Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.053
Filter
1.
BMC Microbiol ; 24(1): 240, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961341

ABSTRACT

OBJECTIVE: We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks. METHODS: 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems. RESULTS: We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity. CONCLUSIONS: Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.


Subject(s)
CRISPR-Cas Systems , Conjugation, Genetic , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/genetics , Plasmids/genetics , beta-Lactamases/genetics , DNA Restriction-Modification Enzymes/genetics , China , Klebsiella Infections/microbiology , Gene Transfer, Horizontal , Humans , Genome, Bacterial/genetics
2.
Antimicrob Resist Infect Control ; 13(1): 70, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961463

ABSTRACT

OBJECTIVES: Genomic surveillance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae (KPC-Kp) is crucial for virulence, drug-resistance monitoring, and outbreak containment. METHODS: Genomic analysis on 87 KPC-Kp strains isolated from 3 Northern Italy hospitals in 2019-2021 was performed by whole genome sequencing (WGS), to characterize resistome, virulome, and mobilome, and to assess potential associations with phenotype resistance and clinical presentation. Maximum Likelihood and Minimum Spanning Trees were used to determine strain correlations and identify potential transmission clusters. RESULTS: Overall, 15 different STs were found; the predominant ones included ST307 (35, 40.2%), ST512/1519 (15, 17.2%), ST20 (12, 13.8%), and ST101 (7, 8.1%). 33 (37.9%) KPC-Kp strains were noticed to be in five transmission clusters (median number of isolates in each cluster: 5 [3-10]), four of them characterized by intra-hospital transmission. All 87 strains harbored Tn4401a transposon, carrying blaKPC-3 (48, 55.2%), blaKPC-2 (38, 43.7%), and in one case (1.2%) blaKPC-33, the latter gene conferred resistance to ceftazidime/avibactam (CZA). Thirty strains (34.5%) harbored porin mutations; of them, 7 (8.1%) carried multiple Tn4401a copies. These strains were characterized by significantly higher CZA minimum inhibitory concentration compared with strains with no porin mutations or single Tn4401a copy, respectively, even if they did not overcome the resistance breakpoint of 8 ug/mL. Median 2 (IQR:1-2) virulence factors per strain were detected. The lowest number was observed in ST20 compared to the other STs (p<0.001). While ST307 was associated with infection events, a trend associated with colonization events could be observed for ST20. CONCLUSIONS: Integration of genomic, resistance score, and clinical data allowed us to define a relative diversification of KPC-Kp in Northern Italy between 2019 and 2021, characterized by few large transmission chains and rare inter-hospital transmission. Our results also provided initial evidence of correlation between KPC-Kp genomic signatures and higher MIC levels to some antimicrobial agents or colonization/infection status, once again underlining WGS's importance in bacterial surveillance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Hospitals, University , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Whole Genome Sequencing , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/enzymology , Italy/epidemiology , Humans , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Cross Infection/microbiology , Cross Infection/epidemiology
3.
Commun Biol ; 7(1): 794, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951173

ABSTRACT

Colistin remains an important antibiotic for the therapeutic management of drug-resistant Klebsiella pneumoniae. Despite the numerous reports of colistin resistance in clinical strains, it remains unclear exactly when and how different mutational events arise resulting in reduced colistin susceptibility. Using a bioreactor model of infection, we modelled the emergence of colistin resistance in a susceptible isolate of K. pneumoniae. Genotypic, phenotypic and mathematical analyses of the antibiotic-challenged and un-challenged population indicates that after an initial decline, the population recovers within 24 h due to a small number of "founder cells" which have single point mutations mainly in the regulatory genes encoding crrB and pmrB that when mutated results in up to 100-fold reduction in colistin susceptibility. Our work underlines the rapid development of colistin resistance during treatment or exposure of susceptible K. pneumoniae infections having implications for the use of cationic antimicrobial peptides as a monotherapy.


Subject(s)
Anti-Bacterial Agents , Bioreactors , Colistin , Drug Resistance, Bacterial , Klebsiella pneumoniae , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Colistin/pharmacology , Anti-Bacterial Agents/pharmacology , Bioreactors/microbiology , Drug Resistance, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Microbial Sensitivity Tests , Humans
4.
J Korean Med Sci ; 39(25): e208, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38952349

ABSTRACT

A 30-year-old Korean man with myelodysplastic syndrome admitted hospital due to undifferentiated fever and recurrent skin lesions. He received combination therapy with high doses of meropenem, tigecycline and amikacin, yielding carbapenem resistant Klebsiella pneumoniae (CRKP) harboring K. pneumoniae carbapenemase (KPC)-2 from blood cultures on hospital day (HD) 23. Ceftazidime/avibactam was started at HD 37 and CRKP was eradicated from blood cultures after 5 days. However, ceftazidime/avibactam-resistant CRKP carrying KPC-44 emerged after 26 days of ceftazidime/avibactam treatment and then ceftazidime/avibactam-resistant, carbapenem-susceptible K. pneumoniae carrying KPC-135 was isolated on HD 65. The 3-D homology of KPC protein showed that hot spot changes in the omega loop could be attributed to ceftazidime/avibactam resistance and loss of carbapenem resistance. Whole genome sequencing of serial isolates supported that phenotypic variation was due to clonal evolution than clonal replacement. The treatment regimen was changed from CAZ/AVI to meropenem-based therapy (meropenem 1 g iv q 8 hours and amikacin 600 mg iv per day) starting with HD 72. CAZ/AVI-susceptible CRKP was presented again from blood cultures on HD 84, and the patient expired on HD 85. This is the first Korean report on the acquisition of ceftazidime/avibactam resistance through the emergence of blaKPC variants.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Bacteremia , Ceftazidime , Drug Combinations , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , beta-Lactamases , Humans , Ceftazidime/therapeutic use , Ceftazidime/pharmacology , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Male , Azabicyclo Compounds/therapeutic use , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Bacteremia/drug therapy , Bacteremia/microbiology , Carbapenems/therapeutic use , Carbapenems/pharmacology , Whole Genome Sequencing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Meropenem/therapeutic use , Meropenem/pharmacology , Drug Resistance, Multiple, Bacterial/genetics
5.
Front Cell Infect Microbiol ; 14: 1362513, 2024.
Article in English | MEDLINE | ID: mdl-38994004

ABSTRACT

The bacterium Klebsiella pneumoniae (Kp) was the primary pathogen of hospital-acquired infection, but the current detection method could not rapidly and conveniently identify Kp. Recombinase polymerase amplification (RPA) was a fast and convenient isothermal amplification technology, and the clustered regularly interspaced short palindromic repeats (CRISPR) system could rapidly amplify the signal of RPA and improve its limit of detection (LOD). In this study, we designed three pairs of RPA primers for the rcsA gene of Kp, amplified the RPA signal through single-strand DNA reporter cleavage by CRISPR/Cas12a, and finally analyzed the cleavage signal using fluorescence detection (FD) and lateral flow test strips (LFTS). Our results indicated that the RPA-CRISPR/Cas12a platform could specifically identify Kp from eleven common clinical pathogens. The LOD of FD and LFTS were 1 fg/µL and 10 fg/µL, respectively. In clinical sample testing, the RPA-CRISPR/Cas12a platform was consistent with the culture method and qPCR method, and its sensitivity and specificity were 100% (16/16) and 100% (9/9), respectively. With the advantages of detection speed, simplicity, and accuracy, the RPA-CRISPR/Cas12a platform was expected to be a convenient tool for the early clinical detection of Kp.


Subject(s)
CRISPR-Cas Systems , Klebsiella pneumoniae , Limit of Detection , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Humans , Klebsiella Infections/diagnosis , Klebsiella Infections/microbiology , Recombinases/metabolism , Recombinases/genetics , Molecular Diagnostic Techniques/methods , Bacterial Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Associated Proteins/genetics , DNA, Bacterial/genetics , Endodeoxyribonucleases
6.
Nat Commun ; 15(1): 5730, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977695

ABSTRACT

The circular RNA (circRNA) family is a group of endogenous non-coding RNAs (ncRNAs) that have critical functions in multiple physiological and pathological processes, including inflammation, cancer, and cardiovascular diseases. However, their roles in regulating innate immune responses remain unclear. Here, we define Cell division cycle 42 (CDC42)-165aa, a protein encoded by circRNA circCDC42, which is overexpressed in Klebsiella pneumoniae (KP)-infected alveolar macrophages. High levels of CDC42-165aa induces the hyperactivation of Pyrin inflammasomes and aggravates alveolar macrophage pyroptosis, while the inhibition of CDC42-165aa reduces lung injury in mice after KP infection by inhibiting Pyrin inflammasome-mediated pyroptosis. Overall, these results demonstrate that CDC42-165aa stimulates Pyrin inflammasome by inhibiting CDC42 GTPase activation and provides a potential clinical target for pathogenic bacterial infection in clinical practice.


Subject(s)
Inflammasomes , Klebsiella Infections , Klebsiella pneumoniae , Mice, Inbred C57BL , Pyroptosis , cdc42 GTP-Binding Protein , Animals , Pyroptosis/genetics , Klebsiella Infections/immunology , Klebsiella Infections/microbiology , Klebsiella Infections/metabolism , Mice , Inflammasomes/metabolism , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Male , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Humans , Immunity, Innate , Macrophages/metabolism , Macrophages/immunology , Macrophages/microbiology , CARD Signaling Adaptor Proteins
7.
Sci Rep ; 14(1): 15746, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977762

ABSTRACT

The aim of this study was to investigate the efficacy of the ithmid kohl/zinc-oxide nanoparticles (ZnONPs), ithmid kohl/Aloe vera, and ZnONPs/Aloe vera in the treatment of bacterial endophthalmitis. The endophthalmitis model was prepared by contaminating both eyes of 24 healthy adult male albino rabbits with a clinical isolate of Klebsiella pneumoniae. The animals were randomly divided into eight groups (A-H) according to the treatment. Group A received 1 ml of ithmid kohl/ZnONPs ointment, group B received 1 ml of ithmid kohl/Aloe vera gel ointment, group C received 1 ml of ZnONPs/Aloe vera gel ointment, and groups D, E, and F were treated with 1 ml of ithmid kohl solution (0.5 g/ml in distilled water), 1 ml of ZnONPs (0.5 g/ml) colloidal dispersion, and 1 ml of Aloe vera gel, respectively. Group G received 100 µl of a tetracycline antibiotic solution (final concentration: 16 µg/ml), and group H received sterile distilled water (no treatment). In vitro antibacterial activity was evaluated against K. pneumoniae using the agar well diffusion. The combination of ithmid kohl/ZnONPs was the most effective formulation for treating endophthalmitis model in infected rabbits within 2 days. In vitro antibacterial assay confirmed the potential of the ithmid kohl/ZnONPs formulation, which had the largest zone of inhibition (31 mm) among the compounds tested. The preparation of the ithmid kohl/ZnONPs formulation and its in vivo experiment in albino rabbits for the treatment of bacterial endophthalmitis was an innovative approach that has shown promise and may potentially serve as a viable alternative in clinical practice.


Subject(s)
Aloe , Anti-Bacterial Agents , Endophthalmitis , Klebsiella pneumoniae , Endophthalmitis/drug therapy , Endophthalmitis/microbiology , Animals , Rabbits , Male , Klebsiella pneumoniae/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Aloe/chemistry , Nanoparticles/chemistry , Microbial Sensitivity Tests , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Disease Models, Animal
8.
Emerg Microbes Infect ; 13(1): 2366354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38979571

ABSTRACT

In recent years, polymyxin has been used as a last-resort therapy for carbapenem-resistant bacterial infections. The emergence of heteroresistance (HR) to polymyxin hampers the efficacy of polymyxin treatment by amplifying resistant subpopulation. However, the mechanisms behind polymyxin HR remain unclear. Small noncoding RNAs (sRNAs) play an important role in regulating drug resistance. The purpose of this study was to investigate the effects and mechanisms of sRNA on polymyxin B (PB)-HR in carbapenem-resistant Klebsiella pneumoniae. In this study, a novel sRNA PhaS was identified by transcriptome sequencing. PhaS expression was elevated in the PB heteroresistant subpopulation. Overexpression and deletion of PhaS were constructed in three carbapenem-resistant K. pneumoniae strains. Population analysis profiling, growth curve, and time-killing curve analysis showed that PhaS enhanced PB-HR. In addition, we verified that PhaS directly targeted phoP through the green fluorescent protein reporter system. PhaS promoted the expression of phoP, thereby encouraging the expression of downstream genes pmrD and arnT. This upregulation of arnT promoted the 4-amino-4-deoxyL-arabinosaccharide (L-Ara4N) modification of lipid A in PhaS overexpressing strains, thus enhancing PB-HR. Further, within the promoter region of PhaS, specific PhoP recognition sites were identified. ONPG assays and RT-qPCR analysis confirmed that PhaS expression was positively modulated by PhoP and thus up-regulated by PB stimulation. To sum up, a novel sRNA enhancing PB-HR was identified and a positive feedback regulatory pathway of sRNA-PhoP/Q was demonstrated in the study. This helps to provide a more comprehensive and clear understanding of the underlying mechanisms behind polymyxin HR in carbapenem-resistant K. pneumoniae.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbapenems , Gene Expression Regulation, Bacterial , Klebsiella pneumoniae , Polymyxin B , RNA, Small Untranslated , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Polymyxin B/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbapenems/pharmacology , RNA, Small Untranslated/genetics , Microbial Sensitivity Tests , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Humans , RNA, Bacterial/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Drug Resistance, Bacterial/genetics
9.
BMC Microbiol ; 24(1): 256, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987681

ABSTRACT

BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Virulence Factors , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Humans , Egypt , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Genome, Bacterial/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics , Plasmids/genetics
10.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955378

ABSTRACT

AIMS: This study was conducted to evaluate the in vitro activity of clinically relevant aminoglycosides and to determine the prevalence of genes encoding aminoglycoside modifying enzymes (AMEs) and 16S ribosomal RNA (rRNA) methyltransferases among aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) clinical isolates. Associated resistances to beta-lactams and their bla genes as well as the genetic relatedness of isolates were also investigated. MATERIALS AND METHODS: A total of 105 aminoglycoside-resistant E. coli (n = 61) and K. pneumoniae (n = 44) isolates recovered between March and May 2017 from 100 patients hospitalized in different wards of Charles Nicolle Hospital of Tunis, Tunisia, were studied. Minimal inhibitory concentrations of aminoglycoside compounds were determined by broth microdilution method. Aminoglycosides resistance encoding genes [aph(3´)-Ia, aph(3') IIa, aph(3´)-VIa, ant(2″)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, rmtA, rmtB, rmtC, armA, and npmA] and bla genes were investigated by PCR and sequencing. Genetic relatedness was examined by multilocus sequence typing (MLST) for representative isolates. RESULTS: High rates of aminoglycoside resistance were found: gentamicin (85.7%), tobramycin (87.6%), kanamycin (78.0%), netilmincin (74.3%), and amikcin (18.0%). Most common AME gene was aac(3)-IIa (42%), followed by aac(6')-Ib (36.2%) and aph(3')-VIa (32.4%). The majority of isolates were resistant to beta-lactams and blaCTX-M-15 was the most common ESBL. The blaNDM-1 and blaOXA-48 were also produced by 1 and 23 isolates, respectively. Novel sequence types have been reported among our isolates and high-risk clonal lineages have been detected, such as E. coli ST43 (ST131 in Achtman MLST scheme) and K. pneumoniae (ST11/ST13). CONCLUSIONS: The high prevalence of aminoglycoside resistance rates and the diversity of corresponding genes, with diverse ß-lactamase enzymes among genetically heterogeneous clinical isolates present a matter of concern.


Subject(s)
Aminoglycosides , Anti-Bacterial Agents , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , Aminoglycosides/pharmacology , Tunisia , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Klebsiella Infections/microbiology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
11.
BMC Infect Dis ; 24(1): 708, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030483

ABSTRACT

BACKGROUND: K. pneumoniae liver abscess (KPLA) mostly involves the right lobe. We present a case of K. pneumoniae caudate liver abscess with invasive liver abscess syndrome (ILAS) was rarely identified. CASE PRESENTATION: A 53-year-old man with elevated glycated hemoglobin with chills, rigors and a fever of five days. The patient presented with tachycardia and fever. Physical examination revealed tenderness over the right abdomen was elicited. In particular, the inflammatory markers were markedly elevated, and computerized tomography (CT) showed pulmonary abscess, pulmonary embolism and caudate liver abscess. The patient's sequential organ failure assessment (SOFA) score was 10 points. Klebsiella pneumoniae was isolated from sputum, urine and blood. With the suspicion of liver abscesses, ILAS and sepsis. The patient was successfully treated with antibiotics. He returned to close to his premorbid function. CONCLUSION: K. pneumoniae caudate liver abscess was rare. This is the first detailed report of K. pneumoniae caudate liver abscess with invasive liver abscess syndrome. Patients with cryptogenic K. pneumoniae liver abscess are advised to undergo an examination of intestinal barrier function. The study indicates that in patients with K. pneumoniae liver abscess, a caudate liver abscess size of ≤ 9.86 cm² may be characteristic of those suitable for conservative treatment of invasive liver abscess syndrome.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Liver Abscess , Humans , Male , Klebsiella pneumoniae/isolation & purification , Middle Aged , Klebsiella Infections/diagnosis , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella Infections/complications , Liver Abscess/microbiology , Liver Abscess/diagnostic imaging , Liver Abscess/drug therapy , Anti-Bacterial Agents/therapeutic use , Tomography, X-Ray Computed
12.
Microbiome ; 12(1): 132, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030586

ABSTRACT

BACKGROUND: The human oral and nasal cavities can act as reservoirs for opportunistic pathogens capable of causing acute infection. These microbes asymptomatically colonize the human oral and nasal cavities which facilitates transmission within human populations via the environment, and they routinely possess clinically significant antibiotic resistance genes. Among these opportunistic pathogens, the Klebsiella genus stands out as a notable example, with its members frequently linked to nosocomial infections and multidrug resistance. As with many colonizing opportunistic pathogens, the essential transmission factors influencing the spread of Klebsiella species among both healthy and diseased individuals remain unclear. RESULTS: Here, we explored a possible explanation by investigating the ability of oral and nasal Klebsiella species to outcompete their native microbial community members under in vitro starvation conditions, which could be analogous to external hospital environments or the microenvironment of mechanical ventilators. When K. pneumoniae and K. aerogenes were present within a healthy human oral or nasal sample, the bacterial community composition shifted dramatically under starvation conditions and typically became enriched in Klebsiella species. Furthermore, introducing K. pneumoniae exogenously into a native microbial community lacking K. pneumoniae, even at low inoculum, led to repeated enrichment under starvation. Precise monitoring of K. pneumoniae within these communities undergoing starvation indicated rapid initial growth and prolonged viability compared to other members of the microbiome. K. pneumoniae strains isolated from healthy individuals' oral and nasal cavities also exhibited resistance to multiple classes of antibiotics and were genetically similar to clinical and gut isolates. In addition, we found that in the absence of Klebsiella species, other understudied opportunistic pathogens, such as Peptostreptococcus, increased in relative abundance under starvation conditions. CONCLUSIONS: Our findings establish an environmental and microbiome community circumstance that allows for the enrichment of Klebsiella species and other opportunistic pathogens. Klebsiella's enrichment may hinge on its ability to quickly outgrow other members of the microbiome. The ability to outcompete other commensal bacteria and to persist under harsh environmental conditions could be an important factor that contributes to enhanced transmission in both commensal and pathogenic contexts. Video Abstract.


Subject(s)
Drug Resistance, Multiple, Bacterial , Klebsiella , Microbiota , Mouth , Humans , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella/genetics , Klebsiella/isolation & purification , Klebsiella/drug effects , Mouth/microbiology , Microbiota/drug effects , Microbiota/genetics , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Starvation , Nasal Cavity/microbiology , Nose/microbiology
13.
BMC Microbiol ; 24(1): 265, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026143

ABSTRACT

BACKGROUND: The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS: Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83→ Ile and Asp87→Gly, and double substitutions, Ser83→Phe plus Asp87→Ala, Ser83→Tyr plus Asp87→Ala, Ser83→Ile plus Asp87→Tyr, Ser83→Phe plus Asp87→Asn and Ser83→Ile plus Asp87→Gly were detected. In addition, Ser80→Ile and Glu84→Lys single substitution were found in parC gene. CONCLUSIONS: Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.


Subject(s)
Anti-Bacterial Agents , DNA Gyrase , DNA Topoisomerase IV , Drug Resistance, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Plasmids , Quinolones , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , DNA Gyrase/genetics , Plasmids/genetics , DNA Topoisomerase IV/genetics , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Ciprofloxacin/pharmacology , Iran , Bacterial Proteins/genetics , Prevalence , Fluoroquinolones/pharmacology
14.
J Med Case Rep ; 18(1): 320, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003491

ABSTRACT

BACKGROUND: Metastatic brain abscesses caused by Klebsiella pneumoniae are extremely rare but life-threatening conditions. To depict a unique case of the middle-aged hypertensive man with an unusual presentation of metastatic brain abscesses originating from a pleural abscess caused by Klebsiella pneumoniae and subsequently leading to loss of consciousness (LOC). CASE REPORT: A 52-year-old Iranian man with a history of hypertension presented to the emergency department with a five-day history of worsening cough, high-grade fever, shortness of breath, chest pain, fatigue, and a productive cough. Laboratory tests revealed leukocytosis, elevated C-reactive protein, and respiratory alkalosis. A chest computed tomography scan confirmed pneumonia, and a brain scan revealed multiple hypodense lesions. Despite antibiotic therapy, the patient's condition worsened, leading to confusion, disorientation, and loss of consciousness. Magnetic resonance imaging revealed multiple ring-enhancing lesions, suggesting an abscess formation. Bronchial washings and BAL samples confirmed a lower respiratory tract infection. Cultures from the bronchial washings grew Klebsiella pneumoniae. CONCLUSIONS: Metastatic brain abscesses caused by Klebsiella pneumoniae are exceedingly rare but life-threatening conditions. Timely diagnosis and effective antimicrobial treatment are critical for patient outcomes. This case underscores the significance of recognizing atypical presentations of bacterial infections, as early detection and appropriate management can significantly impact patient outcomes.


Subject(s)
Anti-Bacterial Agents , Brain Abscess , Klebsiella Infections , Klebsiella pneumoniae , Humans , Male , Middle Aged , Klebsiella pneumoniae/isolation & purification , Klebsiella Infections/diagnosis , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Brain Abscess/microbiology , Brain Abscess/drug therapy , Brain Abscess/diagnostic imaging , Anti-Bacterial Agents/therapeutic use , Tomography, X-Ray Computed , Magnetic Resonance Imaging , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/complications , Unconsciousness/etiology
15.
Curr Microbiol ; 81(9): 276, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023551

ABSTRACT

Klebsiella pneumoniae is an opportunistic pathogen mostly found in health care-associated infections but can also be associated with community-acquired infections and is in critical need of new antimicrobial agents for strains resistant to carbapenems. The prevalence of carbapenemase-encoding genes varies among studies. Multidrug-resistant K. pneumoniae strains can harbor several antimicrobial-resistant determinants and mobile genetic elements (MGEs), along with virulence genetic determinants in community settings. We aim to determine the genetic profile of a multidrug-resistant K. pneumoniae strain isolated from a patient with community-acquired UTI. We isolated a K. pneumoniae strain UABC-Str0120, from a urine sample of community-acquired urinary tract infection. Antimicrobial susceptibility tests and Whole-genome sequencing (WGS) were performed. The phylogenetic relationship was inferred by SNPs calling and filtering. UABC-Str0120 showed resistance toward ß-lactams, combinations with ß-lactamase inhibitors, and carbapenems. WGS revealed the presence of genes conferring resistance to aminoglycosides, ß-lactams, carbapenems, quinolones, sulfonamides, phosphonates, phenicols, and quaternary ammonium compounds, 77 subsystems of virulence genes were identified, and an uncommon sequence type ST5889 was also determined. The sequenced strain harbors several MGEs. The UABC-Str0120 recovered from a urine sample harbors several virulence and antimicrobial resistance determinants, which assembles an endangering combination for an immunocompromised or a seemly healthy host, given its presence in a community setting.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Phylogeny , Urinary Tract Infections , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Humans , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/urine , Anti-Bacterial Agents/pharmacology , Urinary Tract Infections/microbiology , Community-Acquired Infections/microbiology , Urine/microbiology
16.
J Infect Dev Ctries ; 18(6): 972-977, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38990989

ABSTRACT

INTRODUCTION: In recent years, hypervirulent Klebsiella pneumoniae (hvKp) has attracted increasing attention. It usually causes liver abscesses, which spread through the bloodstream to other parts such as the eyes, brain, lungs. 5.5% of all paroxysmal sympathetic hyperactivity syndrome are associated with infection, hydrocephalus, brain tumors, and some unknown causes. Younger patients with focal lesions of the brain parenchyma are at higher risk of paroxysmal sympathetic hyperactivity (PSH). CASE PRESENTATION: This case report details the clinical features of Klebsiella pneumoniae diagnosed in a healthy individual. In addition to liver abscesses, bacteremia, and hyperglycemia, there are also brain abscesses, hernias, and postoperative paroxysmal sympathetic hyperactivity, an unexpected association between diseases or symptoms. The patient stabilized after comprehensive treatment, including early drainage of abscesses, rapid pathogen diagnosis, and timely and appropriate antibiotics. At a two-month follow-up, no signs of infection recurrence were noted, and the patient regained neurological function and could participate in regular physical activity. DISCUSSION: Symptoms of Klebsiella pneumoniae infection usually appear gradually, and misdiagnosis is common. When young patients suddenly develop high fever and abscess at a particular site, Klebsiella pneumoniae infection should be considered routine. Paroxysmal sympathetic hyperactivity syndrome caused by infection is rare, but a clinical score (PSH assessment measure, PSH-AM score) should be performed when clinical features appear. Early diagnosis and treatment can improve the prognosis.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella Infections/diagnosis , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/pathogenicity , Male , Anti-Bacterial Agents/therapeutic use , Adult , Liver Abscess/microbiology , Liver Abscess/diagnosis
17.
J Infect Dev Ctries ; 18(6): 843-850, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38990987

ABSTRACT

INTRODUCTION: Concern about Klebsiella pneumoniae (K. pneumoniae) bloodstream infections (KP-BSIs) is widespread because of their high incidence and lethality. The aim of this study was to investigate the clinical features of, and risk factors for mortality caused by KP-BSIs. METHODOLOGY: This was a single-center retrospective observational study performed between 1 January 2019 and 31 December 2021, at a tertiary hospital. All patients with KP-BSIs were enrolled and their clinical data were retrieved from electronic medical records. RESULTS: A total of 145 patients were included (121 in the survival group and 24 in the non-survival group). There was a higher proportion of lower respiratory tract infections in the non-survival group than in the survival group (33.3% vs. 12.4%) (p < 0.05). There was a higher proportion of multi drug resistant (MDR) strains of K. pneumoniae in the non-survival group than in the survival group (41.7% vs. 16.5%) (p < 0.05). Multivariate analysis revealed that sequential organ failure assessment (SOFA) score > 6.5 (OR, 13.71; 95% CI, 1.05-179.84), admission to the intensive care unit (ICU) (OR, 2.27; 95% CI, 0.26-19.61) and gastrointestinal bleeding (OR, 19.97; 95% CI, 1.11-361.02) were independent risk factors for death in patients with KP-BSIs. CONCLUSIONS: Among all KP-BSIs, a high proportion of K. pneumoniae originated from lower respiratory tract infections, and a high proportion of K. pneumoniae were MDR; however, mortality was not influenced. SOFA score > 6.5, admission to the ICU, and gastrointestinal bleeding were independent risk factors for death in patients with KP-BSI.


Subject(s)
Bacteremia , Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella Infections/mortality , Klebsiella Infections/microbiology , Retrospective Studies , Male , Female , Risk Factors , Klebsiella pneumoniae/isolation & purification , Middle Aged , Aged , Bacteremia/mortality , Bacteremia/microbiology , Tertiary Care Centers/statistics & numerical data , Intensive Care Units , Drug Resistance, Multiple, Bacterial , Aged, 80 and over , Adult , Organ Dysfunction Scores
18.
Front Cell Infect Microbiol ; 14: 1411286, 2024.
Article in English | MEDLINE | ID: mdl-38947124

ABSTRACT

Background: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.


Subject(s)
Biofilms , Klebsiella Infections , Klebsiella pneumoniae , Temperature , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/classification , Biofilms/growth & development , Virulence/genetics , Animals , Klebsiella Infections/microbiology , Larva/microbiology , Plasmids/genetics , Moths/microbiology , Humans , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lepidoptera/microbiology , Viscosity , Phenotype , Gene Expression Profiling
19.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(7): 1041-1047, 2024 Jul 06.
Article in Chinese | MEDLINE | ID: mdl-39034789

ABSTRACT

To examine the molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CRKP) and investigate the horizontal transmission of blaKPC and blaNDM genes for the prevention and treatment of CRKP. A total of 49 clinically isolated CRKP strains were retrospectively analyzed from January to December 2022 at The First Hospital of Hunan University of Chinese Medicine. Phenotypic screening was performed using modified carbapenem inactivation assay (mCIM) and EDTA-carbapenem inactivation assay (eCIM). Polymerase chain reaction (PCR) was utilized to identify carbapenem resistance genes, ß-lactamase resistance genes, and virulence genes, while multi-locus sequence analysis (MLST) was employed to assess the homology of CRKP strains. Conjugation experiments were conducted to infer the horizontal transmission mechanism of blaKPC and blaNDM genes. The results showed that the study included 49 CRKP strains, with 44 carrying blaKPC and 8 carrying blaNDM, Three strains were identified as blaKPC+blaNDM-CRKP. In this study, 28 out of 49 CRKP strains (57.2%) were found to carry virulence genes. Additionally, one CRKP strain tested positive in the string test and was found to carry both Aerobactin and rmpA virulence genes. MLST results revealed a total of 5 ST types, with ST11 being predominant (41/49, 83.7%). Successful conjugation was observed in all 3 blaKPC-CRKP strains, while only 1 out of 3 blaNDM-CRKP strains showed successful conjugation. The transconjugant exhibited significantly reduced susceptibility to imipenem and cephalosporin antibiotics. In conclusion, the resistance mechanism of CRKP in this study is primarily attributed to the production of KPC enzymes, along with the presence of multiple ß-lactamase resistance genes. Additionally, there is a local prevalence of hv-CRKP and blaKPC+blaNDM-CRKP. blaKPC and blaNDM can be horizontally transmitted through plasmids, with varying efficiency among different strains.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Klebsiella Infections , Klebsiella pneumoniae , Molecular Epidemiology , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Carbapenems/pharmacology , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , beta-Lactamases/genetics , Retrospective Studies , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , China/epidemiology , Multilocus Sequence Typing , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Hospitals
20.
Front Cell Infect Microbiol ; 14: 1410921, 2024.
Article in English | MEDLINE | ID: mdl-39015336

ABSTRACT

Objective: The emergence of clinical Klebsiella pneumoniae strains harboring acrAB-tolC genes in the chromosome, along with the presence of two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65 genes on a plasmid, has presented a significant clinical challenge. Methods: In order to study the detailed genetic features of K. pneumoniae strain SC35, both the bacterial chromosome and plasmids were sequenced using Illumina and nanopore platforms. Furthermore, bioinformatics methods were employed to analyze the mobile genetic elements associated with antibiotic resistance genes. Results: K. pneumoniae strain SC35 was found to possess a class A beta-lactamase and demonstrated resistance to all tested antibiotics. This resistance was attributed to the presence of efflux pump genes, specifically acrAB-tolC, on the SC35 chromosome. Additionally, the SC35 plasmid p1 carried the two repetitive tandem core structures for bla KPC-2 and bla CTX-M-65, as well as bla TEM-1 with rmtB, which shared overlapping structures with mobile genetic elements as In413, Tn3, and TnAs3. Through plasmid transfer assays, it was determined that the SC35 plasmid p1 could be successfully transferred with an average conjugation frequency of 6.85 × 10-4. Conclusion: The structure of the SC35 plasmid p1 appears to have evolved in correlation with other plasmids such as pKPC2_130119, pDD01754-2, and F4_plasmid pA. The infectious strain SC35 exhibits no susceptibility to tested antibioticst, thus effective measures should be taken to prevent the spread and epidemic of this strain.


Subject(s)
Anti-Bacterial Agents , Chromosomes, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Plasmids , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Plasmids/genetics , beta-Lactamases/genetics , Klebsiella Infections/microbiology , Anti-Bacterial Agents/pharmacology , Chromosomes, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Interspersed Repetitive Sequences/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL