Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 395
Filter
1.
Invest Ophthalmol Vis Sci ; 65(8): 4, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953845

ABSTRACT

Purpose: The purpose of this study was to investigate the role and mechanism of microtubule-associated protein light chain-3 (LC3)-associated phagocytosis (LAP) in the immune response to Aspergillus fumigatus (A. fumigatus) keratitis. Methods: The formation of single-membrane phagosomes was visualized in the corneas of healthy or A. fumigatus-infected humans and C57BL/6 mice using transmission electron microscopy (TEM). Rubicon siRNA (si-Rubicon) was used to block Rubicon expression. RAW 264.7 cells or mice corneas were infected with A. fumigatus with or without pretreatment of si-Rubicon and scrambled siRNA. RAW 264.7 cells were pretreated with Dectin-1 antibody or Dectin-1 overexpressed plasmid and then stimulated with A. fumigatus. Flow cytometry was used to label macrophages in normal and infected corneas of mice. In mice with A. fumigatus keratitis, the severity of the disease was assessed using clinical scores. We used lentiviral technology to transfer GV348-Ubi-GFP-LC3-II-SV40-Puro Lentivirus into the mouse cornea. The GFP-LC3 fusion protein was visualized in corneal slices using a fluorescence microscope. We detected the mRNA and protein expressions of the inflammatory factors IL-6, IL-1ß, and IL-10 using real-time PCR (RT-PCR) and ELISA. We detected the expression of LAP-related proteins Rubicon, ATG-7, Beclin-1, and LC3-II using Western blot or immunofluorescence. Results: Accumulation of single-membrane phagosomes within macrophages was observed in the corneas of patients and mice with A. fumigatus keratitis using TEM. Flow cytometry (FCM) analysis results show that the number of macrophages in the cornea of mice significantly increases after infection with A. fumigatus. LAP-related proteins were significantly elevated in the corneas of mice and RAW 264.7 cells after infection with A. fumigatus. The si-Rubicon treatment elevated the clinical score of mice. In A. fumigatus keratitis mice, the si-Rubicon treated group showed significantly higher expression of IL-6 and IL-1ß and lower expression of IL-10 and LC3-II compared to the control group. In RAW 264.7 cells, treatment with the Dectin-1 overexpressed plasmid upregulated the expression of LAP-related proteins, a process that was significantly inhibited by the Dectin-1 antibody. Conclusions: LAP participates in the anti-inflammatory immune process of fungal keratitis (FK) and exerts an anti-inflammatory effect. LAP is regulated through the Dectin-1 signaling pathway in A. fumigatus keratitis.


Subject(s)
Aspergillosis , Aspergillus fumigatus , Eye Infections, Fungal , Keratitis , Mice, Inbred C57BL , Microtubule-Associated Proteins , Phagocytosis , Animals , Mice , Aspergillosis/microbiology , Aspergillosis/metabolism , Aspergillosis/immunology , Humans , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Keratitis/microbiology , Keratitis/metabolism , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/metabolism , Disease Models, Animal , Macrophages/metabolism , Macrophages/immunology , Female , Flow Cytometry , Microscopy, Electron, Transmission , Male , Cornea/metabolism , Cornea/microbiology , Cornea/pathology
2.
Invest Ophthalmol Vis Sci ; 65(6): 13, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38848078

ABSTRACT

Purpose: Fungal keratitis (FK) is an invasive corneal infection associated with significant risk to vision. Although the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) signaling pathway has been recognized for its role in defending against viral infections, its involvement in FK still remains largely unclear. This study sought to elucidate the contribution of the cGAS/STING signaling pathway to the pathogenesis of FK. Methods: The expression of cGAS/STING signaling components was assessed in a murine model of Candida albicans keratitis through RNA sequencing, western blot analysis, immunofluorescence staining, and real-time PCR. Both genetic (utilizing Sting1gt/gt mice) and pharmacological (using C176) interventions were employed to inhibit STING activity, allowing for the evaluation of resultant pathogenic alterations in FK using slit-lamp examination, clinical scoring, hematoxylin and eosin (H&E) staining, fungal culture, and RNA sequencing. Subconjunctival administration of the NOD-like receptor protein 3 (NLRP3) inflammasome inhibitor MCC950 was performed to evaluate FK manifestations following STING activity blockade. Furthermore, the impact of the STING agonist diABZI on FK progression was investigated. Results: Compared to uninfected corneas, those infected with C. albicans exhibited increased expression of cGAS/STING signaling components, as well as its elevated activity. Inhibiting cGAS/STING signaling exacerbated the advancement of FK, as evidenced by elevated clinical scores, augmented fungal load, and heightened inflammatory response, including NLRP3 inflammasome activation and pyroptosis. Pharmacological inhibition of the NLRP3 inflammasome effectively mitigated the exacerbated FK by suppressing STING activity. Conversely, pre-activation of STING exacerbated FK progression compared to the PBS control, characterized by increased fungal burden and reinforced inflammatory infiltration. Conclusions: This study demonstrates the essential role of the cGAS/STING signaling pathway in FK pathogenesis and highlights the necessity of its proper activation for the host against FK.


Subject(s)
Candida albicans , Candidiasis , Disease Models, Animal , Eye Infections, Fungal , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/metabolism , Mice , Candida albicans/physiology , Candidiasis/microbiology , Candidiasis/metabolism , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction , Keratitis/microbiology , Keratitis/metabolism , Blotting, Western , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Female , Corneal Ulcer/microbiology , Corneal Ulcer/metabolism , Inflammasomes/metabolism
3.
Exp Eye Res ; 244: 109944, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797260

ABSTRACT

Fungal keratitis (FK) is an infectious keratopathy can cause serious damage to vision. Its severity is related to the virulence of fungus and response of inflammatory. Rosmarinic acid (RA) extracted from Rosmarinus officinalis exhibits antioxidant, anti-inflammatory and anti-viral properties. The aim of this study was to investigate the effect of RA on macrophage autophagy and its therapeutic effect on FK. In this study, we demonstrated that RA reduced expression of proinflammatory cytokine, lessened the recruitment of inflammatory cells in FK. The relative contents of autophagy markers, such as LC3 and Beclin-1, were significantly up-regulated in RAW 264.7 cells and FK. In addition, RA restored mitochondrial membrane potential (MMP) of macrophage to normal level. RA not only reduced the production of intracellular reactive oxygen species (ROS) but also mitochondria ROS (mtROS) in macrophage. At the same time, RA induced macrophage to M2 phenotype and down-regulated the mRNA expression of IL-6, IL-1ß, TNF-α. All the above effects could be offset by the autophagy inhibitor 3-Methyladenine (3-MA). Besides, RA promote phagocytosis of RAW 264.7 cells and inhibits spore germination, biofilm formation and conidial adherence, suggesting a potential therapeutic role for RA in FK.


Subject(s)
Aspergillosis , Aspergillus fumigatus , Autophagy , Cinnamates , Depsides , Eye Infections, Fungal , Macrophages , Reactive Oxygen Species , Rosmarinic Acid , Depsides/pharmacology , Animals , Autophagy/drug effects , Mice , Aspergillosis/drug therapy , Aspergillosis/microbiology , Aspergillosis/metabolism , Eye Infections, Fungal/microbiology , Eye Infections, Fungal/drug therapy , Macrophages/drug effects , Macrophages/metabolism , Macrophages/microbiology , Cinnamates/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Keratitis/microbiology , Keratitis/drug therapy , Keratitis/metabolism , Disease Models, Animal , RAW 264.7 Cells , Cytokines/metabolism , Phagocytosis/drug effects
4.
Exp Eye Res ; 244: 109950, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815789

ABSTRACT

Loss of tear homeostasis, characterized by hyperosmolarity of the ocular surface, induces cell damage through inflammation and oxidation. Transient receptor potential vanilloid 1 (TRPV1), a sensor for osmotic changes, plays a crucial role as a calcium ion channel in the pathogenesis of hypertonic-related eye diseases. Capsaicin (CAP), a potent phytochemical, alleviates inflammation during oxidative stress events by activating TRPV1. However, the pharmacological use of CAP for eye treatment is limited by its pungency. Nitro dihydrocapsaicin (NDHC) was synthesized with aromatic ring modification of CAP structure to overcome the pungent effect. We compared the molecular features of NDHC and CAP, along with their biological activities in human corneal epithelial (HCE) cells, focusing on antioxidant and anti-inflammatory activities. The results demonstrated that NDHC maintained cell viability, cell shape, and exhibited lower cytotoxicity compared to CAP-treated cells. Moreover, NDHC prevented oxidative stress and inflammation in HCE cells following lipopolysaccharide (LPS) administration. These findings underscore the beneficial effect of NDHC in alleviating ocular surface inflammation, suggesting that NDHC may serve as an alternative anti-inflammatory agent targeting TRPV1 for improving hyperosmotic stress-induced ocular surface damage.


Subject(s)
Capsaicin , Cell Survival , Epithelium, Corneal , Lipopolysaccharides , Oxidative Stress , Oxidative Stress/drug effects , Humans , Lipopolysaccharides/pharmacology , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cell Survival/drug effects , TRPV Cation Channels/metabolism , Antioxidants/pharmacology , Cells, Cultured , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/pathology , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , Inflammation/metabolism
5.
Front Cell Infect Microbiol ; 14: 1346821, 2024.
Article in English | MEDLINE | ID: mdl-38694515

ABSTRACT

Background: Microbial keratitis is one of the leading causes of blindness globally. An overactive immune response during an infection can exacerbate damage, causing corneal opacities and vision loss. This study aimed to identify the differentially expressed genes between corneal infection patients and healthy volunteers within the cornea and conjunctiva and elucidate the contributing pathways to these conditions' pathogenesis. Moreover, it compared the corneal and conjunctival transcriptomes in corneal-infected patients to cytokine levels in tears. Methods: Corneal and conjunctival swabs were collected from seven corneal infection patients and three healthy controls under topical anesthesia. RNA from seven corneal infection patients and three healthy volunteers were analyzed by RNA sequencing (RNA-Seq). Tear proteins were extracted from Schirmer strips via acetone precipitation from 38 cases of corneal infection and 14 healthy controls. The cytokines and chemokines IL-1ß, IL-6, CXCL8 (IL-8), CX3CL1, IL-10, IL-12 (p70), IL-17A, and IL-23 were measured using an antibody bead assay. Results: A total of 512 genes were found to be differentially expressed in infected corneas compared to healthy corneas, with 508 being upregulated and four downregulated (fold-change (FC) <-2 or > 2 and adjusted p <0.01). For the conjunctiva, 477 were upregulated, and 3 were downregulated (FC <-3 or ≥ 3 and adjusted p <0.01). There was a significant overlap in cornea and conjunctiva gene expression in patients with corneal infections. The genes were predominantly associated with immune response, regulation of angiogenesis, and apoptotic signaling pathways. The most highly upregulated gene was CXCL8 (which codes for IL-8 protein). In patients with corneal infections, the concentration of IL-8 protein in tears was relatively higher in patients compared to healthy controls but did not show statistical significance. Conclusions: During corneal infection, many genes were upregulated, with most of them being associated with immune response, regulation of angiogenesis, and apoptotic signaling. The findings may facilitate the development of treatments for corneal infections that can dampen specific aspects of the immune response to reduce scarring and preserve sight.


Subject(s)
Conjunctiva , Cornea , Cytokines , Keratitis , Tears , Transcriptome , Humans , Tears/metabolism , Cytokines/metabolism , Cytokines/genetics , Cornea/metabolism , Cornea/immunology , Female , Male , Middle Aged , Adult , Conjunctiva/metabolism , Conjunctiva/immunology , Keratitis/genetics , Keratitis/immunology , Keratitis/metabolism , Aged , Gene Expression Profiling
6.
BMC Ophthalmol ; 24(1): 155, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594682

ABSTRACT

INTRODUCTION: In recent years, insulin eye drops have attracted increasing attention from researchers and ophthalmologists. The aim of this study was to investigate the efficacy and possible mechanism of action of insulin eye drops in diabetic mice with corneal wounds. METHODS: A type 1 diabetes model was induced, and a corneal epithelial injury model of 2.5 mm was established. We used corneal fluorescein staining, hematoxylin-eosin (H-E) staining and the Cochet-Bonnet esthesiometer to examine the process of wound healing. Subsequently, the expression levels of Ki-67, IL-1ß, ß3-tubulin and neuropeptides, including substance P (SP) and calcitonin gene-related peptide (CGRP), were examined at 72 h after corneal injury. RESULTS: Fluorescein staining demonstrated an acceleration of the recovery of corneal epithelial injury in diabetic mice compared with the saline treatment, which was further evidenced by the overexpression of Ki-67. Moreover, 72 h of insulin application attenuated the expression of inflammatory cytokines and neutrophil infiltration. Remarkably, the results demonstrated that topical insulin treatment enhanced the density of corneal epithelial nerves, as well as neuropeptide SP and CGRP release, in the healing cornea via immunofluorescence staining. CONCLUSIONS: Our results indicated that insulin eye drops may accelerate corneal wound healing and decrease inflammatory responses in diabetic mice by promoting nerve regeneration and increasing levels of neuropeptides SP and CGRP.


Subject(s)
Corneal Injuries , Diabetes Mellitus, Experimental , Epithelium, Corneal , Keratitis , Mice , Animals , Epithelium, Corneal/metabolism , Insulin , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Calcitonin Gene-Related Peptide/metabolism , Ophthalmic Solutions , Ki-67 Antigen/metabolism , Cornea/physiology , Corneal Injuries/drug therapy , Wound Healing , Keratitis/metabolism , Fluorescein/metabolism , Inflammation/metabolism
7.
Cytokine ; 179: 156626, 2024 07.
Article in English | MEDLINE | ID: mdl-38678810

ABSTRACT

PURPOSE: To determine the antifungal, anti-inflammatory and neuroprotective effects of resveratrol (RES) in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Cytotoxicity assay and Draize eye assay were performed to assess the toxicity of RES. The antifungal effect of RES was assessed by minimal inhibitory concentration, scanning or transmission electron microscopy, propidium iodide uptake assay, and Calcofluor white staining. Phosphorylation of p38 MAPK, mRNA and protein levels of Dectin-1 and related inflammatory factors were measured by qRT-PCR, ELISA and Western blot in vitro and in vivo. Clinical score, HE staining, plate count, and myeloperoxidase test were used to observe the progress of fungal keratitis. IF staining, qRT-PCR, and the Von Frey test were selected to assess the neuroprotective effects of RES. RESULTS: RES suppressed A. fumigatus hyphae growth and altered hyphae morphology in vitro. RES decreased the expression of Dectin-1, IL-1ß and TNF-α, as well as p38 MAPK phosphorylation expression, and also decreased clinical scores, reduced inflammatory cell infiltration and neutrophil activity, and decreased fungal load. RES also protected corneal basal nerve fibers, down-regulated mechanosensitivity thresholds, and increased the mRNA levels of CGRP and TRPV-1.. CONCLUSION: These evidences revealed that RES could exert antifungal effects on A. fumigatus and ameliorate FK through suppressing the Dectin-1/p38 MAPK pathway to down-regulate IL-1ß, IL-6, etc. expression and play protective effect on corneal nerves.


Subject(s)
Anti-Inflammatory Agents , Aspergillus fumigatus , Keratitis , Lectins, C-Type , Neuroprotective Agents , Resveratrol , p38 Mitogen-Activated Protein Kinases , Aspergillus fumigatus/drug effects , Lectins, C-Type/metabolism , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Resveratrol/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Neuroprotective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice , Aspergillosis/drug therapy , Aspergillosis/metabolism , Antifungal Agents/pharmacology , Male , Signal Transduction/drug effects , MAP Kinase Signaling System/drug effects , Cornea/drug effects , Cornea/metabolism
8.
J Control Release ; 368: 483-497, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458571

ABSTRACT

Fungal keratitis is a refractory eye disease that is prone to causing blindness. Fungal virulence and inflammatory responses are two major factors that accelerate the course of fungal keratitis. However, the current antifungal drugs used for treatment usually possess transient residence time on the ocular surface and low bioavailability deficiencies, which limit their therapeutic efficacy. In this work, natamycin (NATA)-loaded mesoporous zinc oxide (Meso-ZnO) was synthesized for treating Aspergillus fumigatus keratitis with excellent drug-loading and sustained drug release capacities. In addition to being a carrier for drug delivery, Meso-ZnO could restrict fungal growth in a concentration-dependent manner, and the transcriptome analysis of fungal hyphae indicated that it inhibited the mycotoxin biosynthesis, oxidoreductase activity and fungal cell wall formation. Meso-ZnO also promoted cell migration and exhibited anti-inflammatory role during fungal infection by promoting the activation of autophagy. In mouse models of fungal keratitis, Meso-ZnO/NATA greatly reduced corneal fungal survival, alleviated tissue inflammatory damage, and reduced neutrophils accumulation and cytokines expression. This study suggests that Meso-ZnO/NATA can be a novel and effective treatment strategy for fungal keratitis.


Subject(s)
Aspergillosis , Eye Infections, Fungal , Keratitis , Zinc Oxide , Animals , Mice , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Zinc Oxide/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/microbiology , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Natamycin/therapeutic use , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/metabolism , Eye Infections, Fungal/microbiology , Drug Delivery Systems , Mice, Inbred C57BL
9.
Exp Eye Res ; 242: 109863, 2024 May.
Article in English | MEDLINE | ID: mdl-38494102

ABSTRACT

PURPOSE: Pseudomonas aeruginosa-induced keratitis is one of the most severe and challenging forms of corneal infection, owing to its associated intense inflammatory reactions leading to corneal necrosis and dense corneal scar with loss of vision. Since mesenchymal stem cells (MSCs) are reported to possess antimicrobial and immunomodulatory properties, they can be tested as an adjuvant treatment along with the antibiotics which are the current standard of care. This study aims to investigate the anti-bacterial and immunomodulatory roles of human bone marrow MSC-derived conditioned medium (MSC-CM) in P. aeruginosa-infected human corneal epithelial cells (HCECs) in vitro. METHODS: The effect of MSC-CM on the growth of clinical isolates of P. aeruginosa was evaluated by colony-forming unit assay. The expression of inflammatory cytokines (IL-6 and TNF-α) and an antimicrobial peptide (Lipocalin 2) in lipopolysaccharide-treated MSCs and HCECs was analyzed through ELISA. Corneal epithelial repair following infection with P. aeruginosa was studied through scratch assay. RESULTS: Compared to control (P. aeruginosa (5*105) incubated in DMEM (1 ml) at 37 °C for 16 h), MSC-CM significantly: i) inhibits the growth of P. aeruginosa (159*109 vs. 104*109 CFU/ml), ii) accelerates corneal epithelial repair following infection with P. aeruginosa (9% vs. 24% closure of the wounded area after 12 h of infection), and iii) downregulates the lipopolysaccharide-induced expression of IL-6, TNF-α and Lipocalin 2 in HCECs. A combination of MSC-CM with an antibiotic, Ciprofloxacin moderately regulated the expression of IL-6, TNF-α, and Lipocalin 2. CONCLUSION: MSC-CM holds promise as an adjunctive therapeutic approach for P. aeruginosa-induced corneal epithelial damage.


Subject(s)
Enzyme-Linked Immunosorbent Assay , Eye Infections, Bacterial , Mesenchymal Stem Cells , Pseudomonas Infections , Pseudomonas aeruginosa , Humans , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/metabolism , Eye Infections, Bacterial/pathology , Pseudomonas Infections/microbiology , Pseudomonas Infections/therapy , Pseudomonas Infections/drug therapy , Mesenchymal Stem Cells/metabolism , Epithelium, Corneal/microbiology , Epithelium, Corneal/pathology , Epithelium, Corneal/metabolism , Cells, Cultured , Keratitis/microbiology , Keratitis/metabolism , Keratitis/pathology , Mesenchymal Stem Cell Transplantation/methods , Culture Media, Conditioned/pharmacology , Proof of Concept Study , Interleukin-6/metabolism , Corneal Ulcer/microbiology , Corneal Ulcer/metabolism , Corneal Ulcer/pathology , Corneal Ulcer/drug therapy , Lipocalin-2/metabolism , Tumor Necrosis Factor-alpha/metabolism
10.
Invest Ophthalmol Vis Sci ; 65(1): 37, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38252525

ABSTRACT

Purpose: Previously we demonstrated that the secreted Ly-6/uPAR related protein 1 (SLURP1), abundantly expressed in the corneal epithelium (CE) and secreted into the tear fluid, serves as an antiangiogenic molecule. Here we describe the Slurp1-null (Slurp1X-/-) mouse corneal response to silver nitrate (AgNO3) cautery. Methods: Five days after AgNO3 cautery, we compared the wild-type (WT) and Slurp1X-/- mouse (1) corneal neovascularization (CNV) and immune cell influx by whole-mount immunofluorescent staining for CD31 and CD45, (2) macrophage and neutrophil infiltration by flow cytometry, and (3) gene expression by quantitative RT-PCR. Quantitative RT-PCR, immunofluorescent staining, and immunoblots were employed to evaluate the expression, phosphorylation status, and subcellular localization of NF-κB pathway components. Results: Unlike the WT, the Slurp1X-/- corneas displayed denser CNV in response to AgNO3 cautery, with more infiltrating macrophages and neutrophils and greater upregulation of the transcripts encoding VEGFA, MMP2, IL-1b, and vimentin. At 2, 7, and 10 days after AgNO3 cautery, Slurp1 expression was significantly downregulated in the WT corneas. Compared with the WT, naive Slurp1X-/- CE displayed increased phosphorylation of IKK(a/b), elevated phosphorylation of IκB with decreased amounts of total IκB, and higher phosphorylation of NF-κB, suggesting that NF-κB signaling is constitutively active in naive Slurp1X-/- corneas. Conclusions: Enhanced angiogenic inflammation in AgNO3 cauterized Slurp1X-/- corneas and constitutively active status of NF-κB signaling in the absence of Slurp1 suggest that Slurp1 modulates corneal angiogenic inflammation via NF-κB signaling.


Subject(s)
Corneal Neovascularization , Keratitis , Signal Transduction , Animals , Mice , Cornea , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Inflammation , Keratitis/metabolism , NF-kappa B
11.
Ocul Surf ; 32: 48-57, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38224777

ABSTRACT

PURPOSE: Short chain fatty acids (SCFAs) produced by gut microbiota are known to play primary roles in gut homeostasis by immunomodulation partially through G-protein coupled receptors (GPR) 43. Using mouse models of TLR ligand induced keratitis, we investigated whether SCFAs and GPR43 play any regulatory roles in the pathogenesis of inflammatory responses in the eye. METHODS: Both human and mouse eyes were labeled with a specific antibody for GPR43 and imaged by a laser scanning confocal microscope. Corneal cups from naïve C57BL/6J (B6) and GPR43 knockout (KO) mice were stimulated with TLR ligands in the presence or absence of sodium butyrate overnight and then processed for RT-PCR assay for expression of GPR43 and cytokines. Keratitis was induced by Poly I:C in wild type (WT) B6, GPR43KO and chimeric mice and the disease severity was evaluated by the corneal fluorescein staining test, and infiltrating cell staining and calculating in corneal whole mount. RESULTS: GPR43 is expressed in both human and mouse eyes and the expression is bidirectionally regulated by TLR ligands and butyrate. Butyrate significantly inhibited inflammation caused by several TLR ligands such as Poly I:C, Flagellin, and CpG-ODN (TLR-3, 5 and 9 agonists, respectively) in WT, but not GPR43KO, mice. Butyrate inhibition of TLR-induced keratitis is mediated by the GPR43 expressed in tissue but not hematopoietic, cells. CONCLUSIONS: This is the first report to demonstrate of the protective effect of SCFAs on microbial keratitis, and the dynamic expression and anti-inflammatory function of GPR43 in the eye. SCFAs can modulate inflammation and immunity in the eye through GPR43.


Subject(s)
Disease Models, Animal , Fatty Acids, Volatile , Keratitis , Receptors, G-Protein-Coupled , Animals , Humans , Mice , Cornea/metabolism , Cornea/pathology , Cytokines/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Keratitis/metabolism , Keratitis/pathology , Ligands , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Toll-Like Receptors/metabolism , Toll-Like Receptors/genetics
12.
Cytokine ; 175: 156483, 2024 03.
Article in English | MEDLINE | ID: mdl-38159472

ABSTRACT

PURPOSE: The purpose of this research study was to investigate the impact of schaftoside on Aspergillus fumigatus (A. fumigatus) keratitis and elucidate its underlying mechanisms. METHODS: In order to establish safe experimental concentrations of schaftoside in human corneal epithelial cells (HCECs), RAW264.7 cells, and mouse models, various techniques were employed including cytotoxicity assay (CCK-8) assay, cell scratch assay, and Draize test. The therapeutic effect of schaftoside was assessed using slit-lamp biomicroscopy, clinical scores, as well as determination of neutrophil infiltration through hematoxylin and eosin (HE) staining, immunofluorescence (IF) staining, and myeloperoxidase (MPO) assay. The levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), pro-inflammatory mediators interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 were determined using quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and IF techniques. RESULTS: Schaftoside at a concentration of 160 µM displayed no harmful side effects on HCECs, RAW cells, and mouse corneas, rendering it suitable for further experiments. In a murine fungal keratitis model, schaftoside mitigated the severity of fungal keratitis by inhibiting neutrophil infiltration and reducing MPO activity. Both in vitro and in vivo experiments demonstrated that schaftoside treatment suppressed the upregulation of IL-1ß, TNF-α, and IL-6 expression, while also downregulating the expressions of TLR4 as well as MyD88 at both mRNA and protein levels. CONCLUSIONS: Schaftoside demonstrated a protective effect against A. fumigatus keratitis by reducing corneal damage through inhibition of neutrophil recruitment and downstream inflammatory cytokines. The anti-inflammatory properties of schaftoside in A. fumigatus keratitis may involve modulation of the TLR4/MyD88 pathway.


Subject(s)
Aspergillosis , Glycosides , Keratitis , Animals , Mice , Humans , Aspergillus fumigatus , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 4/metabolism , Aspergillosis/drug therapy , Interleukin-6/metabolism , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Inflammation/drug therapy , Adaptor Proteins, Signal Transducing/metabolism , Mice, Inbred C57BL
13.
Ocul Surf ; 32: 26-38, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151073

ABSTRACT

PURPOSE: Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) is upregulated in various pathophysiological contexts, where it has a diverse repertoire of immunoregulatory functions. Herein, we investigated the expression and function of TSG-6 during corneal homeostasis and after injury. METHODS: Human corneas, eyeballs from BALB/c (TSG-6+/+), TSG-6+/- and TSG-6-/- mice, human immortalized corneal epithelial cells and murine corneal epithelial progenitor cells were prepared for immunostaining and real time PCR analysis of endogenous expression of TSG-6. Mice were subjected to unilateral corneal debridement or alkali burn (AB) injuries and wound healing assessed over time using fluorescein stain, in vivo confocal microscopy and histology. RESULTS: TSG-6 is endogenously expressed in the human and mouse cornea and established corneal epithelial cell lines and is upregulated after injury. A loss of TSG-6 has no structural and functional effect in the cornea during homeostasis. No differences were noted in the rate of corneal epithelial wound closure between BALB/c, TSG-6+/- and TSG-6-/- mice. TSG-6-/- mice presented decreased inflammatory response within the first 24 h of injury and accelerated corneal wound healing following AB when compared to control mice. CONCLUSION: TSG-6 is endogenously expressed in the cornea and upregulated after injury where it propagates the inflammatory response following chemical injury.


Subject(s)
Burns, Chemical , Cell Adhesion Molecules , Epithelium, Corneal , Eye Burns , Wound Healing , Animals , Humans , Mice , Burns, Chemical/metabolism , Burns, Chemical/pathology , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Cornea/metabolism , Cornea/pathology , Corneal Injuries/chemically induced , Corneal Injuries/genetics , Corneal Injuries/metabolism , Corneal Injuries/pathology , Disease Models, Animal , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Eye Burns/chemically induced , Eye Burns/genetics , Eye Burns/metabolism , Eye Burns/pathology , Keratitis/metabolism , Keratitis/pathology , Mice, Inbred BALB C , Mice, Knockout , Microscopy, Confocal , Real-Time Polymerase Chain Reaction , Wound Healing/physiology
14.
Cytokine ; 172: 156375, 2023 12.
Article in English | MEDLINE | ID: mdl-37797357

ABSTRACT

PURPOSE: This study aims to investigate the anti-inflammatory and antifungal properties of thymoquinone (TQ) and elucidate its mechanism of action in the context of C. albicans keratitis. METHODS: Various methods were employed to identify a safe and effective concentration of TQ with antifungal properties, including the determination of the minimum inhibitory concentration (MIC), the cell counting kit-8 (CCK-8) test, and the Draize experiment. The severity of fungal keratitis (FK) was assessed through clinical ratings and slit-lamp imaging. Fungus burden was determined using plate counting and periodic acid Schiff (PAS) staining. Neutrophil infiltration and activity were investigated through immunofluorescence staining (IFS), myeloperoxidase (MPO) analysis, and hematoxylin and eosin (HE) staining. To explore the anti-inflammatory effects of TQ and its mechanism of action, we employed RT-PCR, ELISA, and western blot techniques. RESULTS: TQ effectively controlled fungal growth at a concentration of 50 µg/mL while preserving the integrity of mouse corneas. Human corneal epithelial cells (HCECs) remained unaffected by TQ at concentrations ≤ 3.75 µg/mL. Treatment with TQ led to significant improvements in clinical scores, fungal burden, neutrophil infiltration, and the expression of inflammatory factors compared to the DMSO group. Moreover, TQ demonstrated the ability to reduce the levels of inflammatory factors in HCECs stimulated by C. albicans. Additionally, TQ enhanced the expressions of Nrf2 and HO-1 in mouse corneas. The downregulation of cytokines induced by TQ was reversed upon pretreatment with inhibitors of Nrf2 or HO-1. CONCLUSION: TQ exhibits a protective effect in the context of C. albicans keratitis through multiple mechanisms, including inhibition of C. albicans growth, reduction of neutrophil recruitment, activation of the Nrf2/HO-1 pathway, and limitation of the expression of pro-inflammatory factors.


Subject(s)
Candida albicans , Keratitis , Animals , Mice , Humans , Candida albicans/metabolism , NF-E2-Related Factor 2/metabolism , Antifungal Agents/therapeutic use , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Inflammation/drug therapy , Signal Transduction , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL
15.
Cytokine ; 171: 156356, 2023 11.
Article in English | MEDLINE | ID: mdl-37677994

ABSTRACT

PURPOSE: To investigate the antifungal and anti-inflammatory effects of quercetin in Aspergillus fumigatus (A. fumigatus) keratitis. METHODS: Draize eye test was performed in mice to evaluate the toxicity of quercetin, and the antifungal effects on A. fumigatus were assessed via scanning electron microscopy (SEM), propidium iodide uptake, and adherence assay. In fungal keratitis (FK) mouse models, immunostaining was performed for investigating toll-like receptor 4 (TLR-4) expression and macrophage infiltration. Real-time PCR, ELISA, and Western blot were used to evaluate the expression of pro-inflammatory factors IL-1ß, TNF-α, and IL-6 in infected RAW264.7 cells. Cells were also treated with TLR-4 siRNA or agonist CRX-527 to investigate mechanisms underlying the anti-inflammatory activity of quercetin. RESULTS: Quercetin at 32 µM was non-toxic to corneal epithelial and significantly inhibited A. fumigatus growth and adhesion, and also altered the structure and reduced the number of mycelia. Quercetin significantly reduced macrophage infiltration in the mouse cornea, and attenuated the expression of TLR-4 in the corneal epithelium and stroma of mice with keratitis caused by A. fumigatus. In RAW264.7 cells infected by A. fumigatus, quercetin downregulated TLR-4 along with pro-inflammatory factors IL-1ß, TNF-α, and IL-6. RAW cells with TLR-4 knockdown had reduced expression of factors after A. fumigatus infection, which was decreased even further with quercetin treatment. In contrast, cells with CRX-527 had elevated inflammatory factors compared to control, which was significantly attenuated in the presence of quercetin. CONCLUSION: Quercetin plays a protective role in mouse A. fumigatus keratitis by inhibiting fungal load, disrupting hyphae structure, macrophage infiltration, and suppressing inflammation response in macrophages via TLR-4 mediated signaling pathway.


Subject(s)
Aspergillus fumigatus , Keratitis , Mice , Animals , Toll-Like Receptor 4 , Quercetin/pharmacology , Antifungal Agents/therapeutic use , Interleukin-6 , Tumor Necrosis Factor-alpha/therapeutic use , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL
16.
Mol Immunol ; 158: 35-42, 2023 06.
Article in English | MEDLINE | ID: mdl-37104999

ABSTRACT

PURPOSE: Here, we explored the protective effects of resolvin D1 (RvD1) in Pseudomonas aeruginosa (PA) keratitis. METHODS: C57BL/6 (B6) mice were used as an animal model of PA keratitis. Plate counting and clinical scores were used to assess the severity of the infection and the therapeutic effects of RvD1 in the model. Myeloperoxidase assay was used to detect neutrophil infiltration and activity. Quantitative PCR (qPCR) was used to examine the expression of proflammatory and anti-inflammatory mediators. Immunofluorescence staining and qPCR were performed to identify macrophage polarization. RESULTS: RvD1 treatment alleviated PA keratitis severity by decreasing corneal bacterial load and inhibiting neutrophil infiltration in the mouse model. Furthermore, RvD1 treatment decreased mRNA levels of TNF-α, IFN-γ, IL-1ß, CXCL1, and S100A8/9 while increasing those of IL-1RA, IL-10, and TGF-ß1. RvD1 treatment also reduced the aggregation of M1 macrophages and increased that of M2 macrophages. RvD1 provided an auxiliary effect in gatifloxacin-treated mice with PA keratitis. CONCLUSION: Based on these findings, RvD1 may improve the prognosis of PA keratitis by inhibiting neutrophil recruitment and activity, dampening the inflammatory response, and promoting M2 macrophage polarization. Thus, RvD1 may be a potential complementary therapy for PA keratitis.


Subject(s)
Keratitis , Pseudomonas Infections , Mice , Animals , Pseudomonas aeruginosa , Mice, Inbred C57BL , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Docosahexaenoic Acids/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology
17.
EBioMedicine ; 89: 104453, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36736132

ABSTRACT

BACKGROUND: Keratitis ichthyosis deafness (KID) syndrome is a rare disorder caused by hemichannel (HC) activating gain-of-function mutations in the GJB2 gene encoding connexin (Cx) 26, for which there is no cure, or current treatments based upon the mechanism of disease causation. METHODS: We applied Adeno Associated Virus (AAV) mediated mAb gene transfer (AAVmAb) to treat the epidermal features of KID syndrome with a well-characterized HC blocking antibody using male mice of a murine model that replicates the skin pathology of the human disease. FINDINGS: We demonstrate that in vivo AAVmAb treatment significantly reduced the size and thickness of KID lesions, in addition to blocking activity of mutant HCs in the epidermis in vivo. We also show that AAVmAb treatment eliminated abnormal keratinocyte proliferation and enlarged cell size, decreased apoptosis, and restored the normal distribution of keratin expression. INTERPRETATION: Our findings reinforce the critical role played by increased HC activity in the skin pathology associated with KID syndrome. They also underscore the clinical potential of anti-HC mAbs coupled with genetic based delivery systems for treating the underlying mechanistic basis of this disorder. Inhibition of HC activity is an ideal therapeutic target in KID syndrome, and the genetic delivery of mAbs targeted against mutant HCs could form the basis of new therapeutic interventions to treat this incurable disease. FUNDING: Fondazione Telethon grant GGP19148 and University of Padova grant Prot. BIRD187130 to FM; Foundation for Ichthyosis and Related Skin Types (FIRST) and National Institutes of Health grant EY 026911 to TWW.


Subject(s)
Connexins , Deafness , Ichthyosis , Keratitis , Animals , Male , Mice , Antibodies , Connexins/genetics , Deafness/genetics , Epidermis/metabolism , Gene Transfer Techniques , Ichthyosis/genetics , Ichthyosis/metabolism , Ichthyosis/pathology , Keratitis/genetics , Keratitis/metabolism , Keratitis/pathology , Mutation
18.
Eur J Pharmacol ; 945: 175607, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36822458

ABSTRACT

Fungal keratitis (FK) is a blinding ocular disease, which mainly results from fungal damage and excessive inflammation. Pentoxifylline, a kind of methylxanthine, has been discovered to have anti-inflammatory properties in various infectious diseases, hinting a potential therapeutic effect on treating corneal fungal infection. Whereas, the therapeutic impact of pentoxifylline on fungal keratitis is still uncertain. This study investigated the antifungal capability against Aspergillus fumigatus and the anti-inflammatory role of pentoxifylline by activating nuclear factor, erythroid 2 like 2 (Nrf2)/heme oxygenase1 (HO1) pathway in the process of FK. In our research, we demonstrated that pentoxifylline could effectively inhibit fungal growth and inflammatory reaction. Pentoxifylline reduced the production of pro-inflammatory factors by stimulating the Nrf2/HO1 pathway. Although there was no statistical difference between the curative efficacy of pentoxifylline and natamycin application to FK, pentoxifylline could promote corneal epithelial repair and was less toxicity to the ocular surface than natamycin. In conclusion, pentoxifylline performs antifungal and anti-inflammatory effects by lessening the fungus burden and activating the Nrf2/HO1 pathway, hinting that it has the potential to be a new therapeutic medication for Aspergillus fumigatus keratitis.


Subject(s)
Aspergillosis , Eye Infections, Fungal , Keratitis , Pentoxifylline , Humans , Animals , Mice , Aspergillus fumigatus , Natamycin/therapeutic use , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , NF-E2-Related Factor 2 , Aspergillosis/drug therapy , Aspergillosis/metabolism , Keratitis/metabolism , Inflammation/drug therapy , Eye Infections, Fungal/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL
19.
Cytokine ; 162: 156112, 2023 02.
Article in English | MEDLINE | ID: mdl-36521238

ABSTRACT

PURPOSE: Atractylenolide I (AT-I) is a natural sesquiterpene with anti-inflammatory effects. The purpose of this study was to research the anti-inflammatory effect of AT-I on Aspergillus fumigatus(A. fumigatus) keratitis in mice. METHODS: Cytotoxicity test and cell scratch test were used to determine the therapeutic concentrations of corneal infections. In vivo and in vitro studies, mouse cornea and human corneal epithelial cells (HCECs) infected with A. fumigatus were treated with AT-I or dimethyl sulfoxide (DMSO). Then, to analyze the effect of AT-I on inflammatory response, namely neutrophil or macrophage recruitment and the expression of cytokines involving MyD88, NF-κB, interleukin 1ß (IL-1ß) and interleukin 10 (IL-10). To study the effects of the drug, the techniques used include slit-lamp photography, immunofluorescence, myeloperoxidase (MPO) detection, quantitative real-time polymerase chain reaction (QRT-PCR), and western blot. At the same time, in order to explore the combined effect of the drug and natamycin, slit-lamp photographs and clinical scores were used to visually display the disease process. RESULTS: No cytotoxicity was observed under the action of AT-I at a concentration of 800 µM. In mouse models, AT-I significantly suppressed inflammatory responses, reduced neutrophil and macrophage recruitment, and decreased myeloperoxidase levels early in infection. Studies have shown that AT-I may reduce the levels of IL-1ß and IL-10 by inhibiting the MyD88/ NF-κB pathway. The drug combined with natamycin can increase corneal transparency in infected mice. CONCLUSION: AT-I may inhibit MyD88 / NF-κB pathway and the secretion of inflammatory factors IL-1 ß and IL-10 to achieve the therapeutic effect of fungal keratitis.


Subject(s)
Aspergillosis , Keratitis , Sesquiterpenes , Humans , Animals , Mice , Aspergillus fumigatus , Interleukin-10/metabolism , NF-kappa B/metabolism , Myeloid Differentiation Factor 88/metabolism , Interleukin-1beta/metabolism , Peroxidase/metabolism , Natamycin/therapeutic use , Aspergillosis/drug therapy , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Adaptor Proteins, Signal Transducing/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice, Inbred C57BL
20.
J Microbiol Biotechnol ; 33(1): 43-50, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36517045

ABSTRACT

Fungal keratitis is a refractory kind of keratopathy. We attempted to investigate the anti-inflammatory role of thymol on Aspergillus fumigatus (A. fumigatus) keratitis. Wound healing and fluorescein staining of the cornea were applied to verify thymol's safety. Mice models of A. fumigatus keratitis underwent subconjunctival injection of thymol. The anti-inflammatory roles of thymol were verified by hematoxylin-eosin (HE) staining, slit lamp observation, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. In contrast with the DMSO group, more transparent corneas and less inflammatory cells infiltration were detected in mice treated with 50 µg/ml thymol. Thymol downregulated the synthesis of TLR4, MyD88, NF-kB, IL-1ß, NLRP3, caspase 1, caspase 8, GSDMD, RIPK3 and MLKL. In summary, we proved that thymol played a protective part in A. fumigatus keratitis by cutting down inflammatory cells aggregation, downregulating the TLR4/ MyD88/ NF-kB/ IL-1ß signal expression and reducing necroptosis and pyroptosis.


Subject(s)
Aspergillosis , Keratitis , Animals , Mice , Anti-Inflammatory Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/metabolism , Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Disease Models, Animal , Keratitis/drug therapy , Keratitis/metabolism , Keratitis/microbiology , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Necroptosis , NF-kappa B/genetics , NF-kappa B/metabolism , Pyroptosis , Thymol/pharmacology , Thymol/therapeutic use , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...