Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.739
Filter
1.
Genes (Basel) ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38927617

ABSTRACT

Keratins are the main structural protein components of wool fibres, and variation in them and their genes (KRTs) is thought to influence wool structure and characteristics. The PCR-single strand conformation polymorphism technique has been used previously to investigate genetic variation in selected coding and intron regions of the type II sheep keratin gene KRT81, but no variation was identified. In this study, we used the same technique to explore the 5' untranslated region of KRT81 and detected three sequence variants (A, B and C) that contain four single nucleotide polymorphisms. Among the 389 Merino × Southdown cross sheep investigated, variant B was linked to a reduction in clean fleece weight, while C was associated with an increase in both greasy fleece weight and clean fleece weight. No discernible effects on staple length or mean-fibre-diameter-related traits were observed. These findings suggest that variation in ovine KRT81 might influence wool growth by changing the density of wool follicles in the skin, the density of individual fibres, or the area of the skin producing fibre, as opposed to changing the rate of extrusion of fibres or their diameter.


Subject(s)
Polymorphism, Single Nucleotide , Wool Fiber , Wool , Animals , Sheep/genetics , Sheep/growth & development , Wool/growth & development , Keratins, Type II/genetics , Keratins, Type II/metabolism , Keratins/genetics , Keratins/metabolism , Sheep, Domestic/genetics , Sheep, Domestic/growth & development
2.
Invest Ophthalmol Vis Sci ; 65(6): 37, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38935029

ABSTRACT

Purpose: To investigate the molecular mechanism of pathological keratinization in the chronic phase of ocular surface (OS) diseases. Methods: In this study, a comprehensive gene expression analysis was performed using oligonucleotide microarrays on OS epithelial cells obtained from three patients with pathological keratinization (Stevens-Johnson syndrome [n = 1 patient], ocular cicatricial pemphigoid [n = 1 patient], and anterior staphyloma [n = 1 patient]). The controls were three patients with conjunctivochalasis. The expression in some transcripts was confirmed using quantitative real-time PCR. Results: Compared to the controls, 3118 genes were significantly upregulated by a factor of 2 or more than one-half in the pathological keratinized epithelial cells (analysis of variance P < 0.05). Genes involved in keratinization, lipid metabolism, and oxidoreductase were upregulated, while genes involved in cellular response, as well as known transcription factors (TFs), were downregulated. Those genes were further analyzed with respect to TFs and retinoic acid (RA) through gene ontology analysis and known reports. The expression of TFs MYBL2, FOXM1, and SREBF2, was upregulated, and the TF ELF3 was significantly downregulated. The expression of AKR1B15, RDH12, and CRABP2 (i.e., genes related to RA, which is known to suppress keratinization) was increased more than twentyfold, whereas the expression of genes RARB and RARRES3 was decreased by 1/50. CRABP2, RARB, and RARRES3 expression changes were also confirmed by qRT-PCR. Conclusions: In pathological keratinized ocular surfaces, common transcript changes, including abnormalities in vitamin A metabolism, are involved in the mechanism of pathological keratinization.


Subject(s)
Gene Expression Regulation , Real-Time Polymerase Chain Reaction , Humans , Female , Male , Aged , Middle Aged , Oligonucleotide Array Sequence Analysis , Gene Expression Profiling , Pemphigoid, Benign Mucous Membrane/genetics , Pemphigoid, Benign Mucous Membrane/metabolism , Keratins/metabolism , Keratins/genetics , Corneal Diseases/genetics , Corneal Diseases/metabolism , Corneal Diseases/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Conjunctival Diseases/genetics , Conjunctival Diseases/metabolism , Conjunctival Diseases/pathology
3.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891785

ABSTRACT

Intermediate filaments are one of three polymeric structures that form the cytoskeleton of epithelial cells. In the epithelium, these filaments are made up of a variety of keratin proteins. Intermediate filaments complete a wide range of functions in keratinocytes, including maintaining cell structure, cell growth, cell proliferation, cell migration, and more. Given that these functions are intimately associated with the carcinogenic process, and that hyperkeratinization is a quintessential feature of oral leukoplakias, the utility of keratins in oral leukoplakia is yet to be fully explored. This scoping review aims to outline the current knowledge founded on original studies on human tissues regarding the expression and utility of keratins as diagnostic, prognostic, and predictive biomarkers in oral leukoplakias. After using a search strategy developed for several scientific databases, namely, PubMed, Scopus, Web of Science, and OVID, 42 papers met the inclusion and exclusion criteria. One more article was added when it was identified through manually searching the list of references. The included papers were published between 1989 and 2024. Keratins 1-20 were investigated in the 43 included studies, and their expression was assessed in oral leukoplakia and dysplasia cases. Only five studies investigated the prognostic role of keratins in relation to malignant transformation. No studies evaluated keratins as a diagnostic adjunct or predictive tool. Evidence supports the idea that dysplasia disrupts the terminal differentiation pathway of primary keratins. Gain of keratin 17 expression and loss of keratin 13 were significantly observed in differentiated epithelial dysplasia. Also, the keratin 19 extension into suprabasal cells has been associated with the evolving features of dysplasia. The loss of keratin1/keratin 10 has been significantly associated with high-grade dysplasia. The prognostic value of cytokeratins has shown conflicting results, and further studies are required to ascertain their role in predicting the malignant transformation of oral leukoplakia.


Subject(s)
Keratins , Leukoplakia, Oral , Humans , Leukoplakia, Oral/metabolism , Leukoplakia, Oral/pathology , Leukoplakia, Oral/genetics , Keratins/metabolism , Keratins/genetics , Prognosis , Biomarkers, Tumor/metabolism
4.
Cells ; 13(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38786031

ABSTRACT

The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.


Subject(s)
Bone Morphogenetic Protein 2 , Mouth Mucosa , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics , Mouth Mucosa/metabolism , Animals , Mice , Keratins/metabolism , Keratins/genetics , Cell Proliferation , Gene Expression Regulation , Humans , Gene Ontology
5.
Nat Commun ; 15(1): 4174, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755126

ABSTRACT

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Subject(s)
Chickens , Feathers , Finches , Animals , Feathers/growth & development , Feathers/metabolism , Chickens/genetics , Finches/genetics , Gene Expression Regulation, Developmental , Extracellular Matrix/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Wnt Signaling Pathway , Keratins/metabolism , Keratins/genetics , Biological Evolution , Morphogenesis/genetics
6.
Nat Commun ; 15(1): 2328, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499530

ABSTRACT

Cornified skin appendages, such as hair and nails, are major evolutionary innovations of terrestrial vertebrates. Human hair and nails consist largely of special intermediate filament proteins, known as hair keratins, which are expressed under the control of the transcription factor Hoxc13. Here, we show that the cornified claws of Xenopus frogs contain homologs of hair keratins and the genes encoding these keratins are flanked by promoters in which binding sites of Hoxc13 are conserved. Furthermore, these keratins and Hoxc13 are co-expressed in the claw-forming epithelium of frog toe tips. Upon deletion of hoxc13, the expression of hair keratin homologs is abolished and the development of cornified claws is abrogated in X. tropicalis. These results indicate that Hoxc13-dependent expression of hair keratin homologs evolved already in stem tetrapods, presumably as a mechanism for protecting toe tips, and that this ancestral genetic program was coopted to the growth of hair in mammals.


Subject(s)
Keratins, Hair-Specific , Transcription Factors , Animals , Humans , Transcription Factors/metabolism , Skin/metabolism , Hair/metabolism , Keratins/genetics , Keratins/metabolism , Amphibians , Mammals/metabolism
7.
Int J Mol Sci ; 25(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38474236

ABSTRACT

Epidermolysis bullosa simplex (EBS) is a dermatological condition marked by skin fragility and blister formation resulting from separation within the basal layer of the epidermis, which can be attributed to various genetic etiologies. This study presents three pathogenic de novo variants in young children, with clinical manifestations appearing as early as the neonatal period. The variants contribute to the EBS phenotype through two distinct mechanisms: direct keratin abnormalities due to pathogenic variants in the Krt14 gene, and indirect effects via pathogenic mutation in the KLHL24 gene, which interfere with the natural proteasome-mediated degradation pathway of KRT14. We report one severe case of EBS with mottled pigmentation arising from the Met119Thr pathogenic variant in KRT14, another case involving a pathogenic KLHL24 Met1Val variant, and a third case featuring the hot spot mutation Arg125His in KRT14, all manifesting within the first few weeks of life. This research underscores the complexity of genetic influences in EBS and highlights the importance of early genetic screening for accurate diagnosis and management.


Subject(s)
Epidermolysis Bullosa Simplex , Child , Infant, Newborn , Humans , Child, Preschool , Epidermolysis Bullosa Simplex/genetics , Mutation , Phenotype , Keratins/genetics , Epidermis/pathology , Keratin-5/genetics
8.
Article in English | MEDLINE | ID: mdl-38305712

ABSTRACT

A Gram-stain-negative, aerobic, rod-shaped bacterial strain, designated MMS21-Ot14T, was isolated from a freshwater river, and shown to represent a novel species of the genus Chryseobacterium on the basis of the results from a polyphasic approach. The 16S rRNA gene sequence analysis revealed that MMS21-Ot14T represented a member of the genus Chryseobacterium of the family Weeksellaceae and was closely related to Chryseobacterium hagamense RHA2-9T (97.52 % sequence similarity), Chryseobacterium gwangjuense THG A18T (97.46 %) and Chryseobacterium gregarium P 461/12T (97.27 %). The optimal growth of MMS21-Ot14T occurred at 25-30 °C, pH 6.0-7.0 and in the absence of NaCl. MMS21-Ot14T was capable of hydrolysing casein, starch, DNA, Tween 20 and tyrosine. The strain also showed keratinolytic activity with keratin azure and decolourising activity with remazol brilliant blue R (RBBR), which indicated potential ability to degrade keratin and lignin. The main polar lipids of MMS21-Ot14T were phosphatidylethanolamine, unidentified aminophospholipids, unidentified aminolipids, an unidentified phospholipid and several unidentified lipids. The predominant fatty acids of MMS21-Ot14T were iso-C15 : 0 and iso-C17 : 0 3-OH, and the major isoprenoid quinone was menaquinone 6 (MK-6). The whole genome of MMS21-Ot14T was 5 062 016 bp in length with a DNA G+C content of 37.7 %. The average nucleotide identity and digital DNA-DNA hybridisation values between MMS21-Ot14T and phylogenetically related members of the genus Chryseobacterium were well below the threshold values for species delineation. It is evident from the results of this study that MMS21-Ot14T should be classified as representing a novel species of the genus Chryseobacterium, for which the name Chryseobacterium fluminis sp. nov. (type strain, MMS21-Ot14T = KCTC 92255T = LMG 32529T) is proposed.


Subject(s)
Chryseobacterium , Fatty Acids , Vitamin K 2/analogs & derivatives , Fatty Acids/chemistry , Rivers , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Sequence Analysis, DNA , Base Composition , Phylogeny , Bacterial Typing Techniques , Keratins/genetics
9.
Am J Physiol Gastrointest Liver Physiol ; 326(1): G67-G77, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37962942

ABSTRACT

Keratins are epithelial intermediate filament proteins that play a crucial role in cellular stress protection, with K8 being the most abundant in the colon. The intestinal epithelial-specific K8-deficient mouse model (K8flox/flox;Villin-Cre) exhibits characteristics of inflammatory bowel disease, including diarrhea, crypt erosion, hyperproliferation, and decreased barrier function. Nevertheless, the order in which these events occur and whether they are a direct cause of K8 loss or a consequence of one event inducing another remains unexplored. Increased knowledge about early events in the disruption of colon epithelial integrity would help to understand the early pathology of inflammatory and functional colon disorders and develop preclinical models and diagnostics of colonic diseases. Here, we aimed to characterize the order of physiological events after Krt8 loss by utilizing K8flox/flox;Villin-CreERt2 mice with tamoxifen-inducible Krt8 deletion in intestinal epithelial cells, and assess stool analysis as a noninvasive method to monitor real-time gene expression changes following Krt8 loss. K8 protein was significantly decreased within a day after induction, followed by its binding partners, K18 and K19 from day 4 onward. The sequential colonic K8 downregulation in adult mice leads to immediate diarrhea and crypt elongation with activation of proliferation signaling, followed by crypt loss and increased neutrophil activity within 6-8 days, highlighting impaired water balance and crypt elongation as the earliest colonic changes upon Krt8 loss. Furthermore, epithelial gene expression patterns were comparable between colon tissue and stool samples, demonstrating the feasibility of noninvasive monitoring of gut epithelia in preclinical research utilizing Cre-LoxP-based intestinal disease models.NEW & NOTEWORTHY Understanding the order in which physiological and molecular events occur helps to recognize the onset of diseases and improve their preclinical models. We utilized Cre-Lox-based inducible keratin 8 deletion in mouse intestinal epithelium to characterize the earliest events after keratin 8 loss leading to colitis. These include diarrhea and crypt elongation, followed by erosion and neutrophil activity. Our results also support noninvasive methodology for monitoring colon diseases in preclinical models.


Subject(s)
Colitis , Keratin-8 , Animals , Mice , Colitis/genetics , Diarrhea , Keratin-18/genetics , Keratin-8/genetics , Keratin-8/metabolism , Keratins/chemistry , Keratins/genetics
10.
Oncol Rep ; 51(1)2024 01.
Article in English | MEDLINE | ID: mdl-37975220

ABSTRACT

Breast cancer is the most frequently diagnosed cancer in women worldwide. Although dramatically increased survival rates of early diagnosed cases have been observed, late diagnosed patients and metastatic cancer may still be considered fatal. The present study's main focus was on cancer­associated fibroblasts (CAFs) which is an active component of the tumor microenvironment (TME) regulating the breast cancer ecosystem. Transcriptomic profiling and analysis of CAFs isolated from breast cancer skin metastasis, cutaneous basal cell carcinoma, and squamous cell carcinoma unravelled major gene candidates such as IL6, VEGFA and MFGE8 that induced co­expression of keratins­8/­14 in the EM­G3 cell line derived from infiltrating ductal breast carcinoma. Western blot analysis of selected keratins (keratin­8, ­14, ­18, ­19) and epithelial­mesenchymal transition­associated markers (SLUG, SNAIL, ZEB1, E­/N­cadherin, vimentin) revealed specific responses pointing to certain heterogeneity of the studied CAF populations. Experimental in vitro treatment using neutralizing antibodies against IL-6, VEGF­A and MFGE8 attenuated the modulatory effect of CAFs on EM­G3 cells. The present study provided novel data in characterizing and understanding the interactions between CAFs and EM­G3 cells in vitro. CAFs of different origins support the pro­inflammatory microenvironment and influence the biology of breast cancer cells. This observation potentially holds significant interest for the development of novel, clinically relevant approaches targeting the TME in breast cancer. Furthermore, its implications extend beyond breast cancer and have the potential to impact a wide range of other cancer types.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Female , Humans , Antigens, Surface , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Line, Tumor , Fibroblasts/metabolism , Keratins/genetics , Keratins/metabolism , MCF-7 Cells , Milk Proteins/genetics , Milk Proteins/metabolism , Prognosis , Transcriptome , Tumor Microenvironment/genetics , Melanoma, Cutaneous Malignant
11.
Sci Rep ; 13(1): 19989, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37968282

ABSTRACT

This study addresses the environmental risks associated with the accumulation of keratin waste from poultry, which is resistant to conventional protein degradation methods. To tackle this issue, microbial keratinases have emerged as promising tools for transforming resilient keratin materials into valuable products. We focus on the Metalloprotease (MetPr) gene isolated from novel Pichia kudriavzevii YK46, sequenced, and deposited in the NCBI GenBank database with the accession number OQ511281. The MetPr gene encodes a protein consisting of 557 amino acids and demonstrates a keratinase activity of 164.04 U/ml. The 3D structure of the protein was validated using Ramachandran's plot, revealing that 93% and 97.26% of the 557 residues were situated within the most favoured region for the MetPr proteins of template Pichia kudriavzevii strain 129 and Pichia kudriavzevii YK46, respectively. Computational analyses were employed to determine the binding affinities between the deduced protein and beta keratin. Molecular docking studies elucidated the optimal binding affinities between the metalloprotease (MetPr) and beta-keratin, yielding values of - 260.75 kcal/mol and - 257.02 kcal/mol for the template strains Pichia kudriavzevii strain 129 and Pichia kudriavzevii YK46, respectively. Subsequent molecular cloning and expression of the MetPr gene in E. coli DH5α led to a significantly higher keratinase activity of 281 ± 12.34 U/ml. These findings provide valuable insights into the potential of the MetPr gene and its encoded protein for keratin waste biotransformation, with implications for addressing environmental concerns related to keratinous waste accumulation.


Subject(s)
Escherichia coli , Feathers , Animals , Feathers/metabolism , Escherichia coli/genetics , Molecular Docking Simulation , Pichia/metabolism , Metalloproteases/metabolism , Keratins/genetics , Keratins/metabolism , Cloning, Molecular
12.
Curr Opin Cell Biol ; 85: 102264, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925932

ABSTRACT

The keratin cytoskeleton protects epithelia against mechanical, nonmechanical, and physical stresses, and participates in multiple signaling pathways that regulate cell integrity and resilience. Keratin gene mutations cause multiple rare monoallelic epithelial diseases termed keratinopathies, including the skin diseases Epidermolysis Bullosa Simplex (EBS) and Pachyonychia Congenita (PC), with limited available therapies. The disease-related keratin mutations trigger posttranslational modifications (PTMs) in keratins and their associated proteins that can aggravate the disease. Recent findings of drug high-throughput screening have led to the identification of compounds that may be repurposed, since they are used for other human diseases, to treat keratinopathies. These drugs target unique PTM pathways and sites, including phosphorylation and acetylation of keratins and their associated proteins, and have shed insights into keratin regulation and interactions. They also offer the prospect of testing the use of drug mixtures, with the long view of possible beneficial human use coupled with increased efficacy and lower side effects.


Subject(s)
Epidermolysis Bullosa Simplex , Keratins , Humans , Keratins/genetics , Keratins/metabolism , Cytoskeleton/metabolism , Epidermolysis Bullosa Simplex/genetics , Epidermolysis Bullosa Simplex/metabolism , Mutation , Protein Processing, Post-Translational
13.
Genes (Basel) ; 14(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38002988

ABSTRACT

Keratin-associated proteins (KAPs) are structural components of wool fibres. High-glycine/tyrosine (HGT)-KAPs are a subset of the KAP family, and their abundance in fibres varies. In this study, we report the discovery of an ovine HGT-KAP gene to which we assigned the name KRTAP36-2. Polymerase chain reaction and single-strand conformation polymorphism (PCR-SSCP) analyses revealed four variants of this gene in a screening population of 170 sheep from a variety of breeds. The DNA sequencing of the variants revealed four single-nucleotide polymorphisms (SNPs) and a dinucleotide deletion. Three of these SNPs were in the coding region, and one of these was non-synonymous and potentially led to the amino acid substitution p.Cys27Gly near the middle of the protein. The remaining SNP was located near the putative TATA box, and the di-nucleotide deletion was near the putative transcription initiation site. The effect of this variation in KRTAP36-2 was investigated in 274 Southdown × Merino lambs that were the progeny of five sires. Variation was only found to be associated with wool yield, that is, the proportion of the greasy fleece that remained as clean fleece upon scouring (expressed as a percentage). This may have some value in increasing wool production.


Subject(s)
Keratins , Wool , Sheep/genetics , Animals , Keratins/genetics , Keratins/chemistry , Plant Breeding , Sheep, Domestic/genetics , Polymorphism, Single-Stranded Conformational , Tyrosine/genetics , Glycine/genetics
14.
Tissue Cell ; 85: 102228, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37793208

ABSTRACT

The evolution of modern reptiles from basic reptilian ancestors gave rise to scaled vertebrates. Scales are of different types, and their corneous layer can shed frequently during the year in lepidosaurians (lizards, snakes), 1-2 times per year in the tuatara and in some freshwater turtle, irregularly in different parts of the body in crocodilians, or simply wore superficially in marine and terrestrial turtles. Lepidosaurians possess tuberculate, non-overlapped or variably overlapped scales with inter-scale (hinge) regions. The latter are hidden underneath the outer scale surface or may be more exposed in specific body areas. Hinge regions allow stretching during growth and movement so that the skin remains mechanically functional. Crocodilian and turtles feature flat and shield scales (scutes) with narrow inter-scale regions for stretching and growth. The epidermis of non-avian reptilian hinge regions is much thinner than the exposed outer surface of scales and is less cornified. Despite the thickness of the epidermis, scales are mainly composed of variably amount of Corneous Beta Proteins (CBPs) that are coded in a gene cluster known as EDC (Epidermal Differentiation Complex). These are small proteins, 100-200 amino acid long of 8-25 kDa, rich in glycine and cysteine but also in serine, proline and valine that participate to the formation of beta-sheets in the internal part of the protein, the beta-region. This region determines the further polymerization of CBPs in filamentous proteins that, together a network of Intermediate Filament Keratins (IFKs) and other minor epidermal proteins from the EDC make the variable pliable or inflexible corneous material of reptilian scales, claws and of turtle beak. The acquisition of scales and skin derivatives with different mechanical and material properties, mainly due to the evolution of reptile CBPs, is essential for the life and different adaptations of these vertebrates.


Subject(s)
Alligators and Crocodiles , Lizards , Turtles , Animals , Turtles/genetics , Amino Acids , Alligators and Crocodiles/genetics , Epidermis , Keratins/genetics
15.
Int J Biol Macromol ; 253(Pt 5): 127194, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37793516

ABSTRACT

Keratin wastes are abundantly available but rich in hard-degrading fibrous proteins, and the keratinase-producing microorganisms have gained significant attention due to their biodegradation ability against keratinous materials. In order to improve the degradation efficiency of feather keratins, the keratinase gene (kerJY-23) from our previously isolated feather-degrading Ectobacillus sp. JY-23 was overexpressed in Bacillus subtilis WB600 strain. The recombinant KerJY-23 strain degraded chicken feathers rapidly within 48 h, during which the activities of disulfide reductase and keratinase KerJY-23 were sharply increased, and the free amino acids especially the essential phenylalanine and tyrosine were significantly accumulated in feather hydrolysate. The results of structural characterizations including scanning electron microscopy, Fourier transform infrared spectrum, X-ray diffraction, and X-ray photoelectron spectroscopy, demonstrated that the feather microstructure together with the polypeptide bonds and SS bonds in feather keratins were attacked and destroyed by the recombinant KerJY-23 strain. Therefore, the recombinant KerJY-23 strain contributed to feather degradation through the synergistic action of the secreted disulfide reductase to break the SS bonds and keratinase (KerJY-23) to hydrolyze the polypeptide bonds in keratins. This study offers a new insight into the underlying mechanism of keratin degradation, and provides a potential recombinant strain for the valorization of keratin wastes.


Subject(s)
Bacillus subtilis , Chickens , Animals , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Chickens/metabolism , Feathers/chemistry , Peptide Hydrolases/metabolism , Keratins/genetics , Keratins/metabolism , Peptides/metabolism , Hydrogen-Ion Concentration
16.
Genes Genet Syst ; 98(5): 249-257, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37853642

ABSTRACT

Keratins are intermediate filament proteins that are important for epidermal strength and protection from desiccation. Keratin genes are highly duplicated and have diversified by forming two major clusters in the genomes of terrestrial vertebrates. The keratin genes of lungfishes, the closest fish to tetrapods, have not been studied at the genomic level, despite the importance of lungfishes in terrestrial adaptation. Here, we identified keratin genes in the genomes of two lungfish species and performed syntenic and phylogenetic analyses. Additionally, we identified keratin genes from two gobies and two mudskippers, inhabiting underwater and terrestrial environments. We found that in lungfishes, keratin genes were duplicated and diversified within two major clusters, similar to but independent of terrestrial vertebrates. By contrast, keratin genes were not notably duplicated in mudskippers. The results indicate that keratin gene duplication occurred repeatedly in lineages close to tetrapods, but not in teleost fish, even in species adapted to terrestrial environments.


Subject(s)
Fishes , Keratins , Animals , Keratins/genetics , Phylogeny , Fishes/genetics , Genome , Genomics
18.
Nat Ecol Evol ; 7(10): 1706-1713, 2023 10.
Article in English | MEDLINE | ID: mdl-37735563

ABSTRACT

Fossil proteins are valuable tools in evolutionary biology. Recent technological advances and better integration of experimental methods have confirmed the feasibility of biomolecular preservation in deep time, yielding new insights into the timing of key evolutionary transitions. Keratins (formerly α-keratins) and corneous ß-proteins (CBPs, formerly ß-keratins) are of particular interest as they define tissue structures that underpin fundamental physiological and ecological strategies and have the potential to inform on the molecular evolution of the vertebrate integument. Reports of CBPs in Mesozoic fossils, however, appear to conflict with experimental evidence for CBP degradation during fossilization. Further, the recent model for molecular modification of feather chemistry during the dinosaur-bird transition does not consider the relative preservation potential of different feather proteins. Here we use controlled taphonomic experiments coupled with infrared and sulfur X-ray spectroscopy to show that the dominant ß-sheet structure of CBPs is progressively altered to α-helices with increasing temperature, suggesting that (α-)keratins and α-helices in fossil feathers are most likely artefacts of fossilization. Our analyses of fossil feathers shows that this process is independent of geological age, as even Cenozoic feathers can comprise primarily α-helices and disordered structures. Critically, our experiments show that feather CBPs can survive moderate thermal maturation. As predicted by our experiments, analyses of Mesozoic feathers confirm that evidence of feather CBPs can persist through deep time.


Subject(s)
Feathers , beta-Keratins , Animals , Keratins/analysis , Keratins/genetics , Keratins/metabolism , beta-Keratins/analysis , beta-Keratins/genetics , beta-Keratins/metabolism , Biological Evolution , Skin
19.
Article in English | MEDLINE | ID: mdl-37567027

ABSTRACT

Epidermal appendages of birds and reptiles, including claws, feathers, scales, and setae, are primarily composed of alpha keratins (KRTs) and corneous beta-proteins (CBPs). A comprehensive and systematic knowledge of KRTs and CBPs in Schlegel's Japanese gecko (Gekko japonicus) is still lacking. In this study, 22 candidate Gecko japonicus keratin (GjKRT) family genes (12 type I genes, 10 type II genes) were identified in the G. japonicus genome. The majority of GjKRT genes across various subgroups had undergone a prolonged and highly conservative evolutionary process. Through a combination of morphological observation, RNA-seq analysis, and qRT-PCR assay, it was possible to discern the dynamic alterations in the expression of GjKRTs and Gecko japonicus corneous beta-proteins genes (GjCBPs). These findings strongly indicate that GjKRTs gradually accumulate to constitute an α-layer, which is subsequently succeeded by the formation of the corneous beta layer containing GjCBPs at late stages (40-42) of embryonic development. The epidermal appendages in G. japonicus may result from the joint accumulation of KRTs and CBPs, with stages 40-42 being critical for their development. These findings provide novel insights into KRTs and CBPs of G. japonicus and offer a foundation for investigating the functions of GjKRT and GjCBP gene families. Furthermore, this knowledge contributes to unraveling the molecular mechanisms underlying the formation of epidermal appendages in G. japonicus.


Subject(s)
Keratins , Lizards , Animals , Keratins/genetics , Keratins/metabolism , Lizards/genetics , Lizards/metabolism , Epidermis/metabolism , Biological Evolution , Embryonic Development
20.
Curr Protoc ; 3(7): e825, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37428889

ABSTRACT

This article contains detailed protocols for the simultaneous flow cytometric identification of tumor cells and stromal cells and measurement of DNA content of formalin-fixed, paraffin-embedded (FFPE) tissues. The vimentin-positive stromal cell fraction can be used as an internal reference for accurate DNA content assessments of FFPE carcinoma tissues. This allows clear detection of keratin-positive tumor cells with a DNA index lower than 1.0 (near-haploidy) and of keratin-positive tumor cells with a DNA index close to 1.0 in overall DNA aneuploid samples, thus improving DNA ploidy assessment in FFPE carcinomas. Furthermore, the protocol is useful for studying molecular genetic alterations and intratumor heterogeneity in archival FFPE samples. Keratin-positive tumor cell fractions can be sorted for further molecular genetic analysis, while DNA from the sorted vimentin-positive stromal cells can serve as a reference when normal tissue of the patient is not available. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Multiparameter DNA content analysis of FFPE carcinomas Alternate Protocol 1: Immunocytochemistry for keratin and vimentin, and DNA labeling for blue and red excitation Alternate Protocol 2: Immunocytochemistry for keratin and vimentin, and DNA labeling for blue excitation Support Protocol: Sorting cell population from FFPE carcinomas.


Subject(s)
Carcinoma , Ploidies , Humans , Flow Cytometry/methods , Vimentin/genetics , Paraffin Embedding , DNA/genetics , DNA/analysis , Keratins/genetics , Keratins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...