Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.351
Filter
1.
Cell Mol Life Sci ; 81(1): 280, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918243

ABSTRACT

Candida albicans is among the most prevalent invasive fungal pathogens for immunocompromised individuals and novel therapeutic approaches that involve immune response modulation are imperative. Absent in melanoma 2 (AIM2), a pattern recognition receptor for DNA sensing, is well recognized for its involvement in inflammasome formation and its crucial role in safeguarding the host against various pathogenic infections. However, the role of AIM2 in host defense against C. albicans infection remains uncertain. This study reveals that the gene expression of AIM2 is induced in human and mouse innate immune cells or tissues after C. albicans infection. Furthermore, compared to their wild-type (WT) counterparts, Aim2-/- mice surprisingly exhibit resistance to C. albicans infection, along with reduced inflammation in the kidneys post-infection. The resistance of Aim2-/- mice to C. albicans infection is not reliant on inflammasome or type I interferon production. Instead, Aim2-/- mice display lower levels of apoptosis in kidney tissues following infection than WT mice. The deficiency of AIM2 in macrophages, but not in dendritic cells, results in a phenocopy of the resistance observed in Aim2-/- mice against C. albican infection. The treatment of Clodronate Liposome, a reagent that depletes macrophages, also shows the critical role of macrophages in host defense against C. albican infection in Aim2-/- mice. Furthermore, the reduction in apoptosis is observed in Aim2-/- mouse macrophages following infection or treatment of DNA from C. albicans in comparison with controls. Additionally, higher levels of AKT activation are observed in Aim2-/- mice, and treatment with an AKT inhibitor reverses the host resistance to C. albicans infection. The findings collectively demonstrate that AIM2 exerts a negative regulatory effect on AKT activation and enhances macrophage apoptosis, ultimately compromising host defense against C. albicans infection. This suggests that AIM2 and AKT may represent promising therapeutic targets for the management of fungal infections.


Subject(s)
Apoptosis , Candida albicans , Candidiasis , DNA-Binding Proteins , Macrophages , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/microbiology , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism , Candidiasis/pathology , Proto-Oncogene Proteins c-akt/metabolism , Mice , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Inflammasomes/metabolism , Immunity, Innate , Kidney/pathology , Kidney/metabolism , Kidney/microbiology
2.
PLoS One ; 19(5): e0301907, 2024.
Article in English | MEDLINE | ID: mdl-38814931

ABSTRACT

BACKGROUND: Opisthorchis viverrini (O. viverrini, Ov) infection and consumption of high-fat and high-fructose (HFF) diet exacerbate liver and kidney disease. Here, we investigated the effects of a combination of O. viverrini infection and HFF diet on kidney pathology via changes in the gut microbiome and host proteome in hamsters. METHODOLOGY/PRINCIPAL FINDINGS: Twenty animals were divided into four groups; 1) fed a normal diet not infected with O. viverrini (normal group), 2) fed an HFF diet and not infected with O. viverrini (HFF), 3) fed a normal diet and infected with O. viverrini (Ov), and 4) fed an HFF diet and infected with O. viverrini (HFFOv). DNA was extracted from fecal samples and the V3-V4 region of the bacterial 16S rRNA gene sequenced on an Illumina MiSeq sequencing platform. In addition, LC/MS-MS analysis was done. Histopathological studies and biochemical assays were also conducted. The results indicated that the HFFOv group exhibited the most severe kidney injury, manifested as elevated KIM-1 expression and accumulation of fibrosis in kidney tissue. The microbiome of the HFFOv group was more diverse than in the HFF group: there were increased numbers of Ruminococcaceae, Lachnospiraceae, Desulfovibrionaceae and Akkermansiaceae, but fewer Eggerthellaceae. In total, 243 host proteins were identified across all groups. Analysis using STITCH predicted that host proteome changes may lead to leaking of the gut, allowing molecules such as soluble CD14 and p-cresol to pass through to promote kidney disease. In addition, differential expression of TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 (Tab2, involving renal inflammation and injury) are predicted to be associated with kidney disease. CONCLUSIONS/SIGNIFICANCE: The combination of HFF diet and O. viverrini infection may promote kidney injury through alterations in the gut microbiome and host proteome. This knowledge may suggest an effective strategy to prevent kidney disease beyond the early stages.


Subject(s)
Diet, High-Fat , Fructose , Gastrointestinal Microbiome , Metagenomics , Opisthorchiasis , Proteomics , Animals , Opisthorchiasis/complications , Opisthorchiasis/parasitology , Opisthorchiasis/pathology , Opisthorchiasis/metabolism , Diet, High-Fat/adverse effects , Metagenomics/methods , Cricetinae , Proteomics/methods , Kidney Diseases/metabolism , Kidney Diseases/parasitology , Kidney Diseases/microbiology , Kidney Diseases/pathology , Kidney Diseases/etiology , Opisthorchis , Male , Proteome , Kidney/pathology , Kidney/metabolism , Kidney/microbiology , Mesocricetus , RNA, Ribosomal, 16S/genetics
3.
Microbiol Immunol ; 68(7): 213-223, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747013

ABSTRACT

Acute kidney injury (AKI) has considerably high morbidity and mortality but we do not have proper treatment for it. There is an urgent need to develop new prevention or treatment methods. Gut microbiota has a close connection with renal diseases and has become the new therapy target for AKI. In this study, we found the oral administration of the probiotic Limosilactobacillus reuteri had a prevention effect on the AKI induced by lipopolysaccharide (LPS). It reduced serum concentration of creatinine and urea nitrogen and protected the renal cells from necrosis and apoptosis. Meanwhile, L. reuteri improved the gut barrier function, which is destroyed in AKI, and modulated the gut microbiota and relevant metabolites. Compared with the LPS group, L. reuteri increased the proportion of Proteobacteria and reduced the proportion of Firmicutes, changing the overall structure of the gut microbiota. It also influenced the fecal metabolites and changed the metabolite pathways, such as tyrosine metabolism, pentose and glucuronate interconversions, galactose metabolism, purine metabolism, and insulin resistance. These results showed that L. reuteri is a potential therapy for AKI as it helps in sustaining the gut barrier integrity and modulating gut microbiota and related metabolites.


Subject(s)
Acute Kidney Injury , Gastrointestinal Microbiome , Limosilactobacillus reuteri , Probiotics , Gastrointestinal Microbiome/drug effects , Limosilactobacillus reuteri/physiology , Limosilactobacillus reuteri/metabolism , Animals , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Mice , Lipopolysaccharides/metabolism , Male , Kidney/microbiology , Kidney/metabolism , Feces/microbiology , Disease Models, Animal , Creatinine/blood , Mice, Inbred C57BL , Apoptosis/drug effects
4.
Cell Host Microbe ; 32(6): 900-912.e4, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38759643

ABSTRACT

Urinary tract infection (UTI), mainly caused by Escherichia coli, are frequent and have a recurrent nature even after antibiotic treatment. Potential bacterial escape mechanisms include growth defects, but probing bacterial division in vivo and establishing its relation to the antibiotic response remain challenging. Using a synthetic reporter of cell division, we follow the temporal dynamics of cell division for different E. coli clinical strains in a UTI mouse model with and without antibiotics. We show that more bacteria are actively dividing in the kidneys and urine compared with the bladder. Bacteria that survive antibiotic treatment are consistently non-dividing in three sites of infection. Additionally, we demonstrate how both the strain in vitro persistence profile and the microenvironment impact infection and treatment dynamics. Understanding the relative contribution of the host environment, growth heterogeneity, non-dividing bacteria, and antibiotic persistence is crucial to improve therapies for recurrent infections.


Subject(s)
Anti-Bacterial Agents , Cell Division , Disease Models, Animal , Escherichia coli Infections , Escherichia coli , Urinary Tract Infections , Animals , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Mice , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Escherichia coli/drug effects , Cell Division/drug effects , Kidney/microbiology , Female , Urinary Bladder/microbiology , Microbial Viability/drug effects
5.
Vaccine ; 42(13): 3220-3229, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38641497

ABSTRACT

Leptospirosis, a globally significant zoonotic disease caused by pathogenic Leptospira, continues to threaten the health and public safety of both humans and animals. Current clinical treatment of leptospirosis mainly relies on antibiotics but their efficacy in severe cases is controversial. Passive immunization has a protective effect in the treatment of infectious diseases. In addition, chicken egg yolk antibody (IgY) has gained increasing attention as a safe passive immunization agent. This study aimed to investigate whether hens produce specific IgY after immunization with inactivated Leptospira and the protective effect of specific IgY against leptospirosis. First, it was demonstrated that specific IgY could be extracted from the eggs of hens vaccinated with inactivated Leptospira and that specific IgY can specifically recognize and bind homotypic Leptospira with a high titre, as shown by MAT and ELISA. Next, we tested the therapeutic effects of IgY in early and late leptospirosis using a hamster model. The results showed that early specific IgY treatment increased the survival rate of hamsters to 100%, alleviated pathological damage to the liver, kidney, and lung, reduced leptospiral burden, and restored haematological indices as well as functional indicators of the liver and kidney. The therapeutic effect of early specific IgY was comparable to that of doxycycline. Late IgY treatment also enhanced the survival rate of hamsters and improved the symptoms of leptospirosis similar to early IgY treatment. However, the therapeutic effect of late IgY treatment was better when combined with doxycycline. Furthermore, no Leptospira colonization was observed in the kidneys, livers, or lungs of the surviving hamsters treated with specific IgY. Mechanistically, IgY was found to inhibit the growth and adhesion to cells of Leptospira. In conclusion, passive immunotherapy with specific IgY can be considered an effective treatment for leptospirosis, and may replace antibiotics regarding its therapeutic effects.


Subject(s)
Antibodies, Bacterial , Immunization, Passive , Immunoglobulins , Leptospira , Leptospirosis , Animals , Cricetinae , Female , Antibodies, Bacterial/immunology , Chickens/immunology , Disease Models, Animal , Doxycycline/therapeutic use , Doxycycline/administration & dosage , Doxycycline/pharmacology , Egg Yolk/immunology , Immunization, Passive/methods , Immunoglobulins/immunology , Immunoglobulins/administration & dosage , Kidney/pathology , Kidney/immunology , Kidney/microbiology , Leptospira/immunology , Leptospirosis/immunology , Leptospirosis/prevention & control , Leptospirosis/therapy , Liver/immunology , Liver/pathology , Liver/microbiology , Mesocricetus , Vaccines, Inactivated/immunology , Vaccines, Inactivated/administration & dosage
6.
Article in English | MEDLINE | ID: mdl-38430708

ABSTRACT

Edwardsiella tarda (Et) is a zoonotic gram-negative pathogen with a diverse host range, including fish. However, the in-depth molecular mechanisms underlying the response of Labeo rohita (rohu) kidney to Et are poorly understood. A proteomic and histopathological analysis was performed for the rohu kidney after Et infection. The histopathology of the infected rohu kidney showed vacuolation and necrosis. After LC-MS/MS analysis, ~1240 proteins were identified with ≥2 unique peptides. A total of 96 differentially abundant proteins (DAPs) were observed between the control and Et infected group (ET). Metascape and STRING analysis were used for the gene ontology (GO), and protein-protein interaction network (PPI) for the significant pathways of DAPs. In PPI, low-abundant proteins were mapped to metabolic pathways and oxidative phosphorylation (cox5ab, uqcrfs1). High-abundance proteins were mapped to ribosomes (rplp2), protein process in the ER (hspa8), and immune system (ptgdsb.1, muc2). Our label-free proteomic approach in the rohu kidney revealed abundant enriched proteins involved in vesicle coat (ehd4), complement activation (c3a.1, c9, c7a), phagosome (thbs4, mapk1), metabolic reprogramming (hao1, glud1a), wound healing (vim, alox5), and the immune system (psap) after Et infection. A targeted proteomics approach of multiple reaction monitoring (MRM) validated the DAPs (nprl3, ambp, vmo1a, hspg2, muc2, hao1 and glud1a) between control and ET. Overall, the current analysis of histology and proteome in the rohu kidney provides comprehensive data on pathogenicity and the potential immune proteins against Et.


Subject(s)
Edwardsiella tarda , Enterobacteriaceae Infections , Fish Diseases , Fish Proteins , Kidney , Proteomics , Animals , Fish Diseases/microbiology , Fish Diseases/metabolism , Enterobacteriaceae Infections/microbiology , Kidney/microbiology , Kidney/metabolism , Fish Proteins/metabolism , Cyprinidae/metabolism , Cyprinidae/microbiology , Proteome/analysis , Protein Interaction Maps , Tandem Mass Spectrometry
7.
Mar Biotechnol (NY) ; 26(2): 306-323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367180

ABSTRACT

Vibrio harveyi, a recently discovered pathogenic bacterium isolated from American eels (Anguilla rostrata), poses uncertainties regarding its pathogenesis in American eel and the molecular mechanisms underlying host defense against V. harveyi infection. This study aimed to determine the LD50 of V. harveyi in American eel and assess the bacterial load in the liver, spleen, and kidney post-infection with the LD50 dose. The results showed that the LD50 of V. harveyi via intraperitoneal injection in American eels over a 14d period was determined to be 1.24 × 103 cfu/g body weight (6.2 × 104 cfu/fish). The peak bacterial load occurred at 36 h post-infection (hpi) in all three organs examined. Histopathology analysis revealed hepatic vein congestion and thrombi, tubular vacuolar degeneration, and splenic bleeding. Moreover, quantitative reverse transcription polymerase chain reaction (qRT-PCR) results indicated significant up or downregulation of 18 host immune- or anti-infection-related genes post 12 to 60 hpi following the infection. Additionally, RNA sequencing (RNA-seq) unveiled 7 hub differentially expressed genes (DEGs) and 11 encoded proteins play crucial roles in the anti-V. harveyi response in American eels. This study firstly represents the comprehensive report on the pathogenicity of V. harveyi to American eels and RNA-seq of host's response to V. harveyi infection. These findings provide valuable insights into V. harveyi pathogenesis and the strategies employed by the host's immune system at the transcriptomic level to combat V. harveyi infection.


Subject(s)
Anguilla , Fish Diseases , Gene Expression Profiling , Liver , Vibrio Infections , Vibrio , Animals , Vibrio/pathogenicity , Anguilla/microbiology , Anguilla/genetics , Fish Diseases/microbiology , Fish Diseases/immunology , Vibrio Infections/veterinary , Vibrio Infections/microbiology , Vibrio Infections/immunology , Liver/microbiology , Liver/pathology , Spleen/microbiology , Spleen/pathology , Transcriptome , Kidney/microbiology , Kidney/pathology , Lethal Dose 50 , Bacterial Load
8.
mBio ; 15(2): e0317023, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38206009

ABSTRACT

Urinary tract infections (UTIs) in men are uncommon yet carry an increased risk for severe pyelonephritis and other complications. In models of Escherichia coli UTI, C3H/HeN mice develop high-titer pyelonephritis (most with renal abscesses) in a testosterone-dependent manner, but the mechanisms underlying this phenotype are unknown. Here, using female mouse models, we show that androgen exposure impairs neutrophil maturation in the upper and lower urinary tract, compounded by a reduction of neutrophil function within the infected kidney, enabling persistent high-titer infection and promoting abscess formation. Following intravesical inoculation with uropathogenic E. coli (UPEC), kidneys of androgen-exposed C3H mice showed delayed local pro-inflammatory cytokine responses while robustly recruiting neutrophils. These were enriched for an end-organ-specific population of aged but immature neutrophils (CD49d+, CD101-). Compared to their mature counterparts, these aged immature kidney neutrophils exhibited reduced function in vitro, including impaired degranulation and diminished phagocytic activity, while splenic, bone marrow, and bladder neutrophils did not display these alterations. Furthermore, aged immature neutrophils manifested little phagocytic activity within intratubular UPEC communities in vivo. Experiments with B6 conditional androgen receptor (AR)-deficient mice indicated rescue of the maturation defect when AR was deleted in myeloid cells. We conclude that the recognized enhancement of UTI severity by androgens is attributable, at least in part, to local impairment of neutrophil maturation in the urinary tract (largely via cell-intrinsic AR signaling) and a kidney-specific reduction in neutrophil antimicrobial capacity.IMPORTANCEAlthough urinary tract infections (UTIs) predominantly occur in women, male UTIs carry an increased risk of morbidity and mortality. Pyelonephritis in androgen-exposed mice features robust neutrophil recruitment and abscess formation, while bacterial load remains consistently high. Here, we demonstrate that during UTI, neutrophils infiltrating the urinary tract of androgen-exposed mice exhibit reduced maturation, and those that have infiltrated the kidney have reduced phagocytic and degranulation functions, limiting their ability to effectively control infection. This work helps to elucidate mechanisms by which androgens enhance UTI susceptibility and severity, illuminating why male patients may be predisposed to severe outcomes of pyelonephritis.


Subject(s)
Escherichia coli Infections , Pyelonephritis , Urinary Tract Infections , Uropathogenic Escherichia coli , Female , Humans , Male , Animals , Mice , Aged , Androgens , Neutrophils/pathology , Escherichia coli , Abscess/pathology , Escherichia coli Infections/microbiology , Mice, Inbred C3H , Kidney/microbiology , Urinary Tract Infections/microbiology , Pyelonephritis/microbiology , Uropathogenic Escherichia coli/genetics
9.
Microbes Infect ; 26(4): 105299, 2024.
Article in English | MEDLINE | ID: mdl-38224944

ABSTRACT

This study aimed to develop aptamers targeting LipL32, a most abundant lipoprotein in pathogenic Leptospira, to hinder bacterial invasion. The objectives were to identify high-affinity aptamers through SELEX and evaluate their specificity and inhibitory effects. SELEX was employed to generate LipL32 aptamers (L32APs) over 15 rounds of selection. L32APs' binding affinity and specificity for pathogenic Leptospira were assessed. Their ability to inhibit LipL32-ECM interaction and Leptospira invasion was investigated. Animal studies were conducted to evaluate the impact of L32AP treatment on survival rates, Leptospira colonization, and kidney damage. Three L32APs with strong binding affinity were identified. They selectively detected pathogenic Leptospira, sparing non-pathogenic strains. L32APs inhibited LipL32-ECM interaction and Leptospira invasion. In animal studies, L32AP administration significantly improved survival rates, reduced Leptospira colonies, and mitigated kidney damage compared to infection alone. This pioneering research developed functional aptamers targeting pathogenic Leptospira. The identified L32APs exhibited high affinity, pathogen selectivity, and inhibition of invasion and ECM interaction. L32AP treatment showed promising results, enhancing survival rates and reducing Leptospira colonization and kidney damage. These findings demonstrate the potential of aptamers to impede pathogenic Leptospira invasion and aid in recovery from Leptospira-induced kidney injury (190 words).


Subject(s)
Aptamers, Nucleotide , Bacterial Outer Membrane Proteins , Leptospira , Leptospirosis , Lipoproteins , SELEX Aptamer Technique , Animals , Mice , Aptamers, Nucleotide/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Disease Models, Animal , Kidney/microbiology , Kidney/pathology , Leptospira/drug effects , Leptospira/pathogenicity , Leptospira/metabolism , Leptospirosis/microbiology , Leptospirosis/drug therapy , Lipoproteins/antagonists & inhibitors , Lipoproteins/metabolism
10.
Biomed J ; 46(4): 100595, 2023 08.
Article in English | MEDLINE | ID: mdl-37142093

ABSTRACT

Leptospirosis is a neglected bacterial disease caused by leptospiral infection that carries a substantial mortality risk in severe cases. Research has shown that acute, chronic, and asymptomatic leptospiral infections are closely linked to acute and chronic kidney disease (CKD) and renal fibrosis. Leptospires affect renal function by infiltrating kidney cells via the renal tubules and interstitium and surviving in the kidney by circumventing the immune system. The most well-known pathogenic molecular mechanism of renal tubular damage caused by leptospiral infection is the direct binding of the bacterial outer membrane protein LipL32 to toll-like receptor-2 expressed in renal tubular epithelial cells (TECs) to induce intracellular inflammatory signaling pathways. These pathways include the production of tumor necrosis factor (TNF)-α and nuclear factor kappa activation, resulting in acute and chronic leptospirosis-related kidney injury. Few studies have investigated the relationship between acute and chronic renal diseases and leptospirosis and further evidence is necessary. In this review, we intend to discuss the roles of acute kidney injury (AKI) to/on CKD in leptospirosis. This study reviews the molecular pathways underlying the pathogenesis of leptospirosis kidney disease, which will assist in concentrating on potential future research directions.


Subject(s)
Acute Kidney Injury , Leptospira , Leptospirosis , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/pathology , Kidney/microbiology , Kidney/pathology , Leptospira/metabolism
11.
Asian Pac J Allergy Immunol ; 41(4): 389-395, 2023 Dec.
Article in English | MEDLINE | ID: mdl-33068363

ABSTRACT

BACKGROUND: Leptospirosis is a zoonotic disease caused by Leptospira interrogans. Severe leptospirosis is often accompanied by kidney dysfunction caused by chronic infection. The kidney pathology involves bacterial invasion and inflammation caused by pro-inflammatory cytokines. Human beta defensins (hBDs) are antimicrobial peptides induced by microbial infection and/or pro-inflammatory cytokines. One function of hBDs is the recruitment of immune cells that leads to inflammation. However, the expression of hBDs by kidney epithelium in response to pathogenic Leptospira has never been investigated. OBJECTIVE: To determine the expression of hBDs in human kidney epithelium responses to Leptospira. METHODS: Human kidney cells were infected with Leptospira interrogans serovar Autumnalis in the presence or absence of anti-TLR2 neutralizing antibody (Ab) for 6 hours. TLR2, hBDs and pro-inflammatory cytokines mRNA expressions were analyzed by quantitative polymerase chain reaction (qPCR). RESULTS: Pathogenic Leptospira upregulated the expressions of pro-inflammatory cytokines and hBD2, but not TLR2, hBD1 and hBD3 in kidney cells. The expressions of hBD2 and pro-inflammatory cytokines were inhibited in the presence of anti-hTLR2 neutralizing Ab. CONCLUSIONS: Our results provide the first evidence that pathogenic Leptospira induces hBD2 expression in kidney cells. The expressions of pro-inflammatory cytokines and hBD2 in the cells in response to pathogenic Leptospira are regulated by TLR2. Pro-inflammatory cytokines and hBD2 might be play role in recruitment of immune cells to the kidney and contribute to the development of inflammation-mediated tissue damage in the kidney. However, further study is needed to improve the understanding of the role of these molecules in immune response activation.


Subject(s)
Leptospira interrogans , Leptospirosis , beta-Defensins , Humans , Cytokines , Inflammation/pathology , Kidney/metabolism , Kidney/microbiology , Kidney/pathology , Leptospira interrogans/metabolism , Toll-Like Receptor 2/genetics
12.
FASEB J ; 36(11): e22599, 2022 11.
Article in English | MEDLINE | ID: mdl-36250902

ABSTRACT

Emerging evidence suggest that C3aR plays important roles in homeostasis, host defense and disease. Although it is known that C3aR is protective in several models of acute bacterial infections, the role for C3aR in chronic infection is largely unknown. Here we show that C3aR is protective in experimental chronic pyelonephritis. Global C3aR deficient (C3ar-/- ) mice had higher renal bacterial load, more pronounced renal histological lesions, increased renal apoptotic cell accumulation, tissue inflammation and extracellular matrix deposition following renal infection with uropathogenic E. coli (UPEC) strain IH11128, compared to WT control mice. Myeloid C3aR deficient (Lyz2-C3ar-/- ) mice exhibited a similar disease phenotype to global C3ar-/- mice. Pharmacological treatment with a C3aR agonist reduced disease severity in experimental chronic pyelonephritis. Furthermore, macrophages of C3ar-/- mice exhibited impaired ability to phagocytose UPEC. Our data clearly demonstrate a protective role for C3aR against experimental chronic pyelonephritis, macrophage C3aR plays a major role in the protection, and C3aR is necessary for phagocytosis of UPEC by macrophages. Our observation that C3aR agonist curtailed the pathology suggests a therapeutic potential for activation of C3aR in chronic infection.


Subject(s)
Escherichia coli Infections , Pyelonephritis , Receptors, Complement , Animals , Mice , Escherichia coli Infections/immunology , Escherichia coli Infections/pathology , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Kidney/microbiology , Kidney/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Pyelonephritis/immunology , Pyelonephritis/microbiology , Pyelonephritis/pathology , Pyelonephritis/prevention & control , Uropathogenic Escherichia coli/pathogenicity , Receptors, Complement/agonists , Receptors, Complement/deficiency , Receptors, Complement/genetics , Receptors, Complement/immunology , Extracellular Matrix/metabolism
13.
Genetics ; 222(3)2022 11 01.
Article in English | MEDLINE | ID: mdl-36103708

ABSTRACT

Determining how genetic polymorphisms enable certain fungi to persist in mammalian hosts can improve understanding of opportunistic fungal pathogenesis, a source of substantial human morbidity and mortality. We examined the genetic basis of fungal persistence in mice using a cross between a clinical isolate and the lab reference strain of the budding yeast Saccharomyces cerevisiae. Employing chromosomally encoded DNA barcodes, we tracked the relative abundances of 822 genotyped, haploid segregants in multiple organs over time and performed linkage mapping of their persistence in hosts. Detected loci showed a mix of general and antagonistically pleiotropic effects across organs. General loci showed similar effects across all organs, while antagonistically pleiotropic loci showed contrasting effects in the brain vs the kidneys, liver, and spleen. Persistence in an organ required both generally beneficial alleles and organ-appropriate pleiotropic alleles. This genetic architecture resulted in many segregants persisting in the brain or in nonbrain organs, but few segregants persisting in all organs. These results show complex combinations of genetic polymorphisms collectively cause and constrain fungal persistence in different parts of the mammalian body.


Subject(s)
Mycoses , Animals , Humans , Mice , Alleles , Chromosome Mapping/methods , Saccharomyces cerevisiae/genetics , Mycoses/microbiology , Brain/microbiology , Kidney/microbiology , Liver/microbiology , Spleen/microbiology
14.
Emerg Infect Dis ; 28(10): 2112-2114, 2022 10.
Article in English | MEDLINE | ID: mdl-36148992

ABSTRACT

Cryptococcosis infection after transplantation is easily overlooked or misdiagnosed. We report a cluster of donor-derived cryptococcosis infection in liver and kidney transplant recipients from the same donor in China. Infections occurred within 1 month after transplantation, and were confirmed by using biopsies and blood tests.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Kidney Transplantation , Kidney , Liver Transplantation , Liver , Postoperative Complications , Cryptococcosis/diagnosis , Cryptococcosis/epidemiology , Cryptococcus neoformans/isolation & purification , Humans , Immunocompromised Host , Kidney/microbiology , Kidney Transplantation/adverse effects , Liver/microbiology , Liver Transplantation/adverse effects , Tissue Donors , Treatment Outcome
15.
J Fish Dis ; 45(6): 883-894, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35363399

ABSTRACT

Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum (Rs), can be transmitted both horizontally and vertically and there is no available cure or prophylaxis. The control of BKD requires continuous surveillance, which is challenging in aquaculture as well as in programs for conservation and restoration of salmonid fish strains. BKD is a notifiable disease in Sweden and is monitored through the mandatory health control program using a polyclonal ELISA for detection of the Rs p57 protein in kidney. Fish must be killed for sampling, an obvious disadvantage especially regarding valuable broodfish. The present study shows that gill-/cloacal swabs collected in vivo for real-time PCR (qPCRgc ), allow a sensitive and specific detection of Rs. The sensitivity of qPCRgc was estimated to 97.8% (credible interval (ci) 93.8%-100%) compared to 98.3% (ci 92.7%-100%) and 48.8% (ci 38.8%-58.8%) of kidney samples for qPCR (qPCRk ) and ELISA (ELISAk ) respectively, by use of the Bayesian Latent Class Analysis (BLCA). Since the goal of the program is eradication of BKD the most sensitive test is preferrable. Using qPCRgc instead of ELISAk will result in a lower false negative rate and can be useful for surveillance in aquaculture and in breeding programs with valuable fish. However, a higher false positive rate warrants confirmatory lethal testing before a previously Rs negative farm is subject to restrictions.


Subject(s)
Bacterial Infections , Fish Diseases , Kidney Diseases , Micrococcaceae , Animals , Bayes Theorem , Female , Fish Diseases/diagnosis , Fish Diseases/microbiology , Kidney/microbiology , Kidney Diseases/diagnosis , Kidney Diseases/microbiology , Kidney Diseases/veterinary , Male , Micrococcaceae/genetics , Real-Time Polymerase Chain Reaction/veterinary , Renibacterium
16.
Infect Immun ; 90(4): e0053221, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35357220

ABSTRACT

Urinary tract infection (UTI) is one of the most prevalent bacterial infections, particularly in women, children, and the elderly. Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of UTI. Uropathogens are directly instilled in the urinary bladder, bypassing the lower urogenital tract, in the widely used murine model of UTI. We assessed whether vaginal inoculation of UPEC led to UTI and how stages of the estrous cycle would impact bacterial colonization in mice. Mice in proestrus, estrus, metestrus, and diestrus were identified by vaginal cytology and inoculated with UPEC in the vaginal tract. Mice were euthanized 1 day after infection, and bacterial loads in the urogenital tract, liver, and spleen were enumerated. Mice in estrus exhibited the highest and most consistent UPEC burdens in all organs, except the bladder. Vaginal inoculation resulted in bladder colonization in a UPEC strain-specific manner. In contrast, transurethral inoculation of UPEC led to bladder colonization. Importantly, inoculation by both routes led to vaginal and uterine colonization and concomitant systemic dissemination to the spleen and liver. The kinetics of bacterial colonization over 2 weeks following vaginal inoculation was comparable in the urogenital tract. Tissue sections revealed the induction of vaginitis and cystitis upon the vaginal instillation of UPEC. In summary, vaginal inoculation of UPEC in mice during estrus represents a novel approach to investigate infection of the kidneys and genital tract and systemic dissemination from the urogenital tract. Our findings suggest that estrogen primes the urogenital tract to create a conducive milieu for UPEC colonization.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Aged , Animals , Escherichia coli Infections/microbiology , Estrus , Female , Genitalia , Humans , Kidney/microbiology , Male , Mice , Urinary Tract Infections/microbiology
17.
Int J Immunopathol Pharmacol ; 35: 20587384211056507, 2021.
Article in English | MEDLINE | ID: mdl-34930061

ABSTRACT

INTRODUCTION: Meningococcal disease is associated with high mortality. When acute kidney injury (AKI) occurs in patients with severe meningococcal disease, it is typically attributable to sepsis, although meningococcal disease and lipopolysaccharide release are rarely investigated. Therefore, we evaluated renal tissue in a mouse model of meningococcal disease. METHODS: Female BALB/c mice were induced to AKI by meningococcal challenge. Markers of renal function were evaluated in infected and control mice. RESULTS: In the infected mice, serum concentrations of tumor necrosis factor alpha, interferon gamma, interleukins (IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, and IL-12), and granulocyte-macrophage colony-stimulating factor were elevated, as was renal interstitial infiltration with lymphocytes and neutrophils (p < 0.01 for the latter). Histological analysis showed meningococcal microcolonies in the renal interstitium, without acute tubular necrosis. Infected mice also showed elevated renal expression of toll-like receptor 2, toll-like receptor 4, and Tamm-Horsfall protein. The expression of factors in the intrinsic pathway of apoptosis was equal to or lower than that observed in the control mice. Urinary sodium and potassium were also lower in infected mice, probably due to a tubular defect. CONCLUSION: Our findings corroborate those of other studies of AKI in sepsis. To our knowledge, this is the first time that meningococci have been identified in renal interstitium and that the resulting apoptosis and inflammation have been evaluated. However, additional studies are needed in order to elucidate the mechanisms involved.


Subject(s)
Acute Kidney Injury , Kidney , Meningococcal Infections , Neisseria meningitidis/isolation & purification , Acute Kidney Injury/blood , Acute Kidney Injury/etiology , Acute Kidney Injury/immunology , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Gene Expression Profiling/methods , Granulocyte-Macrophage Colony-Stimulating Factor/analysis , Interleukins/analysis , Kidney/immunology , Kidney/microbiology , Kidney/pathology , Meningococcal Infections/complications , Meningococcal Infections/immunology , Mice , Mice, Inbred C57BL , Necrosis , Neutrophil Infiltration , Toll-Like Receptor 2/analysis , Toll-Like Receptor 4/analysis , Uromodulin/analysis
18.
Cells ; 10(12)2021 12 13.
Article in English | MEDLINE | ID: mdl-34944029

ABSTRACT

Understanding how uropathogenic Escherichia coli (UPEC) modulates the immune response in the kidney is essential to prevent UPEC from reaching the bloodstream and causing urosepsis. The purpose of this study was to elucidate if renal fibroblasts can release IL-1ß during a UPEC infection and to investigate the mechanism behind the IL-1ß release. We found that the UPEC strain CFT073 induced an increased IL-1ß and LDH release from renal fibroblasts, but not from renal epithelial cells. The UPEC-induced IL-1ß release was found to be NLRP3, caspase-1, caspase-4, ERK 1/2, cathepsin B and serine protease dependent in renal fibroblasts. We also found that the UPEC virulence factor α-hemolysin was necessary for IL-1ß release. Conditioned medium from caspase-1, caspase-4 and NLRP3-deficient renal fibroblasts mediated an increased reactive oxygen species production from neutrophils, but reduced UPEC phagocytosis. Taken together, our study demonstrates that renal fibroblasts, but not renal epithelial cells, release IL-1ß during a UPEC infection. This suggest that renal fibroblasts are vital immunoreactive cells and not only structural cells that produce and regulate the extracellular matrix.


Subject(s)
Escherichia coli Infections/genetics , Interleukin-1beta/genetics , Kidney/metabolism , Urinary Tract Infections/genetics , Caspase 1/genetics , Caspases, Initiator/genetics , Cathepsin B/genetics , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Extracellular Matrix/genetics , Fibroblasts/metabolism , Fibroblasts/microbiology , Gene Expression Regulation/genetics , Humans , Kidney/microbiology , Kidney/pathology , MAP Kinase Signaling System/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neutrophils/metabolism , Serine Proteases/genetics , Urinary Tract Infections/microbiology , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/pathogenicity
19.
PLoS Negl Trop Dis ; 15(11): e0009859, 2021 11.
Article in English | MEDLINE | ID: mdl-34780473

ABSTRACT

During 2019-2020, the Virgin Islands Department of Health investigated potential animal reservoirs of Leptospira spp., the bacteria that cause leptospirosis. In this cross-sectional study, we investigated Leptospira spp. exposure and carriage in the small Indian mongoose (Urva auropunctata, syn: Herpestes auropunctatus), an invasive animal species. This study was conducted across the three main islands of the U.S. Virgin Islands (USVI), which are St. Croix, St. Thomas, and St. John. We used the microscopic agglutination test (MAT), fluorescent antibody test (FAT), real-time polymerase chain reaction (lipl32 rt-PCR), and bacterial culture to evaluate serum and kidney specimens and compared the sensitivity, specificity, positive predictive value, and negative predictive value of these laboratory methods. Mongooses (n = 274) were live-trapped at 31 field sites in ten regions across USVI and humanely euthanized for Leptospira spp. testing. Bacterial isolates were sequenced and evaluated for species and phylogenetic analysis using the ppk gene. Anti-Leptospira spp. antibodies were detected in 34% (87/256) of mongooses. Reactions were observed with the following serogroups: Sejroe, Icterohaemorrhagiae, Pyrogenes, Mini, Cynopteri, Australis, Hebdomadis, Autumnalis, Mankarso, Pomona, and Ballum. Of the kidney specimens examined, 5.8% (16/270) were FAT-positive, 10% (27/274) were culture-positive, and 12.4% (34/274) were positive by rt-PCR. Of the Leptospira spp. isolated from mongooses, 25 were L. borgpetersenii, one was L. interrogans, and one was L. kirschneri. Positive predictive values of FAT and rt-PCR testing for predicting successful isolation of Leptospira by culture were 88% and 65%, respectively. The isolation and identification of Leptospira spp. in mongooses highlights the potential role of mongooses as a wildlife reservoir of leptospirosis; mongooses could be a source of Leptospira spp. infections for other wildlife, domestic animals, and humans.


Subject(s)
Disease Reservoirs/microbiology , Herpestidae/microbiology , Leptospira/isolation & purification , Agglutination Tests , Animals , Cross-Sectional Studies , Herpestidae/physiology , Humans , Introduced Species/statistics & numerical data , Kidney/microbiology , Leptospira/genetics , Leptospira/immunology , Leptospirosis/microbiology , Leptospirosis/transmission , Phylogeny , United States Virgin Islands
20.
Nat Commun ; 12(1): 6699, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795266

ABSTRACT

Candida albicans is the most common cause of fungal sepsis. Inhibition of inflammasome activity confers resistance to polymicrobial and LPS-induced sepsis; however, inflammasome signaling appears to protect against C. albicans infection, so inflammasome inhibitors are not clinically useful for candidiasis. Here we show disruption of GSDMD, a known inflammasome target and key pyroptotic cell death mediator, paradoxically alleviates candidiasis, improving outcomes and survival of Candida-infected mice. Mechanistically, C. albicans hijacked the canonical inflammasome-GSDMD axis-mediated pyroptosis to promote their escape from macrophages, deploying hyphae and candidalysin, a pore-forming toxin expressed by hyphae. GSDMD inhibition alleviated candidiasis by preventing C. albicans escape from macrophages while maintaining inflammasome-dependent but GSDMD-independent IL-1ß production for anti-fungal host defenses. This study demonstrates key functions for GSDMD in Candida's escape from host immunity in vitro and in vivo and suggests that GSDMD may be a potential therapeutic target in C. albicans-induced sepsis.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Inflammasomes/immunology , Intracellular Signaling Peptides and Proteins/immunology , Macrophages/immunology , Phosphate-Binding Proteins/immunology , Animals , Candida albicans/physiology , Candidiasis/genetics , Candidiasis/microbiology , Caspase 1/genetics , Caspase 1/immunology , Caspase 1/metabolism , Cells, Cultured , Female , Host-Pathogen Interactions/immunology , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kaplan-Meier Estimate , Kidney/immunology , Kidney/metabolism , Kidney/microbiology , Macrophages/metabolism , Macrophages/microbiology , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...