 (CA 19-9), remain important tools in colorectal cancer (CRC) management for disease follow up. However, their sensitivity and specificity are low for diagnostic and prognostic evaluation. The aim of this study was to evaluate the potential of biomarkers reflecting biological activity of tumors - tissue polypeptide specific antigen (TPS), cytokeratin fragment 19 (CYFRA 21-1), thymidine kinase (TK), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGF-BP3) - together with the CEA and CA 19-9 in CRC diagnosis and prognosis. PATIENTS AND METHODS: This is a retrospective study including 148 CRC patients and 68 age-matched healthy subjects. Serum biomarkers were measured in pre-operative serum samples using immunoanalytical methods. The end-point for the diagnostic evaluation was the area under the receiving operating characteristic curve (AUC ROC) of the biomarkers. The end-point for the prognostic evaluation was overall survival. RESULTS: Serum levels of CEA, CA 19-9, TPS, and TK were significantly increased in CRC early-stage patients compared with healthy controls. Each of the studied biomarkers had AUC between 0.6 and 0.7. Analysis of survival demonstrated that the patients with CEA, CA 19-9, cytokeratin, and TK above optimal cut offs had significantly shorter survival. A multivariate analysis performed on all the study biomarkers resulted in the selection of CYFRA 21-1 as the best performing biomarker with hazard ratio 10.413. CONCLUSION: The combination of cytokeratins and thymidine kinase with classical cancer biomarkers enables the prediction of tumor aggressiveness and long-term prognosis.


Subject(s)
Biomarkers, Tumor , CA-19-9 Antigen , Carcinoembryonic Antigen , Colorectal Neoplasms , Thymidine Kinase , Humans , Thymidine Kinase/blood , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/pathology , Biomarkers, Tumor/blood , Male , Female , Aged , Middle Aged , Carcinoembryonic Antigen/blood , Retrospective Studies , Prognosis , CA-19-9 Antigen/blood , ROC Curve , Insulin-Like Growth Factor I/metabolism , Keratins/blood , Adult , Aged, 80 and over , Keratin-19/blood , Case-Control Studies , Antigens, Neoplasm/blood , Peptides
19.
Invest Ophthalmol Vis Sci ; 65(6): 37, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38935029

ABSTRACT

Purpose: To investigate the molecular mechanism of pathological keratinization in the chronic phase of ocular surface (OS) diseases. Methods: In this study, a comprehensive gene expression analysis was performed using oligonucleotide microarrays on OS epithelial cells obtained from three patients with pathological keratinization (Stevens-Johnson syndrome [n = 1 patient], ocular cicatricial pemphigoid [n = 1 patient], and anterior staphyloma [n = 1 patient]). The controls were three patients with conjunctivochalasis. The expression in some transcripts was confirmed using quantitative real-time PCR. Results: Compared to the controls, 3118 genes were significantly upregulated by a factor of 2 or more than one-half in the pathological keratinized epithelial cells (analysis of variance P < 0.05). Genes involved in keratinization, lipid metabolism, and oxidoreductase were upregulated, while genes involved in cellular response, as well as known transcription factors (TFs), were downregulated. Those genes were further analyzed with respect to TFs and retinoic acid (RA) through gene ontology analysis and known reports. The expression of TFs MYBL2, FOXM1, and SREBF2, was upregulated, and the TF ELF3 was significantly downregulated. The expression of AKR1B15, RDH12, and CRABP2 (i.e., genes related to RA, which is known to suppress keratinization) was increased more than twentyfold, whereas the expression of genes RARB and RARRES3 was decreased by 1/50. CRABP2, RARB, and RARRES3 expression changes were also confirmed by qRT-PCR. Conclusions: In pathological keratinized ocular surfaces, common transcript changes, including abnormalities in vitamin A metabolism, are involved in the mechanism of pathological keratinization.


Subject(s)
Gene Expression Regulation , Real-Time Polymerase Chain Reaction , Humans , Female , Male , Aged , Middle Aged , Oligonucleotide Array Sequence Analysis , Gene Expression Profiling , Pemphigoid, Benign Mucous Membrane/genetics , Pemphigoid, Benign Mucous Membrane/metabolism , Keratins/metabolism , Keratins/genetics , Corneal Diseases/genetics , Corneal Diseases/metabolism , Corneal Diseases/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Conjunctival Diseases/genetics , Conjunctival Diseases/metabolism , Conjunctival Diseases/pathology
20.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891785

ABSTRACT

Intermediate filaments are one of three polymeric structures that form the cytoskeleton of epithelial cells. In the epithelium, these filaments are made up of a variety of keratin proteins. Intermediate filaments complete a wide range of functions in keratinocytes, including maintaining cell structure, cell growth, cell proliferation, cell migration, and more. Given that these functions are intimately associated with the carcinogenic process, and that hyperkeratinization is a quintessential feature of oral leukoplakias, the utility of keratins in oral leukoplakia is yet to be fully explored. This scoping review aims to outline the current knowledge founded on original studies on human tissues regarding the expression and utility of keratins as diagnostic, prognostic, and predictive biomarkers in oral leukoplakias. After using a search strategy developed for several scientific databases, namely, PubMed, Scopus, Web of Science, and OVID, 42 papers met the inclusion and exclusion criteria. One more article was added when it was identified through manually searching the list of references. The included papers were published between 1989 and 2024. Keratins 1-20 were investigated in the 43 included studies, and their expression was assessed in oral leukoplakia and dysplasia cases. Only five studies investigated the prognostic role of keratins in relation to malignant transformation. No studies evaluated keratins as a diagnostic adjunct or predictive tool. Evidence supports the idea that dysplasia disrupts the terminal differentiation pathway of primary keratins. Gain of keratin 17 expression and loss of keratin 13 were significantly observed in differentiated epithelial dysplasia. Also, the keratin 19 extension into suprabasal cells has been associated with the evolving features of dysplasia. The loss of keratin1/keratin 10 has been significantly associated with high-grade dysplasia. The prognostic value of cytokeratins has shown conflicting results, and further studies are required to ascertain their role in predicting the malignant transformation of oral leukoplakia.


Subject(s)
Keratins , Leukoplakia, Oral , Humans , Leukoplakia, Oral/metabolism , Leukoplakia, Oral/pathology , Leukoplakia, Oral/genetics , Keratins/metabolism , Keratins/genetics , Prognosis , Biomarkers, Tumor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL