Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Sci Transl Med ; 16(764): eadg1777, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259812

ABSTRACT

Aging is a complex multifactorial process associated with epigenome dysregulation, increased cellular senescence, and decreased rejuvenation capacity. Short-term cyclic expression of octamer-binding transcription factor 4 (Oct4), sex-determining region Y-box 2 (Sox2), Kruppel-like factor 4 (Klf4), and cellular myelocytomatosis oncogene (cMyc) (OSKM) in wild-type mice improves health but fails to distinguish cell states, posing risks to healthy cells. Here, we delivered a single dose of adeno-associated viruses (AAVs) harboring OSK under the control of the cyclin-dependent kinase inhibitor 2a (Cdkn2a) promoter to specifically partially reprogram aged and stressed cells in a mouse model of Hutchinson-Gilford progeria syndrome (HGPS). Mice showed reduced expression of proinflammatory cytokines and extended life spans upon aged cell-specific OSK expression. The bone marrow and spleen, in particular, showed pronounced gene expression changes, and partial reprogramming in aged HGPS mice led to a shift in the cellular composition of the hematopoietic stem cell compartment toward that of young mice. Administration of AAVs carrying Cdkn2a-OSK to naturally aged wild-type mice also delayed aging phenotypes and extended life spans without altering the incidence of tumor development. Furthermore, intradermal injection of AAVs carrying Cdkn2a-OSK led to improved wound healing in aged wild-type mice. Expression of CDKN2A-OSK in aging or stressed human primary fibroblasts led to reduced expression of inflammation-related genes but did not alter the expression of cell cycle-related genes. This targeted partial reprogramming approach may therefore facilitate the development of strategies to improve health and life span and enhance resilience in the elderly.


Subject(s)
Aging , Cellular Reprogramming , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Disease Models, Animal , Kruppel-Like Factor 4 , Animals , Kruppel-Like Factor 4/metabolism , Aging/metabolism , Mice , Humans , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Biomarkers/metabolism , Progeria/metabolism , Progeria/genetics , Progeria/pathology , Dependovirus/metabolism , Promoter Regions, Genetic/genetics
2.
J Cell Mol Med ; 28(17): e18578, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39234952

ABSTRACT

Kruppel-like factor 4 (Klf4) is a transcription factor that is involved in neuronal regeneration and the development of glutamatergic systems. However, it is unknown whether Klf4 is involved in acute seizure. To investigate the potential role of Klf4 in pentylenetetrazol (PTZ)-induced seizure, western blotting, immunofluorescence, behaviour test and electrophysiology were conducted in this study. We found that Klf4 protein and mRNA expression were increased in both the hippocampus (HP) and prefrontal cortex (PFC) after PTZ-induced seizure in mice. HP-specific knockout (KO) of Klf4 in mice decreased protein expression of Klf4 and the down-stream Klf4 target tumour protein 53 (TP53/P53). These molecular changes are accompanied by increased seizure latency, reduced immobility time in the forced swimming test and tail suspension test. Reduced hippocampal protein levels for synaptic proteins, including glutamate receptor 1 (GRIA1/GLUA1) and postsynaptic density protein 95 (DLG4/PSD95), were also observed after Klf4-KO, while increased mRNA levels of complement proteins were observed for complement component 1q subcomponent A (C1qa), complement component 1q subcomponent B (C1qb), complement component 1q subcomponent C (C1qc), complement component 3 (C3), complement component 4A (C4a) and complement component 4B (C4b). Moreover, c-Fos expression induced by PTZ was reduced by hippocampal conditional KO of Klf4. Electrophysiology showed that PTZ-induced action potential frequency was decreased by overexpression of Klf4. In conclusion, these findings suggest that Klf4 plays an important role in regulating PTZ-induced seizures and therefore constitutes a new molecular target that should be explored for the development of antiepileptic drugs.


Subject(s)
Hippocampus , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Mice, Knockout , Pentylenetetrazole , Seizures , Animals , Kruppel-Like Factor 4/metabolism , Seizures/metabolism , Seizures/chemically induced , Seizures/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Hippocampus/metabolism , Male , Prefrontal Cortex/metabolism , Mice, Inbred C57BL , Disease Models, Animal
3.
Redox Biol ; 76: 103322, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39180981

ABSTRACT

In Parkinson's disease (PD), exogenous ghrelin protects dopaminergic neurons through its receptor, growth hormone secretagogue receptor (GHSR). However, in contrast to the strikingly low levels of ghrelin, GHSR is highly expressed in the substantia nigra (SN). What role does GHSR play in dopaminergic neurons is unknown. In this study, using GHSR knockout mice (Ghsr-/- mice) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model, we found that GHSR deletion aggravated dopaminergic neurons degeneration, and the expression and activity of GHSR were significantly reduced in PD. Furthermore, we explored the potential mechanism that GHSR deficiency aggregated PD-related neurodegeneration. We showed that DEPTOR, a subunit of mTORC1, was overexpressed in Ghsr-/- mice, positively regulating autophagy and enhancing autophagy initiation. The expression of lysosomal markers was abnormal, implying lysosomal dysfunction. As a result, the damaged mitochondria could not be effectively eliminated, which ultimately exacerbated the injury of nigral dopaminergic neurons. In particular, we demonstrated that DEPTOR could be transcriptionally regulated by KLF4. Specific knockdown of KLF4 in dopaminergic neurons effectively alleviated neurodegeneration in Ghsr-/- mice. In summary, our results suggested that endogenous GHSR deletion-compromised autophagy by impairing lysosomal function, is a key contributor to PD, which provided ideas for therapeutic approaches involving the manipulation of GHSR.


Subject(s)
Autophagy , Disease Models, Animal , Dopaminergic Neurons , Kruppel-Like Factor 4 , Mice, Knockout , Parkinson Disease , Receptors, Ghrelin , Animals , Autophagy/genetics , Mice , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Receptors, Ghrelin/deficiency , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Kruppel-Like Factor 4/metabolism , Substantia Nigra/metabolism , Substantia Nigra/pathology , Male , Lysosomes/metabolism
4.
Oncoimmunology ; 13(1): 2393442, 2024.
Article in English | MEDLINE | ID: mdl-39175947

ABSTRACT

The inflammatory tumor microenvironment (TME) is a key driver for tumor-promoting processes. Tumor-associated macrophages are one of the main immune cell types in the TME and their increased density is related to poor prognosis in prostate cancer. Here, we investigated the influence of pro-inflammatory (M1) and immunosuppressive (M2) macrophages on prostate cancer lineage plasticity. Our findings reveal that M1 macrophage secreted factors upregulate genes related to stemness while downregulating genes associated with androgen response in prostate cancer cells. The expression of cancer stem cell (CSC) plasticity markers NANOG, KLF4, SOX2, OCT4, and CD44 was stimulated by the secreted factors from M1 macrophages. Moreover, AR and its target gene PSA were observed to be suppressed in LNCaP cells treated with secreted factors from M1 macrophages. Inhibition of NFκB signaling using the IKK16 inhibitor resulted in downregulation of NANOG, SOX2, and CD44 and CSC plasticity. Our study highlights that the secreted factors from M1 macrophages drive prostate cancer cell plasticity by upregulating the expression of CSC plasticity markers through NFκB signaling pathway.


Subject(s)
Hyaluronan Receptors , Kruppel-Like Factor 4 , Macrophages , NF-kappa B , Nanog Homeobox Protein , Neoplastic Stem Cells , Prostatic Neoplasms , SOXB1 Transcription Factors , Signal Transduction , Male , Humans , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Nanog Homeobox Protein/metabolism , Nanog Homeobox Protein/genetics , SOXB1 Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Kruppel-Like Factor 4/metabolism , NF-kappa B/metabolism , Cell Line, Tumor , Macrophages/metabolism , Up-Regulation , Tumor Microenvironment/immunology , Cell Plasticity/genetics , Gene Expression Regulation, Neoplastic , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Animals , Mice
5.
Int J Mol Sci ; 25(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39062998

ABSTRACT

The objective of this study was to elucidate the protective role of quercetin in atherosclerosis by examining its effect on the phenotypic switch of vascular smooth muscle cells (VSMCs) to macrophage-like cells and the underlying regulatory pathways. Aorta tissues from apolipoprotein E-deficient (ApoE KO) mice fed a high-fat diet (HFD), treated with or without 100 mg/kg/day quercetin, were analyzed for histopathological changes and molecular mechanisms. Quercetin was found to decrease the size of atherosclerotic lesions and mitigate lipid accumulation induced by HFD. Fluorescence co-localization analysis revealed a higher presence of macrophage-like vascular smooth muscle cells (VSMCs) co-localizing with phospho-Janus kinase 2 (p-JAK2), phospho-signal transducer and activator of transcription 3 (p-STAT3), and Krüppel-like factor 4 (KLF4) in regions of foam cell aggregation within aortic plaques. However, this co-localization was reduced following treatment with quercetin. Quercetin treatment effectively inhibited the KLF4-mediated phenotypic switch in oxidized low-density lipoprotein (ox-LDL)-loaded mouse aortic vascular smooth muscle cells (MOVAS), as indicated by decreased expressions of KLF4, LGALS3, CD68, and F4/80, increased expression of alpha smooth muscle actin (α-SMA), reduced intracellular fluorescence Dil-ox-LDL uptake, and decreased lipid accumulation. In contrast, APTO-253, a KLF4 activator, was found to reverse the effects of quercetin. Furthermore, AG490, a JAK2 inhibitor, effectively counteracted the ox-LDL-induced JAK2/STAT3 pathway-dependent switch to a macrophage-like phenotype and lipid accumulation in MOVAS cells. These effects were significantly mitigated by quercetin but exacerbated by coumermycin A1, a JAK2 activator. Our research illustrates that quercetin inhibits the KLF4-mediated phenotypic switch of VSMCs to macrophage-like cells and reduces atherosclerosis by suppressing the JAK2/STAT3 pathway.


Subject(s)
Atherosclerosis , Macrophages , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Quercetin , STAT3 Transcription Factor , Signal Transduction , Animals , Male , Mice , Aorta/metabolism , Aorta/drug effects , Aorta/pathology , Apolipoproteins E/metabolism , Apolipoproteins E/genetics , Atherosclerosis/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Diet, High-Fat/adverse effects , Janus Kinase 2/metabolism , Kruppel-Like Factor 4/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Phenotype , Quercetin/pharmacology , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism
6.
J Cancer Res Clin Oncol ; 150(7): 373, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073490

ABSTRACT

PURPOSE: Tumor initiating cells (TICs) or cancer stem cells (CSCs) are considered to be the main culprit of hepatocellular carcinoma (HCC) initiation and progression, nevertheless the mechanism by which tumor microenvironment maintains the HCC 'stemness' is not fully understood. This study aims to investigate the effect of regulatory T cells (Tregs) on the TICs characteristics of HCC. METHODS: Immunocytochemistry, flow cytometry, real-time PCR, western blot, in vitro sphere-formation, and in vivo tumorigenesis assay were used to detect HCC 'stemness'. Additionally, after forced expression or inhibition of FoxP3, ß-catenin expression and HCC 'stemness' were investigated. RESULTS: Tregs enhanced the 'stemness' of HCC cells by upregulating TIC-related markers CD133, Oct3/4, Sox2, c-Myc, Klf4, Nanog, CD13, EpCAM, and inducting epithelial to mesenchymal transition (EMT), increasing TICs ratio, as well as promoting tumorigenic ability. Moreover, ß-catenin and c-Myc were upregulated in HCC cells after co-cultured with Tregs. HCC 'stemness' was inhibited after treatment with Wnt/ß-catenin pathway inhibitor. Furthermore, forced expression of FoxP3 resulted in increased GSK3ß, decreased ß-catenin and TIC ratio in HCC. In contrast, FoxP3 interference reduced GSK3ß, enhanced ß-catenin and TIC ratio of HCC. CONCLUSION: This study, for the first time, demonstrated that Tregs increased the population of TICs in HCC by inhibiting FoxP3 as well as promoting ß-catenin expression.


Subject(s)
Carcinoma, Hepatocellular , Forkhead Transcription Factors , Kruppel-Like Factor 4 , Liver Neoplasms , Neoplastic Stem Cells , T-Lymphocytes, Regulatory , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/metabolism , Humans , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/immunology , Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory/immunology , Kruppel-Like Factor 4/metabolism , Mice , Animals , Cell Line, Tumor , Tumor Microenvironment/immunology , Epithelial-Mesenchymal Transition , beta Catenin/metabolism , Mice, Nude , Wnt Signaling Pathway , Mice, Inbred BALB C
7.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000273

ABSTRACT

To address the increased energy demand, tumor cells undergo metabolic reprogramming, including oxidative phosphorylation (OXPHOS) and aerobic glycolysis. This study investigates the role of Kruppel-like factor 4 (KLF4), a transcription factor, as a tumor suppressor in hepatocellular carcinoma (HCC) by regulating ATP synthesis. Immunohistochemistry was performed to assess KLF4 expression in HCC tissues. Functional assays, such as CCK-8, EdU, and colony formation, as well as in vivo assays, including subcutaneous tumor formation and liver orthotopic xenograft mouse models, were conducted to determine the impact of KLF4 on HCC proliferation. Luciferase reporter assay and chromatin immunoprecipitation assay were utilized to evaluate the interaction between KLF4, miR-206, and RICTOR. The findings reveal low KLF4 expression in HCC, which is associated with poor prognosis. Both in vitro and in vivo functional assays demonstrate that KLF4 inhibits HCC cell proliferation. Mechanistically, it was demonstrated that KLF4 reduces ATP synthesis in HCC by suppressing the expression of RICTOR, a core component of mTORC2. This suppression promotes glutaminolysis to replenish the TCA cycle and increase ATP levels, facilitated by the promotion of miR-206 transcription. In conclusion, this study enhances the understanding of KLF4's role in HCC ATP synthesis and suggests that targeting the KLF4/miR-206/RICTOR axis could be a promising therapeutic approach for anti-HCC therapeutics.


Subject(s)
Adenosine Triphosphate , Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation, Neoplastic , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Liver Neoplasms , MicroRNAs , Animals , Humans , Male , Mice , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/biosynthesis , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Disease Progression , Kruppel-Like Factor 4/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism
8.
Nature ; 632(8024): 411-418, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048831

ABSTRACT

It is estimated that only 0.02% of disseminated tumour cells are able to seed overt metastases1. While this suggests the presence of environmental constraints to metastatic seeding, the landscape of host factors controlling this process remains largely unclear. Here, combining transposon technology2 and fluorescence niche labelling3, we developed an in vivo CRISPR activation screen to systematically investigate the interactions between hepatocytes and metastatic cells. We identify plexin B2 as a critical host-derived regulator of liver colonization in colorectal and pancreatic cancer and melanoma syngeneic mouse models. We dissect a mechanism through which plexin B2 interacts with class IV semaphorins on tumour cells, leading to KLF4 upregulation and thereby promoting the acquisition of epithelial traits. Our results highlight the essential role of signals from the liver parenchyma for the seeding of disseminated tumour cells before the establishment of a growth-promoting niche. Our findings further suggest that epithelialization is required for the adaptation of CRC metastases to their new tissue environment. Blocking the plexin-B2-semaphorin axis abolishes metastatic colonization of the liver and therefore represents a therapeutic strategy for the prevention of hepatic metastases. Finally, our screening approach, which evaluates host-derived extrinsic signals rather than tumour-intrinsic factors for their ability to promote metastatic seeding, is broadly applicable and lays a framework for the screening of environmental constraints to metastasis in other organs and cancer types.


Subject(s)
CRISPR-Cas Systems , Hepatocytes , Liver Neoplasms , Liver , Neoplasm Metastasis , Nerve Tissue Proteins , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , CRISPR-Cas Systems/genetics , Disease Models, Animal , DNA Transposable Elements , Fluorescence , Hepatocytes/metabolism , Hepatocytes/cytology , Hepatocytes/pathology , Kruppel-Like Factor 4/metabolism , Liver/cytology , Liver/metabolism , Liver/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/prevention & control , Liver Neoplasms/secondary , Melanoma/metabolism , Melanoma/pathology , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/pathology , Neoplasm Metastasis/prevention & control , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Semaphorins/antagonists & inhibitors , Semaphorins/metabolism
9.
Int J Exp Pathol ; 105(4): 118-132, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38989629

ABSTRACT

Oesophageal cancer (EC) is a malignancy which accounts for a substantial number of cancer-related deaths worldwide. The molecular mechanisms underlying the pathogenesis of EC have not been fully elucidated. GSE17351 and GSE20347 data sets from the Gene Expression Omnibus (GEO) database were employed to screen differentially expressed genes (DEGs). Reverse transcription quantitative PCR (RT-qPCR) was used to examine hub gene expression. ECA-109 and TE-12 cells were transfected using the pcDNA3.1 expression vector encoding GABRP. The cell counting kit-8 (CCK-8), cell scratch and Transwell assays were performed to assess the effect of GABRP on EC cell proliferation, migration and invasion. Epithelial-mesenchymal transition (EMT)-associated protein levels were measured by Western blotting. Subsequently, CFTR was knocked down to verify whether GABRP affected biological events in EC cells by targeting CFTR. Seven hub genes were identified, including GABRP, FLG, ENAH, KLF4, CD24, ABLIM3 and ABLIM1, which all could be used as diagnostic biomarkers for EC. The RT-qPCR results indicated that the expression levels of GABRP, FLG, KLF4, CD24, ABLIM3 and ABLIM1 were downregulated, whereas the expression level of ENAH was upregulated. In vitro functional assays demonstrated that GABRP overexpression suppressed the proliferation, migration, invasion and EMT of EC cells. Mechanistically, GABRP promoted the expression of CFTR, and CFTR knockdown significantly counteracted the influence of GABRP overexpression on biological events in EC cells. Overexpression of GABRP inhibited EC progression by increasing CFTR expression, which might be a new target for EC treatment.


Subject(s)
Cell Movement , Cell Proliferation , Computational Biology , Cystic Fibrosis Transmembrane Conductance Regulator , Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Gene Expression Regulation, Neoplastic , Kruppel-Like Factor 4 , Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Line, Tumor , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Computational Biology/methods , Kruppel-Like Factor 4/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Disease Progression , Neoplasm Invasiveness , Microtubule-Associated Proteins , Apoptosis Regulatory Proteins
10.
Kidney Blood Press Res ; 49(1): 605-618, 2024.
Article in English | MEDLINE | ID: mdl-38952124

ABSTRACT

INTRODUCTION: The calcineurin inhibitor cyclosporine A (CsA) has been shown to effectively reduce proteinuria. However, its precise mechanism is still not fully understood. Our previous study showed that CsA reduced proteinuria by directly stabilizing the foot process (FP) cytoskeletal structure via cofilin-1, suggesting that synaptopodin, a podocyte-specific actin protein, is not the sole target of CsA in podocytes. METHODS: In this study, we established an adriamycin (ADR)-induced nephropathy rat model and a cultured podocyte injury model. We employed Western blotting and immunofluorescence techniques to assess the expression and distribution of transgelin, Krüppel-like factor-4 (KLF-4), nephrin, and synaptopodin. RESULTS: We observed a significant increase in proteinuria levels accompanied by loss of normal FP structure in the ADR-induced nephropathy rat model. The levels of the actin cross-linking protein transgelin were increased significantly, while those of the podocyte-specific molecules nephrin and synaptopodin were decreased in vivo. Treatment with CsA effectively reduced proteinuria while restoring FP effacement stability in ADR-induced nephropathy models and restoring the expression of transgelin, nephrin, and synaptopodin both in vivo and in vitro. Furthermore, CsA treatment dose-dependently decreased transgelin levels while significantly increasing KLF-4 expression in injured podocytes. In addition, CsA failed to downregulate transgelin when KLF-4 was specifically knocked down. CONCLUSION: Our findings suggest that CsA protects against podocyte injury by downregulating abnormally high levels of transgelin via upregulation of KLF-4 expression.


Subject(s)
Cyclosporine , Doxorubicin , Kruppel-Like Factor 4 , Microfilament Proteins , Muscle Proteins , Podocytes , Podocytes/drug effects , Podocytes/pathology , Podocytes/metabolism , Animals , Microfilament Proteins/metabolism , Rats , Cyclosporine/pharmacology , Kruppel-Like Factor 4/metabolism , Muscle Proteins/metabolism , Muscle Proteins/biosynthesis , Male , Membrane Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Rats, Sprague-Dawley , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/metabolism , Kidney Diseases/pathology , Proteinuria
11.
J Pineal Res ; 76(5): e12988, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38982751

ABSTRACT

Vulnerable atherosclerotic plaque rupture, the leading cause of fatal atherothrombotic events, is associated with an increased risk of mortality worldwide. Peroxisome proliferator-activated receptor delta (PPARδ) has been shown to modulate vascular smooth muscle cell (SMC) phenotypic switching, and, hence, atherosclerotic plaque stability. Melatonin reportedly plays a beneficial role in cardiovascular diseases; however, the mechanisms underlying improvements in atherosclerotic plaque vulnerability remain unknown. In this study, we assessed the role of melatonin in regulating SMC phenotypic switching and its consequential contribution to the amelioration of atherosclerotic plaque vulnerability and explored the mechanisms underlying this process. We analyzed features of atherosclerotic plaque vulnerability and markers of SMC phenotypic transition in high-cholesterol diet (HCD)-fed apolipoprotein E knockout (ApoE-/-) mice and human aortic SMCs (HASMCs). Melatonin reduced atherosclerotic plaque size and necrotic core area while enhancing collagen content, fibrous cap thickness, and smooth muscle alpha-actin positive cell coverage on the plaque cap, which are all known phenotypic characteristics of vulnerable plaques. In atherosclerotic lesions, melatonin significantly decreased the synthetic SMC phenotype and KLF4 expression and increased the expression of PPARδ, but not PPARα and PPARγ, in HCD-fed ApoE-/- mice. These results were subsequently confirmed in the melatonin-treated HASMCs. Further analysis using PPARδ silencing and immunoprecipitation assays revealed that PPARδ plays a role in the melatonin-induced SMC phenotype switching from synthetic to contractile. Collectively, we provided the first evidence that melatonin mediates its protective effect against plaque destabilization by enhancing PPARδ-mediated SMC phenotypic switching, thereby indicating the potential of melatonin in treating atherosclerosis.


Subject(s)
Kruppel-Like Factor 4 , Melatonin , Myocytes, Smooth Muscle , PPAR delta , Plaque, Atherosclerotic , Animals , Melatonin/pharmacology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Kruppel-Like Factor 4/metabolism , Humans , PPAR delta/metabolism , PPAR delta/genetics , Mice, Knockout , Male , Mice, Knockout, ApoE , Phenotype , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Apolipoproteins E/deficiency , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Mice, Inbred C57BL
12.
Mol Ther ; 32(8): 2624-2640, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38956871

ABSTRACT

Chronic pancreatitis (CP) is marked by progressive fibrosis and the activation of pancreatic stellate cells (PSCs), accompanied by the destruction of pancreatic parenchyma, leading to the loss of acinar cells (ACs). Few research studies have explored the mechanism by which damaged ACs (DACs) contribute to PSCs activation and pancreatic fibrosis. Currently, there are no effective drugs for curing CP or limiting the progression of pancreatic fibrosis. In this research, co-culture with intact acinar cells (IACs) suppressed PSC activation, while co-culture with DACs did the opposite. Krüppel-like factor 4 (KLF4) was significantly upregulated in DACs and was established as the key molecule that switches ACs from PSCs-suppressor to PSCs-activator. We revealed the exosomes of IACs contributed to the anti-activated function of IACs-CS on PSCs. MiRNome profiling showed that let-7 family is significantly enriched in IAC-derived exosomes (>30% miRNome), which partially mediates IACs' suppressive impacts on PSCs. Furthermore, it has been observed that the enrichment of let-7 in exosomes was influenced by the expression level of KLF4. Mechanistic studies demonstrated that KLF4 in ACs upregulated Lin28A, thereby decreasing let-7 levels in AC-derived exosomes, and thus promoting PSCs activation. We utilized an adeno-associated virus specifically targeting KLF4 in ACs (shKLF4-pAAV) to suppress PSCs activation in CP, resulting in reduced pancreatic fibrosis. IAC-derived exosomes hold potential as potent weapons against PSCs activation via let-7s, while activated KLF4/Lin28A signaling in DACs diminished such functions. ShKLF4-pAAV holds promise as a novel therapeutic approach for CP.


Subject(s)
Acinar Cells , Exosomes , Fibrosis , Kruppel-Like Factor 4 , MicroRNAs , Pancreatic Stellate Cells , Pancreatitis, Chronic , Kruppel-Like Factor 4/metabolism , Animals , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/pathology , Exosomes/metabolism , Pancreatitis, Chronic/metabolism , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/pathology , MicroRNAs/genetics , Acinar Cells/metabolism , Acinar Cells/pathology , Dependovirus/genetics , Mice , Humans , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Disease Models, Animal , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Male , Coculture Techniques , Pancreas/metabolism , Pancreas/pathology , Genetic Therapy/methods
13.
J Clin Invest ; 134(16)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889010

ABSTRACT

Myostatin (MSTN) has long been recognized as a critical regulator of muscle mass. Recently, there has been increasing interest in its role in metabolism. In our study, we specifically knocked out MSTN in brown adipose tissue (BAT) from mice (MSTNΔUCP1) and found that the mice gained more weight than did controls when fed a high-fat diet, with progressive hepatosteatosis and impaired skeletal muscle activity. RNA-Seq analysis indicated signatures of mitochondrial dysfunction and inflammation in the MSTN-ablated BAT. Further studies demonstrated that Kruppel-like factor 4 (KLF4) was responsible for the metabolic phenotypes observed, whereas fibroblast growth factor 21 (FGF21) contributed to the microenvironment communication between adipocytes and macrophages induced by the loss of MSTN. Moreover, the MSTN/SMAD2/3-p38 signaling pathway mediated the expression of KLF4 and FGF21 in adipocytes. In summary, our findings suggest that brown adipocyte-derived MSTN regulated BAT thermogenesis via autocrine and paracrine effects on adipocytes or macrophages, ultimately regulating systemic energy homeostasis.


Subject(s)
Autocrine Communication , Fibroblast Growth Factors , Homeostasis , Kruppel-Like Factor 4 , Macrophages , Mice, Knockout , Myostatin , Paracrine Communication , Thermogenesis , Animals , Male , Mice , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Cellular Microenvironment , Energy Metabolism , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Kruppel-Like Factor 4/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Macrophages/metabolism , Myostatin/metabolism , Myostatin/genetics
14.
Cell Mol Life Sci ; 81(1): 278, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916835

ABSTRACT

Ephrin receptor A2 (EphA2), a member of the Ephrin receptor family, is closely related to the progression of oral squamous cell carcinoma (OSCC). Cancer stem cells (CSCs) play essential roles in OSCC development and occurrence. The underlying mechanisms between EphA2 and CSCs, however, are not yet fully understood. Here, we found that EphA2 was overexpressed in OSCC tissues and was associated with poor prognosis. Knockdown of EphA2 dampened the CSC phenotype and the tumour-initiating frequency of OSCC cells. Crucially, the effects of EphA2 on the CSC phenotype relied on KLF4, a key transcription factor for CSCs. Mechanistically, EphA2 activated the ERK signalling pathway, promoting the nuclear translocation of YAP. Subsequently, YAP was bound to TEAD3, leading to the transcription of KLF4. Overall, our findings revealed that EphA2 can enhance the stemness of OSCC cells, and this study identified the EphA2/KLF4 axis as a potential target for treating OSCC.


Subject(s)
Carcinoma, Squamous Cell , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Mouth Neoplasms , Neoplastic Stem Cells , Receptor, EphA2 , Kruppel-Like Factor 4/metabolism , Humans , Receptor, EphA2/metabolism , Receptor, EphA2/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Female , Mice, Nude , Male , Prognosis , MAP Kinase Signaling System/genetics , Transcription, Genetic
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167286, 2024 10.
Article in English | MEDLINE | ID: mdl-38866114

ABSTRACT

S-phase kinase-associated protein 2 (Skp2) is an F-box protein overexpressed in human cancers and linked with poor prognosis. It triggers cancer pathogenesis, including stemness and drug resistance. In this study, we have explored the potential role of Skp2 targeting in restoring the expression of tumor suppressors in human cutaneous squamous cell carcinoma (cSCC) cells. Our results showed that genetic and pharmacological Skp2 targeting markedly suppressed cSCC cell proliferation, colony growth, spheroid formation, and enhanced sensitization to chemotherapeutic drugs. Further, western blot results demonstrated restoration of tumor suppressor (KLF4) and CDKI (p21) and suppression of vimentin and survivin in Skp2-knocked-down cSCC cells. Importantly, we also explored that Skp2 targeting potentiates apoptosis of cSCC cells through MAPK signaling. Moreover, co-targeting of Skp2 and PI3K/AKT resulted in increased cancer cell death. Interestingly, curcumin, a well-known naturally derived anticancer agent, also inhibits Skp2 expression with concomitant CDKI upregulation. In line, curcumin suppressed cSCC cell growth through ROS-mediated apoptosis, while the use of N-acetyl cysteine (NAC) reversed curcumin-induced cell death. Curcumin treatment also sensitized cSCC cells to conventional anticancer drugs, such as cisplatin and doxorubicin. Altogether, these data suggest that Skp2 targeting restores the functioning of tumor suppressors, inhibits the expression of genes associated with cell proliferation and stemness, and sensitizes cancer cells to anticancer drugs. Thus, genetic, and pharmacological ablation of Skp2 can be an important strategy for attenuating cancer pathogenesis and associated complications in skin squamous cell carcinoma.


Subject(s)
Apoptosis , Carcinoma, Squamous Cell , Kruppel-Like Factor 4 , S-Phase Kinase-Associated Proteins , Skin Neoplasms , Humans , S-Phase Kinase-Associated Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , Apoptosis/drug effects , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Kruppel-Like Factor 4/metabolism , Cell Proliferation/drug effects , Curcumin/pharmacology , Gene Expression Regulation, Neoplastic/drug effects
16.
Cells ; 13(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38891096

ABSTRACT

Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.


Subject(s)
Epithelial-Mesenchymal Transition , Kruppel-Like Factor 4 , Matrix Attachment Region Binding Proteins , Prostatic Neoplasms , Transcription Factors , Humans , Male , Epithelial-Mesenchymal Transition/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Kruppel-Like Factor 4/metabolism , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Gene Expression Regulation, Neoplastic , Cell Self Renewal , Cell Proliferation
17.
Cell Mol Life Sci ; 81(1): 256, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866991

ABSTRACT

Pulmonary hypertension (PH) is characterized by vascular remodeling predominantly driven by a phenotypic switching in pulmonary artery smooth muscle cells (PASMCs). However, the underlying mechanisms for this phenotypic alteration remain incompletely understood. Here, we identified that RNA methyltransferase METTL3 is significantly elevated in the lungs of hypoxic PH (HPH) mice and rats, as well as in the pulmonary arteries (PAs) of HPH rats. Targeted deletion of Mettl3 in smooth muscle cells exacerbated hemodynamic consequences of hypoxia-induced PH and accelerated pulmonary vascular remodeling in vivo. Additionally, the absence of METTL3 markedly induced phenotypic switching in PASMCs in vitro. Mechanistically, METTL3 depletion attenuated m6A modification and hindered the processing of pri-miR-143/145, leading to a downregulation of miR-143-3p and miR-145-5p. Inhibition of hnRNPA2B1, an m6A mediator involved in miRNA maturation, similarly resulted in a significant reduction of miR-143-3p and miR-145-5p. We demonstrated that miR-145-5p targets Krüppel-like factor 4 (KLF4) and miR-143-3p targets fascin actin-bundling protein 1 (FSCN1) in PASMCs. The decrease of miR-145-5p subsequently induced an upregulation of KLF4, which in turn suppressed miR-143/145 transcription, establishing a positive feedback circuit between KLF4 and miR-143/145. This regulatory circuit facilitates the persistent suppression of contractile marker genes, thereby sustaining PASMC phenotypic switch. Collectively, hypoxia-induced upregulation of METTL3, along with m6A mediated regulation of miR-143/145, might serve as a protective mechanism against phenotypic switch of PASMCs. Our results highlight a potential therapeutic strategy targeting m6A modified miR-143/145-KLF4 loop in the treatment of PH.


Subject(s)
Adenosine , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Methyltransferases , MicroRNAs , Myocytes, Smooth Muscle , Pulmonary Artery , Kruppel-Like Factor 4/metabolism , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Pulmonary Artery/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Myocytes, Smooth Muscle/metabolism , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Rats , Phenotype , Male , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/metabolism , Mice, Inbred C57BL , Vascular Remodeling/genetics , Rats, Sprague-Dawley , Humans
18.
Front Immunol ; 15: 1412022, 2024.
Article in English | MEDLINE | ID: mdl-38881898

ABSTRACT

Abdominal aortic aneurysm (AAA) is a degenerative disease characterized by local abnormal dilation of the aorta accompanied by vascular smooth muscle cell (VSMC) dysfunction and chronic inflammation. VSMC dedifferentiation, transdifferentiation, and increased expression of matrix metalloproteinases (MMPs) are essential causes of AAA formation. Previous studies from us and others have shown that Anemoside B4 (AB4), a saponin from Pulsatilla chinensis, has anti-inflammatory, anti-tumor, and regulatory effects on VSMC dedifferentiation. The current study aimed to investigate whether AB4 inhibits AAA development and its underlying mechanisms. By using an Ang II induced AAA model in vivo and cholesterol loading mediated VSMC to macrophage transdifferentiation model in vitro, our study demonstrated that AB4 could attenuate AAA pathogenesis, prevent VSMC dedifferentiation and transdifferentiation to macrophage-like cells, decrease vascular inflammation, and suppress MMP expression and activity. Furthermore, KLF4 overexpression attenuated the effects of AB4 on VSMC to macrophage-like cell transition and VSMC inflammation in vitro. In conclusion, AB4 protects against AAA formation in mice by inhibiting KLF4 mediated VSMC transdifferentiation and inflammation. Our study provides the first proof of concept of using AB4 for AAA management.


Subject(s)
Aortic Aneurysm, Abdominal , Cell Transdifferentiation , Inflammation , Kruppel-Like Factor 4 , Myocytes, Smooth Muscle , Saponins , Animals , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/prevention & control , Aortic Aneurysm, Abdominal/chemically induced , Cell Transdifferentiation/drug effects , Kruppel-Like Factor 4/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Inflammation/metabolism , Saponins/pharmacology , Disease Models, Animal , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Mice, Inbred C57BL , Macrophages/metabolism , Macrophages/drug effects , Macrophages/immunology , Angiotensin II/pharmacology , Humans
19.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732122

ABSTRACT

Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.


Subject(s)
Chondrocytes , Glucosamine , Homeostasis , Kruppel-Like Factor 4 , Reactive Oxygen Species , Silybin , Glucosamine/pharmacology , Glucosamine/metabolism , Humans , Silybin/pharmacology , Glycosylation/drug effects , Chondrocytes/metabolism , Chondrocytes/drug effects , Homeostasis/drug effects , Reactive Oxygen Species/metabolism , Kruppel-Like Factor 4/metabolism , Cell Line , Cell Proliferation/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Cartilage/metabolism , Cartilage/drug effects , Oxidative Stress/drug effects , Osteoarthritis/metabolism , Osteoarthritis/drug therapy
20.
Pathol Res Pract ; 259: 155369, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820928

ABSTRACT

Bladder cancer is a common malignancy with a poor prognosis worldwide. Positive cofactor 4 (PC4) is widely reported to promote malignant phenotypes in various tumors. Nonetheless, the biological function and mechanism of PC4 in bladder cancer remain unclear. Here, for the first time, we report that PC4 is elevated in bladder cancer and is associated with patient survival. Moreover, PC4 deficiency obviously inhibited bladder cancer cell proliferation and metastasis by reducing the expression of genes related to cancer stemness (CD44, CD47, KLF4 and c-Myc). Through RNA-seq and experimental verification, we found that activation of the Wnt5a/ß-catenin pathway is involved in the malignant function of PC4. Mechanistically, PC4 directly interacts with Sp1 to promote Wnt5a transcription. Thus, our study furthers our understanding of the role of PC4 in cancer stemness regulation and provides a promising strategy for bladder cancer therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , Kruppel-Like Factor 4 , Neoplastic Stem Cells , Urinary Bladder Neoplasms , Wnt-5a Protein , Animals , Humans , Mice , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Kruppel-Like Factor 4/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Sp1 Transcription Factor/metabolism , Sp1 Transcription Factor/genetics , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Wnt Signaling Pathway/physiology , Wnt Signaling Pathway/genetics , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL