Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.889
Filter
1.
Kidney Int ; 105(6): 1165-1167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777401

ABSTRACT

The Oxford histopathologic classification (MEST-C: scores for lesions indicating active glomerular inflammation, mesangial [M] and endocapillary [E] hypercellularity as well as cellular or fibrocellular crescents [C], and for segmental glomerulosclerosis [S] and interstitial fibrosis and/or tubular atrophy [T]) is useful in helping assess prognosis in patients with IgA nephropathy. Elements of this classification indicative of active glomerular inflammation, endocapillary hypercellularity and crescents, also have been found to be responsive to immunosuppressive therapy, potentially including newer agents specifically targeting mediators of such inflammation. In this issue of Kidney International, Bellur and coworkers identify histopathologic subtypes of segmental glomerulosclerosis in IgA nephropathy showing podocyte injury that also behave like active lesions, including showing improved outcomes with immunosuppression. This podocyte injury, identifiable only by kidney biopsy, may represent a potential therapeutic target in some patients with IgA nephropathy.


Subject(s)
Glomerulonephritis, IGA , Podocytes , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/immunology , Humans , Podocytes/pathology , Podocytes/immunology , Podocytes/drug effects , Biopsy , Immunosuppressive Agents/therapeutic use , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/immunology , Glomerulosclerosis, Focal Segmental/drug therapy , Kidney Glomerulus/pathology , Kidney Glomerulus/immunology , Kidney Glomerulus/drug effects , Prognosis
2.
Dis Model Mech ; 17(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747698

ABSTRACT

Diabetic nephropathy (DN), as a complication of diabetes, is a substantial healthcare challenge owing to the high risk of morbidity and mortality involved. Although significant progress has been made in understanding the pathogenesis of DN, more efficient models are required to develop new therapeutics. Here, we created a DN model in zebrafish by crossing diabetic Tg(acta1:dnIGF1R-EGFP) and proteinuria-tracing Tg(l-fabp::VDBP-GFP) lines, named zMIR/VDBP. Overfed adult zMIR/VDBP fish developed severe hyperglycemia and proteinuria, which were not observed in wild-type zebrafish. Renal histopathology revealed human DN-like characteristics, such as glomerular basement membrane thickening, foot process effacement and glomerular sclerosis. Glomerular dysfunction was restored upon calorie restriction. RNA sequencing analysis demonstrated that DN zebrafish kidneys exhibited transcriptional patterns similar to those seen in human DN pathogenesis. Notably, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was activated, a phenomenon observed in the early phase of human DN. In addition, metformin improved hyperglycemia and proteinuria in DN zebrafish by modulating Akt phosphorylation. Our results indicate that zMIR/VDBP fish are suitable for elucidating the mechanisms underlying human DN and could be a powerful tool for therapeutic discovery.


Subject(s)
Diabetic Nephropathies , Disease Models, Animal , Hyperglycemia , Proteinuria , Proto-Oncogene Proteins c-akt , Signal Transduction , Zebrafish , Animals , Hyperglycemia/complications , Hyperglycemia/pathology , Proto-Oncogene Proteins c-akt/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Humans , Phosphorylation/drug effects , Animals, Genetically Modified , Metformin/pharmacology , Metformin/therapeutic use , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Kidney/pathology , Kidney/drug effects , Kidney/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Enzyme Activation/drug effects
3.
Sci Rep ; 14(1): 11167, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750091

ABSTRACT

Xanthine oxidoreductase (XOR) contributes to reactive oxygen species production. We investigated the cytoprotective mechanisms of XOR inhibition against high glucose (HG)-induced glomerular endothelial injury, which involves activation of the AMP-activated protein kinase (AMPK). Human glomerular endothelial cells (GECs) exposed to HG were subjected to febuxostat treatment for 48 h and the expressions of AMPK and its associated signaling pathways were evaluated. HG-treated GECs were increased xanthine oxidase/xanthine dehydrogenase levels and decreased intracellular AMP/ATP ratio, and these effects were reversed by febuxostat treatment. Febuxostat enhanced the phosphorylation of AMPK, the activation of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1α and PPAR-α and suppressed the phosphorylation of forkhead box O (FoxO)3a in HG-treated GECs. Febuxostat also decreased nicotinamide adenine dinucleotide phosphate oxidase (Nox)1, Nox2, and Nox4 expressions; enhanced superoxide dismutase activity; and decreased malondialdehyde levels in HG-treated GECs. The knockdown of AMPK inhibited PGC-1α-FoxO3a signaling and negated the antioxidant effects of febuxostat in HG-treated GECs. Despite febuxostat administration, the knockdown of hypoxanthine phosphoribosyl transferase 1 (HPRT1) also inhibited AMPK-PGC-1α-FoxO3a in HG-treated GECs. XOR inhibition alleviates oxidative stress by activating AMPK-PGC-1α-FoxO3a signaling through the HPRT1-dependent purine salvage pathway in GECs exposed to HG conditions.


Subject(s)
AMP-Activated Protein Kinases , Endothelial Cells , Glucose , Xanthine Dehydrogenase , Humans , Glucose/metabolism , Xanthine Dehydrogenase/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , AMP-Activated Protein Kinases/metabolism , Purines/pharmacology , Signal Transduction/drug effects , Febuxostat/pharmacology , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
4.
J Transl Med ; 22(1): 421, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702780

ABSTRACT

INTRODUCTION: Immune checkpoint inhibitors (ICIs) induce acute interstitial nephritis (AIN) in 2-5% of patients, with a clearly higher incidence when they are combined with platinum derivatives. Unfortunately, suitable disease models and non-invasive biomarkers are lacking. To fill this gap in our understanding, we investigated the renal effects of cisplatin and anti-PD-L1 antibodies in mice, assessing PD-1 renal expression and cytokine levels in mice with AIN, and then we compared these findings with those in AIN-diagnosed cancer patients. METHODS: Twenty C57BL6J mice received 200 µg of anti-PD-L1 antibody and 5 mg/kg cisplatin intraperitoneally and were compared with those receiving cisplatin (n = 6), anti-PD-L1 (n = 7), or saline (n = 6). After 7 days, the mice were euthanized. Serum and urinary concentrations of TNFα, CXCL10, IL-6, and MCP-1 were measured by Luminex. The kidney sections were stained to determine PD-1 tissue expression. Thirty-nine cancer patients with AKI were enrolled (AIN n = 33, acute tubular necrosis (ATN) n = 6), urine MCP-1 (uMCP-1) was measured, and kidney sections were stained to assess PD-1 expression. RESULTS: Cisplatin and anti PD-L1 treatment led to 40% AIN development (p = 0.03) in mice, accompanied by elevated serum creatinine and uMCP1. AIN-diagnosed cancer patients also had higher uMCP1 levels than ATN-diagnosed patients, confirming our previous findings. Mice with AIN exhibited interstitial PD-1 staining and stronger glomerular PD-1 expression, especially with combination treatment. Conversely, human AIN patients only showed interstitial PD-1 positivity. CONCLUSIONS: Only mice receiving cisplatin and anti-PDL1 concomitantly developed AIN, accompanied with a more severe kidney injury. AIN induced by this drug combination was linked to elevated uMCP1, consistently with human AIN, suggesting that uMCP1 can be potentially used as an AIN biomarker.


Subject(s)
Chemokine CCL2 , Cisplatin , Immune Checkpoint Inhibitors , Mice, Inbred C57BL , Nephritis, Interstitial , Programmed Cell Death 1 Receptor , Animals , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Nephritis, Interstitial/urine , Nephritis, Interstitial/pathology , Nephritis, Interstitial/chemically induced , Chemokine CCL2/urine , Chemokine CCL2/metabolism , Cisplatin/adverse effects , Humans , Male , Female , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , B7-H1 Antigen/metabolism , Mice , Middle Aged , Aged , Acute Disease
5.
Am J Physiol Renal Physiol ; 326(5): F862-F875, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38511222

ABSTRACT

IgA nephropathy (IgAN) is characterized by glomerular deposition of immune complexes (ICs) consisting of IgA1 with O-glycans deficient in galactose (Gd-IgA1) and Gd-IgA1-specific IgG autoantibodies. These ICs induce kidney injury, and in the absence of disease-specific therapy, up to 40% of patients with IgAN progress to kidney failure. IgA1 with its clustered O-glycans is unique to humans, which hampered development of small-animal models of IgAN. Here, we used a model wherein engineered ICs (EICs) formed from human Gd-IgA1 and recombinant human IgG autoantibody are injected into nude mice to induce glomerular injury mimicking human IgAN. In this model, we assessed the protective effects of sparsentan, a single-molecule dual endothelin angiotensin receptor antagonist (DEARA) versus vehicle on EIC-induced glomerular proliferation and dysregulation of gene expression in the kidney. Oral administration of sparsentan (60 or 120 mg/kg daily) to mice intravenously injected with EIC attenuated the EIC-induced glomerular hypercellularity. Furthermore, analysis of changes in the whole kidney transcriptome revealed that key inflammatory and proliferative biological genes and pathways that are upregulated in this EIC model of IgAN were markedly reduced by sparsentan, including complement genes, integrin components, members of the mitogen-activated protein kinase family, and Fc receptor elements. Partial overlap between mouse and human differentially expressed genes in IgAN further supported the translational aspect of the immune and inflammatory components from our transcriptional findings. In conclusion, our data indicate that in the mouse model of IgAN, sparsentan targets immune and inflammatory processes leading to protection from mesangial hypercellularity.NEW & NOTEWORTHY The mechanisms by which deposited IgA1 immune complexes cause kidney injury during early phases of IgA nephropathy are poorly understood. We used an animal model we recently developed that involves IgA1-IgG immune complex injections and determined pathways related to the induced mesangioproliferative changes. Treatment with sparsentan, a dual inhibitor of endothelin type A and angiotensin II type 1 receptors, ameliorated the induced mesangioproliferative changes and the associated alterations in the expression of inflammatory genes and networks.


Subject(s)
Antigen-Antibody Complex , Disease Models, Animal , Glomerulonephritis, IGA , Immunoglobulin A , Immunoglobulin G , Kidney Glomerulus , Animals , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/drug therapy , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/pathology , Glomerulonephritis, IGA/metabolism , Immunoglobulin A/metabolism , Immunoglobulin A/immunology , Kidney Glomerulus/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/drug effects , Kidney Glomerulus/immunology , Antigen-Antibody Complex/metabolism , Gene Regulatory Networks , Mice, Nude , Humans , Mice , Cell Proliferation/drug effects
6.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38530908

ABSTRACT

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Subject(s)
Adiponectin , Diabetes Mellitus, Type 2 , Glycocalyx , Kidney Glomerulus , Animals , Glycocalyx/metabolism , Glycocalyx/drug effects , Adiponectin/metabolism , Adiponectin/genetics , Mice , Diabetes Mellitus, Type 2/metabolism , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Glomerular Filtration Barrier/metabolism , Glomerular Filtration Barrier/drug effects , Tumor Necrosis Factor-alpha/metabolism , Syndecan-4/metabolism , Syndecan-4/genetics , Disease Models, Animal , Mice, Inbred C57BL
7.
Kidney360 ; 5(5): 771-782, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38523127

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk for kidney failure and are a key component of guideline-directed therapy for CKD. While SGLT2 inhibitors' ability to activate tubuloglomerular feedback and reduce hyperfiltration-mediated kidney injury is considered to be the central mechanism for kidney protection, recent data from experimental studies raise questions on the primacy of this mechanism. This review examines SGLT2 inhibitors' role in tubuloglomerular feedback and summarizes emerging evidence on following of SGLT2 inhibitors' other putative mechanisms for kidney protection: optimization of kidney's energy substrate utilization and delivery, regulation of autophagy and maintenance of cellular homeostasis, attenuation of sympathetic hyperactivity, and improvement in vascular health and microvascular function. It is imperative to examine the effect of SGLT2 inhibition on these different physiologic processes to help our understanding of mechanisms underpinning kidney protection with this important class of drugs.


Subject(s)
Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Animals , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Kidney Glomerulus/blood supply , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/prevention & control , Renal Insufficiency, Chronic/physiopathology , Kidney/drug effects , Kidney/metabolism , Autophagy/drug effects , Feedback, Physiological/drug effects
8.
J Appl Toxicol ; 44(6): 908-918, 2024 06.
Article in English | MEDLINE | ID: mdl-38396353

ABSTRACT

Cadmium (Cd) is one of the most polluting heavy metal in the environment. Cd exposure has been elucidated to cause dysfunction of the glomerular filtration barrier (GFB). However, the underlying mechanism remains unclear. C57BL/6J male mice were administered with 2.28 mg/kg cadmium chloride (CdCl2) dissolved in distilled water by oral gavage for 14 days. The expression of SDC4 in the kidney tissues was detected. Human renal glomerular endothelial cells (HRGECs) were exposed to varying concentrations of CdCl2 for 24 h. The mRNA levels of SDC4, along with matrix metalloproteinase (MMP)-2 and 9, were analyzed by quantitative PCR. Additionally, the protein expression levels of SDC4, MMP-2/9, and both total and phosphorylated forms of Smad2/3 (P-Smad2/3) were detected by western blot. The extravasation rate of fluorescein isothiocyanate-dextran through the Transwell was used to evaluate the permeability of HRGECs. SB431542 was used as an inhibitor of transforming growth factor (TGF)-ß signaling pathway to further investigate the role of TGF-ß. Cd reduced SDC4 expression in both mouse kidney tissues and HRGECs. In addition, Cd exposure increased permeability and upregulated P-Smad2/3 levels in HRGECs. SB431542 treatment inhibited the phosphorylation of Smad2/3, Cd-induced SDC4 downregulation, and hyperpermeability. MMP-2/9 levels increased by Cd exposure was also blocked by SB431542, demonstrating the involvement of TGF-ß/Smad pathway in low-dose Cd-induced SDC4 reduction in HRGECs. Given that SDC4 is an essential component of glycocalyx, protection or repair of endothelial glycocalyx is a potential strategy for preventing or treating kidney diseases associated with environmental Cd exposure.


Subject(s)
Endothelial Cells , Glycocalyx , Kidney Glomerulus , Mice, Inbred C57BL , Syndecan-4 , Animals , Male , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Syndecan-4/metabolism , Syndecan-4/genetics , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Mice , Glycocalyx/drug effects , Glycocalyx/metabolism , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Cadmium/toxicity , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism
9.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446007

ABSTRACT

Some chemoattractants and leukocytes such as M1 and M2 macrophages are known to be involved in the development of glomerulosclerosis during diabetic nephropathy (DN). In the course of diabetes, an altered and defective cellular metabolism leads to the increase in adenosine levels, and thus to changes in the polarity (M1/M2) of macrophages. MRS1754, a selective antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerulosclerosis and decreased macrophage-myofibroblast transition in DN rats. Therefore, we aimed to investigate the effect of MRS1754 on the glomerular expression/secretion of chemoattractants, the intraglomerular infiltration of leukocytes, and macrophage polarity in DN rats. Kidneys/glomeruli of non-diabetic, DN, and MRS1754-treated DN rats were processed for transcriptomic analysis, immunohistopathology, ELISA, and in vitro macrophage migration assays. The transcriptomic analysis identified an upregulation of transcripts and pathways related to the immune system in the glomeruli of DN rats, which was attenuated using MRS1754. The antagonism of the A2BAR decreased glomerular expression/secretion of chemoattractants (CCL2, CCL3, CCL6, and CCL21), the infiltration of macrophages, and their polarization to M2 in DN rats. The in vitro macrophages migration induced by conditioned-medium of DN glomeruli was significantly decreased using neutralizing antibodies against CCL2, CCL3, and CCL21. We concluded that the pharmacological blockade of the A2BAR decreases the transcriptional expression of genes/pathways related to the immune response, protein expression/secretion of chemoattractants, as well as the infiltration of macrophages and their polarization toward the M2 phenotype in the glomeruli of DN rats, suggesting a new mechanism implicated in the antifibrotic effect of MRS1754.


Subject(s)
Acetamides , Adenosine A2 Receptor Antagonists , Cell Polarity , Chemotactic Factors , Diabetic Nephropathies , Kidney Glomerulus , Macrophages , Purines , Diabetic Nephropathies/genetics , Diabetic Nephropathies/immunology , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Chemotactic Factors/antagonists & inhibitors , Chemotactic Factors/genetics , Chemotactic Factors/metabolism , Cell Polarity/drug effects , Cell Polarity/immunology , Macrophages/drug effects , Macrophages/immunology , Adenosine A2 Receptor Antagonists/pharmacology , Receptor, Adenosine A2B , Acetamides/pharmacology , Purines/pharmacology , Animals , Rats , Cell Movement/drug effects , Male , Rats, Sprague-Dawley , Transcription, Genetic/drug effects , Protein Biosynthesis/drug effects , Immunity/drug effects , Immunity/genetics
10.
Mol Biol Rep ; 49(4): 2915-2924, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35064409

ABSTRACT

OBJECTIVE: To investigate the role of microRNA-155-5p on apoptosis and inflammatory response in human renal glomerular endothelial cells (HRGEC) cultured with high glucose. METHODS: The primary HRGEC were mainly studied, light microscopy was used to detect changes in cell morphology. Quantitative Real Time-Polymerase Chain Reaction, Western Blot, immunofluorescence were aimed to observe the mRNA and protein expression levels of target gene ETS-1, downstream factors VCAM-1, MCP-1 and cleaved caspase-3 in each group after high glucose treatment as well as transfection with miR-155 mimics or inhibitor. RESULTS: The expression of inflammatory factors and apoptosis of HRGEC cells increased under high glucose treatment. Compared with normal-glucose treatment, the expression of microRNA-155 markedly increased in HRGECs treated with high-glucose, as well as the mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3. Overexpression of microRNA-155 remarkably downregulated mRNA and protein levels of ETS-1, VCAM-1, MCP-1 and cleaved caspase-3, whereas miRNA-155 knockdown upregulated their levels. In addition, HRGEC cells were transfected with miR-155 mimics and ETS-1 siRNA with high glucose stimulation. The expression of ETS-1 was positively correlated with the expression of downstream factors VCAM-1 and MCP-1. These results suggest that ETS-1 can mediate endothelial cell inflammation by regulating VCAM-1 and MCP-1. CONCLUSION: MiR-155 can negatively regulate the expression of target gene ETS-1 and its downstream factors VCAM-1, MCP-1 and cleaved caspase-3, thus mediating the inflammatory response and apoptosis of HRGEC.


Subject(s)
Endothelial Cells , MicroRNAs , Apoptosis/genetics , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Glucose/administration & dosage , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
11.
Biochem Biophys Res Commun ; 587: 1-8, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34856423

ABSTRACT

BACKGROUND: Accidental hypothermia (AH) sometimes leads to coagulation disorder, especially in severe AH. We previously demonstrated that intrasplenic platelet activation caused aberrant hemostasis and thrombus formation after rewarming in a murine AH model. However, no study has focused on the appropriate management of platelets causing coagulation activation after rewarming of AH. We investigated whether or not recombinant soluble thrombomodulin (rTM) can suppress thrombosis formation after rewarming using a rat AH model. METHODS: Wistar rats were exposed to an ambient temperature of -20 °C under general anesthesia until their rectal temperature decreased to 26 °C. The Hypo group rats (n = 5) were immediately euthanized, while the Hypo/Re group (n = 5) and rTM group rats (n = 5), which were administered rTM (1 mg/kg) via the tail vein, were rewarmed until the rectal temperature returned to 34 °C and then euthanized 6 h later. Tissue and blood samples were collected from all rats for histopathological and coagulation analyses at euthanasia. RESULTS: There was no significant change in the D-dimer level in the Hypo group rats, while the D-dimer level was significantly elevated at 6 h after rewarming in the Hypo/Re group rats (P = 0.015), and histopathology detected both fibrin and platelets in the renal glomerulus. However, the rTM group rats did not show any elevation of the D-dimer levels at 6 h after rewarming, and no fibrin was noted on histopathology. CONCLUSIONS: rTM may be useful as an appropriate anticoagulant in cases of aberrant hemostasis after rewarming of AH.


Subject(s)
Anticoagulants/pharmacology , Blood Platelets/drug effects , Fibrin Fibrinogen Degradation Products/metabolism , Hypothermia/complications , Thrombomodulin/administration & dosage , Thrombosis/prevention & control , Animals , Biomarkers/metabolism , Blood Platelets/metabolism , Blood Platelets/pathology , Disease Models, Animal , Fibrin/chemistry , Fibrin/metabolism , Hypothermia/blood , Hypothermia/physiopathology , Kidney Glomerulus/blood supply , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Male , Platelet Activation/drug effects , Rats , Rats, Wistar , Recombinant Proteins/pharmacology , Rewarming/adverse effects , Solubility , Spleen/blood supply , Spleen/drug effects , Spleen/metabolism , Spleen/pathology , Thrombosis/blood , Thrombosis/etiology , Thrombosis/physiopathology
12.
Acta Pharmacol Sin ; 43(1): 96-110, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34253875

ABSTRACT

Diabetic kidney disease (DKD) is one of the microvascular complications of diabetes mellitus and a major cause of end-stage renal disease with limited treatment options. Wogonin is a flavonoid derived from the root of Scutellaria baicalensis Georgi, which has shown a potent renoprotective effect. But the mechanisms of action in DKD are not fully elucidated. In this study, we investigated the effects of wogonin on glomerular podocytes in DKD using mouse podocyte clone 5 (MPC5) cells and diabetic mice model. MPC5 cells were treated with high glucose (30 mM). We showed that wogonin (4, 8, 16 µM) dose-dependently alleviated high glucose (HG)-induced MPC5 cell damage, accompanied by increased expression of WT-1, nephrin, and podocin proteins, and decreased expression of TNF-α, MCP-1, IL-1ß as well as phosphorylated p65. Furthermore, wogonin treatment significantly inhibited HG-induced apoptosis in MPC5 cells. Wogonin reversed HG-suppressed autophagy in MPC5 cells, evidenced by increased ATG7, LC3-II, and Beclin-1 protein, and decreased p62 protein. We demonstrated that wogonin directly bound to Bcl-2 in MPC5 cells. In HG-treated MPC5 cells, knockdown of Bcl-2 abolished the beneficial effects of wogonin, whereas overexpression of Bcl-2 mimicked the protective effects of wogonin. Interestingly, we found that the expression of Bcl-2 was significantly decreased in biopsy renal tissue of diabetic nephropathy patients. In vivo experiments were conducted in STZ-induced diabetic mice, which were administered wogonin (10, 20, 40 mg · kg-1 · d-1, i.g.) every other day for 12 weeks. We showed that wogonin administration significantly alleviated albuminuria, histopathological lesions, and p65 NF-κB-mediated renal inflammatory response. Wogonin administration dose-dependently inhibited podocyte apoptosis and promoted podocyte autophagy in STZ-induced diabetic mice. This study for the first time demonstrates a novel action of wogonin in mitigating glomerulopathy and podocytes injury by regulating Bcl-2-mediated crosstalk between autophagy and apoptosis. Wogonin may be a potential therapeutic drug against DKD.


Subject(s)
Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/pharmacology , Flavanones/pharmacology , Kidney Glomerulus/drug effects , Podocytes/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Animals , Apoptosis/drug effects , Autophagy/drug effects , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Flavanones/administration & dosage , Injections, Intraperitoneal , Kidney Glomerulus/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Podocytes/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship
13.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769064

ABSTRACT

Novel strategies for the prevention and treatment of sepsis-associated acute kidney injury and its long-term outcomes have been required and remain a challenge in critical care medicine. Therapeutic strategies using lipid mediators, such as aspirin-triggered resolvin D1 (ATRvD1), can contribute to the resolution of acute and chronic inflammation. In this study, we examined the potential effect of ATRvD1 on long-term kidney dysfunction after severe sepsis. Fifteen days after cecal ligation and puncture (CLP), sepsis-surviving BALB/c mice were subjected to a tubulointerstitial injury through intraperitoneal injections of bovine serum albumin (BSA) for 7 days, called the subclinical acute kidney injury (subAKI) animal model. ATRvD1 treatment was performed right before BSA injections. On day 22 after CLP, the urinary protein/creatinine ratio (UPC), histologic parameters, fibrosis, cellular infiltration, apoptosis, inflammatory markers levels, and mRNA expression were determined. ATRvD1 treatment mitigated tubulointerstitial injury by reducing proteinuria excretion, the UPC ratio, the glomerular cell number, and extracellular matrix deposition. Pro-fibrotic markers, such as transforming growth factor ß (TGFß), type 3 collagen, and metalloproteinase (MMP)-3 and -9 were reduced after ATRvD1 administration. Post-septic mice treated with ATRvD1 were protected from the recruitment of IBA1+ cells. The interleukin-1ß (IL-1ß) levels were increased in the subAKI animal model, being attenuated by ATRvD1. Tumor necrosis factor-α (TNF-α), IL-10, and IL-4 mRNA expression were increased in the kidney of BSA-challenged post-septic mice, and it was also reduced after ATRvD1. These results suggest that ATRvD1 protects the kidney against a second insult such as BSA-induced tubulointerstitial injury and fibrosis by suppressing inflammatory and pro-fibrotic mediators in renal dysfunction after sepsis.


Subject(s)
Acute Kidney Injury/drug therapy , Aspirin/pharmacology , Docosahexaenoic Acids/pharmacology , Kidney Glomerulus/drug effects , Sepsis/drug therapy , Acute Kidney Injury/chemically induced , Albumins/pharmacology , Animals , Biomarkers/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , Inflammation/drug therapy , Inflammation/metabolism , Kidney Function Tests/methods , Kidney Glomerulus/metabolism , Male , Mice , Mice, Inbred BALB C , Proteinuria/chemically induced , Proteinuria/drug therapy , Proteinuria/metabolism , RNA, Messenger/metabolism , Sepsis/metabolism
14.
Toxins (Basel) ; 13(11)2021 11 22.
Article in English | MEDLINE | ID: mdl-34822608

ABSTRACT

Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.


Subject(s)
Antibodies, Monoclonal/pharmacology , Hemolytic-Uremic Syndrome/prevention & control , Immunoglobulin Fab Fragments/immunology , Shiga Toxin 2/immunology , Animals , Antibodies, Monoclonal/administration & dosage , Apoptosis/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Immunoglobulin Fab Fragments/administration & dosage , Kidney Glomerulus/cytology , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Recombinant Proteins , Shiga Toxin 1/immunology , Shiga Toxin 1/toxicity , Shiga Toxin 2/toxicity , Shiga-Toxigenic Escherichia coli/immunology , Vero Cells
15.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34830371

ABSTRACT

Increased expression and activity of the Ca2+ channel transient receptor potential channel 6 (TRPC6) is associated with focal segmental glomerulosclerosis, but therapeutic strategies to target TRPC6 are currently lacking. Nitric oxide (NO) is crucial for normal glomerular function and plays a protective role in preventing glomerular diseases. We investigated if NO prevents podocyte injury by inhibiting injurious TRPC6-mediated signaling in a soluble guanylate cyclase (sGC)-dependent manner and studied the therapeutic potential of the sGC stimulator Riociguat. Experiments were performed using human glomerular endothelial cells and podocytes. Podocyte injury was induced by Adriamycin incubation for 24 h, with or without the NO-donor S-Nitroso-N-acetyl-DL-penicillamine (SNAP), the sGC stimulator Riociguat or the TRPC6 inhibitor Larixyl Acetate (LA). NO and Riociguat stimulated cGMP synthesis in podocytes, decreased Adriamycin-induced TRPC6 expression, inhibited the Adriamycin-induced TRPC6-mediated Ca2+ influx and reduced podocyte injury. The protective effects of Riociguat and NO were blocked when sGC activity was inhibited with 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or when TRPC6 activity was inhibited by LA. Our data demonstrate a glomerular (e)NOS-NO-sGC-cGMP-TRPC6 pathway that prevents podocyte injury, which can be translated to future clinical use by, e.g., repurposing the market-approved drug Riociguat.


Subject(s)
Guanylate Cyclase/genetics , Nitric Oxide/genetics , Podocytes/drug effects , Pyrazoles/pharmacology , Pyrimidines/pharmacology , TRPC6 Cation Channel/genetics , Animals , Calcium Signaling/drug effects , Cyclic GMP/genetics , Drug Repositioning , Endothelial Cells/drug effects , Humans , Kidney Diseases/drug therapy , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Mice , Paracrine Communication/drug effects , Podocytes/pathology
16.
Cell Death Dis ; 12(10): 921, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625532

ABSTRACT

Chronic kidney disease (CKD) is characterized by the gradual loss of renal function and is a major public health concern. Risk factors for CKD include hypertension and proteinuria, both of which are associated with endoplasmic reticulum (ER) stress. ER stress-induced TDAG51 protein expression is increased at an early time point in mice with CKD. Based on these findings, wild-type and TDAG51 knock-out (TDKO) mice were used in an angiotensin II/deoxycorticosterone acetate/salt model of CKD. Both wild-type and TDKO mice developed hypertension, increased proteinuria and albuminuria, glomerular injury, and tubular damage. However, TDKO mice were protected from apoptosis and renal interstitial fibrosis. Human proximal tubular cells were used to demonstrate that TDAG51 expression induces apoptosis through a CHOP-dependent mechanism. Further, a mouse model of intrinsic acute kidney injury demonstrated that CHOP is required for ER stress-mediated apoptosis. Renal fibroblasts were used to demonstrate that TGF-ß induces collagen production through an IRE1-dependent mechanism; cells treated with a TGF-ß receptor 1 inhibitor prevented XBP1 splicing, a downstream consequence of IRE1 activation. Interestingly, TDKO mice express significantly less TGF-ß receptor 1, thus, preventing TGF-ß-mediated XBP1 splicing. In conclusion, TDAG51 induces apoptosis in the kidney through a CHOP-dependent mechanism, while contributing to renal interstitial fibrosis through a TGF-ß-IRE1-XBP1 pathway.


Subject(s)
Kidney/pathology , Receptor, Transforming Growth Factor-beta Type I/metabolism , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Transcription Factors/metabolism , Animals , Apoptosis/drug effects , Blood Pressure/drug effects , Cell Line , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Humans , Hymecromone/analogs & derivatives , Hymecromone/pharmacology , Kidney/drug effects , Kidney/physiopathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Kidney Glomerulus/physiopathology , Kidney Tubules/drug effects , Kidney Tubules/pathology , Kidney Tubules/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Rats , Renal Insufficiency, Chronic/physiopathology , Risk Factors , Transcription Factor CHOP/metabolism , Tunicamycin/pharmacology , X-Box Binding Protein 1/metabolism
17.
Physiol Rep ; 9(17): e15019, 2021 09.
Article in English | MEDLINE | ID: mdl-34472715

ABSTRACT

Vascular endothelial cells are covered with glycocalyx comprising heparan sulfate, hyaluronan, chondroitin sulfate, and associated proteins. Glomerular endothelial glycocalyx is involved in protecting against induction of proteinuria and structural damage, but the specific components in glycocalyx that represent therapeutic targets remain unclear. Anti-vascular endothelial growth factor (VEGF) therapy is associated with an increased risk of glomerular endothelial injury. This study investigated whether hyaluronan could provide a therapeutic target to protect against proteinuria. We conducted ex vivo and in vivo experiments to explore the effects of degrading glomerular hyaluronan by administering hyaluronidase and of supplementation with hyaluronan. We investigated hyaluronan expression using biotin-labeled hyaluronan-binding protein (HABP) in human kidney specimens or serum hyaluronan in endothelial injuries under inhibition of VEGF signaling. We directly demonstrated hyaluronan in glomerular endothelial layers using HABP staining. Ex vivo and in vivo experiments showed the development of proteinuria after digestion of hyaluronan in glomerular capillaries. Supplementation with hyaluronan after hyaluronidase treatment suppressed proteinuria. Mice in the in vivo study developed albuminuria after intraperitoneal injection of hyaluronidase with decreased glomerular hyaluronan and increased serum hyaluronan. In human kidneys with endothelial cell dysfunction and proteinuria due to inhibition of VEGF, glomerular expression of hyaluronan was reduced even in normal-appearing glomeruli. Serum hyaluronan levels were elevated in patients with pre-eclampsia with VEGF signaling inhibition. Our data suggest that hyaluronan itself plays crucial roles in preventing proteinuria and preserving the integrity of endothelial cells. Hyaluronan could provide a therapeutic target for preventing glomerular endothelial glycocalyx damage, including VEGF signaling inhibition.


Subject(s)
Endothelial Cells/metabolism , Glycocalyx/metabolism , Hyaluronic Acid/biosynthesis , Kidney Glomerulus/metabolism , Proteinuria/metabolism , Animals , Cattle , Endothelial Cells/drug effects , Endothelial Cells/pathology , Female , Glycocalyx/drug effects , Glycocalyx/pathology , Humans , Hyaluronoglucosaminidase/administration & dosage , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Pregnancy , Proteinuria/pathology , Rats , Rats, Inbred Lew
18.
Am J Physiol Renal Physiol ; 321(4): F505-F516, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34459222

ABSTRACT

Focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) are common forms of idiopathic nephrotic syndrome. The causes of these diseases are incompletely understood, but the response of patients to immunosuppressive therapies suggests that their pathogenesis is at least in part immune mediated. Preclinical and clinical research indicates that activation of the classical pathway of complement contributes to glomerular injury in FSGS. Glomerular IgM deposits are also prominent in some patients, raising the possibility that IgM is a trigger of classical pathway activation. In the present study, we examined the pattern of complement activation in the glomeruli and plasma of patients with nephrotic syndrome. We also tested whether patients with FSGS and MCD have elevated levels of natural IgM reactive with epitopes on glomerular endothelial cells and cardiolipin. We found evidence of classical pathway activation in patients with idiopathic nephrotic syndrome compared with healthy control subjects. We also detected higher levels of self-reactive IgM to both targets. Based on these results, IgM and classical pathway activation may contribute to disease pathogenesis in some patients with FSGS and MCD.NEW & NOTEWORTHY IgM is detected in biopsies from some patients with nephrotic syndrome, although this has been attributed to passive trapping of the protein. We found, however, that IgM colocalizes with complement activation fragments in some glomeruli. We also found that affected patients had higher levels of IgM reactive to glomerular endothelial cell epitopes. Thus, IgM activates the complement system in the glomeruli of some patients with nephrotic syndrome and may contribute to injury.


Subject(s)
Cardiolipins/immunology , Complement Pathway, Classical , Complement System Proteins/analysis , Endothelial Cells/immunology , Epitopes , Glomerulosclerosis, Focal Segmental/immunology , Immunoglobulin M/analysis , Kidney Glomerulus/immunology , Nephrosis, Lipoid/immunology , Nephrotic Syndrome/immunology , Adult , Aged , Antibody Specificity , Case-Control Studies , Complement Pathway, Classical/drug effects , Endothelial Cells/drug effects , Female , Glomerulosclerosis, Focal Segmental/blood , Glomerulosclerosis, Focal Segmental/drug therapy , Glomerulosclerosis, Focal Segmental/pathology , Humans , Immunoglobulin M/blood , Immunosuppressive Agents/therapeutic use , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Male , Middle Aged , Nephrosis, Lipoid/drug therapy , Nephrosis, Lipoid/pathology , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/pathology , Treatment Outcome , Young Adult
19.
Mol Pharm ; 18(9): 3206-3222, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34337953

ABSTRACT

Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have become a global public health concern associated with high morbidity, mortality, and healthcare costs. However, at present, very few effective and specific drug therapies are available, owing to the poor therapeutic efficacy and systemic side effects. Kidney-targeted drug delivery, as a potential strategy for solving these problems, has received great attention in the fields of AKI and CKD in recent years. Here, we review the literature on renal targeted, more specifically, renal cell-targeted formulations of AKI and CKD that offered biodistribution data. First, we provide a broad overview of the unique structural characteristics and injured cells of acute and chronic injured kidneys. We then separately summarize literature examples of renal targeted formulations according to the difference of target cells and elaborate on the appropriate formulation design criteria for AKI and CKD. Finally, we propose a hypothetic strategy to improve the renal accumulation of glomerular cell-targeted formulation by escaping the uptake of the reticuloendothelial system and provide some perspectives for future studies.


Subject(s)
Acute Kidney Injury/drug therapy , Drug Delivery Systems/methods , Kidney Glomerulus/metabolism , Renal Insufficiency, Chronic/drug therapy , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Humans , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Mice , Renal Insufficiency, Chronic/pathology , Tissue Distribution
20.
JCI Insight ; 6(19)2021 10 08.
Article in English | MEDLINE | ID: mdl-34428184

ABSTRACT

IgA nephropathy is caused by deposition of circulatory IgA1 in the kidney. Hypogalactosylated IgA1 has the propensity to form poly-IgA aggregates that are prone to deposition. Herein, we purified poly-IgA from the plasma of patients with IgA nephropathy and showed that the complex is susceptible to reducing conditions, suggesting intermolecular disulfide connections between IgA units. We sought to find the cysteine residue(s) that form intermolecular disulfide. Naturally assembled dimeric IgA, also known as secretory IgA, involves a J chain subunit connected with 2 IgA1 molecules via their penultimate cysteine-471 residue on a "tailpiece" segment of IgA heavy chain. It is plausible that, with the absence of J chain, the cysteine residue of mono-IgA1 might aberrantly form a disulfide bond in poly-IgA formation. Mutagenesis confirmed that cysteine-471 is capable of promoting IgA aggregation. These discoveries prompted us to test thiol-based drugs for stabilizing cysteine. Specifically, the cystine-reducing drug cysteamine used for treatment of cystinosis showed a remarkable potency in preventing self-aggregation of IgA. When administrated to rat and mouse models of IgA nephropathy, cysteamine significantly reduced glomerular IgA deposition. Collectively, our results reveal a potentially novel molecular mechanism for aberrant formation of IgA aggregates, to which the repurposed cystinosis drug cysteamine was efficacious in preventing renal IgA deposition.


Subject(s)
Cysteine/metabolism , Glomerulonephritis, IGA/metabolism , Immunoglobulin A/metabolism , Kidney Glomerulus/metabolism , Protein Aggregation, Pathological/metabolism , Animals , Cysteamine/pharmacology , Cysteine/drug effects , Cystine Depleting Agents/pharmacology , Disease Models, Animal , Humans , Immunoglobulin A/drug effects , Immunoglobulin J-Chains/metabolism , Kidney Glomerulus/drug effects , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...