Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Protein Sci ; 33(6): e4995, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747377

ABSTRACT

Membrane proteins play critical physiological roles as receptors, channels, pumps, and transporters. Despite their importance, however, low expression levels often hamper the experimental characterization of membrane proteins. We present an automated and web-accessible design algorithm called mPROSS (https://mPROSS.weizmann.ac.il), which uses phylogenetic analysis and an atomistic potential, including an empirical lipophilicity scale, to improve native-state energy. As a stringent test, we apply mPROSS to the Kv1.2-Kv2.1 paddle chimera voltage-gated potassium channel. Four designs, encoding 9-26 mutations relative to the parental channel, were functional and maintained potassium-selective permeation and voltage dependence in Xenopus oocytes with up to 14-fold increase in whole-cell current densities. Additionally, single-channel recordings reveal no significant change in the channel-opening probability nor in unitary conductance, indicating that functional expression levels increase without impacting the activity profile of individual channels. Our results suggest that the expression levels of other dynamic channels and receptors may be enhanced through one-shot design calculations.


Subject(s)
Xenopus laevis , Animals , Algorithms , Kv1.2 Potassium Channel/genetics , Kv1.2 Potassium Channel/metabolism , Kv1.2 Potassium Channel/chemistry , Oocytes/metabolism , Phylogeny , Shab Potassium Channels/metabolism , Shab Potassium Channels/genetics , Shab Potassium Channels/chemistry , Mutation , Xenopus
2.
Neurobiol Dis ; 196: 106513, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663634

ABSTRACT

In animal models of LGI1-dependent autosomal dominant lateral temporal lobe epilepsy, Kv1 channels are downregulated, suggesting their crucial involvement in epileptogenesis. The molecular basis of Kv1 channel-downregulation in LGI1 knock-out mice has not been elucidated and how the absence of this extracellular protein induces an important modification in the expression of Kv1 remains unknown. In this study we analyse by immunofluorescence the modifications in neuronal Kv1.1 and Kv1.2 distribution throughout the hippocampal formation of LGI1 knock-out mice. We show that Kv1 downregulation is not restricted to the axonal compartment, but also takes place in the somatodendritic region and is accompanied by a drastic decrease in Kv2 expression levels. Moreover, we find that the downregulation of these Kv channels is associated with a marked increase in bursting patterns. Finally, mass spectrometry uncovered key modifications in the Kv1 interactome that highlight the epileptogenic implication of Kv1 downregulation in LGI1 knock-out animals.


Subject(s)
Down-Regulation , Hippocampus , Intracellular Signaling Peptides and Proteins , Mice, Knockout , Animals , Hippocampus/metabolism , Mice , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Kv1.1 Potassium Channel/metabolism , Kv1.1 Potassium Channel/genetics , Proteins/metabolism , Proteins/genetics , Mice, Inbred C57BL , Kv1.2 Potassium Channel/metabolism , Kv1.2 Potassium Channel/genetics , Neurons/metabolism
4.
Biophys J ; 123(14): 2012-2023, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38155577

ABSTRACT

Shaker potassium channels have been an essential model for studying inactivation of ion channels and shaped our earliest understanding of N-type vs. C-type mechanisms. In early work describing C-type inactivation, López-Barneo and colleagues systematically characterized numerous mutations of Shaker residue T449, demonstrating that this position was a key determinant of C-type inactivation rate. In most of the closely related mammalian Kv1 channels, however, a persistent enigma has been that residue identity at this position has relatively modest effects on the rate of inactivation in response to long depolarizations. In this study, we report alternative ways to measure or elicit conformational changes in the outer pore associated with C-type inactivation. Using a strategically substituted cysteine in the outer pore, we demonstrate that mutation of Kv1.2 V381 (equivalent to Shaker T449) or W366 (Shaker W434) markedly increases susceptibility to modification by extracellularly applied MTSET. Moreover, due to the cooperative nature of C-type inactivation, Kv1.2 assembly in heteromeric channels markedly inhibits MTSET modification of this substituted cysteine in neighboring subunits. The identity of Kv1.2 residue V381 also markedly influences function in conditions that bias channels toward C-type inactivation, namely when Na+ is substituted for K+ as the permeant ion or when channels are blocked by an N-type inactivation particle (such as Kvß1.2). Overall, our findings illustrate that in mammalian Kv1 channels, the identity of the T449-equivalent residue can strongly influence function in certain experimental conditions, even while having modest effects on apparent inactivation during long depolarizations. These findings contribute to reconciling differences in experimental outcomes in many Kv1 channels vs. Shaker.


Subject(s)
Ion Channel Gating , Kv1.2 Potassium Channel , Animals , Kv1.2 Potassium Channel/metabolism , Kv1.2 Potassium Channel/chemistry , Kv1.2 Potassium Channel/genetics , Mutation , Shaker Superfamily of Potassium Channels/metabolism , Shaker Superfamily of Potassium Channels/chemistry , Shaker Superfamily of Potassium Channels/genetics , Humans
5.
J Physiol ; 601(23): 5367-5389, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37883018

ABSTRACT

Two KCNA2 variants (p.H310Y and p.H310R) were discovered in paediatric patients with epilepsy and developmental delay. KCNA2 encodes KV 1.2-channel subunits, which regulate neuronal excitability. Both gain and loss of KV 1.2 function cause epilepsy, precluding the prediction of variant effects; and while H310 is conserved throughout the KV -channel superfamily, it is largely understudied. We investigated both variants in heterologously expressed, human KV 1.2 channels by immunocytochemistry, electrophysiology and voltage-clamp fluorometry. Despite affecting the same channel, at the same position, and being associated with severe neurological disease, the two variants had diametrically opposite effects on KV 1.2 functional expression. The p.H310Y variant produced 'dual gain of function', increasing both cell-surface trafficking and activity, delaying channel closure. We found that the latter is due to the formation of a hydrogen bond that stabilizes the active state of the voltage-sensor domain. Additionally, H310Y abolished 'ball and chain' inactivation of KV 1.2 by KV ß1 subunits, enhancing gain of function. In contrast, p.H310R caused 'dual loss of function', diminishing surface levels by multiple impediments to trafficking and inhibiting voltage-dependent channel opening. We discuss the implications for KV -channel biogenesis and function, an emergent hotspot for disease-associated variants, and mechanisms of epileptogenesis. KEY POINTS: KCNA2 encodes the subunits of KV 1.2 voltage-activated, K+ -selective ion channels, which regulate electrical signalling in neurons. We characterize two KCNA2 variants from patients with developmental delay and epilepsy. Both variants affect position H310, highly conserved in KV channels. The p.H310Y variant caused 'dual gain of function', increasing both KV 1.2-channel activity and the number of KV 1.2 subunits on the cell surface. H310Y abolished 'ball and chain' (N-type) inactivation of KV 1.2 by KV ß1 subunits, enhancing the gain-of-function phenotype. The p.H310R variant caused 'dual loss of function', diminishing the presence of KV 1.2 subunits on the cell surface and inhibiting voltage-dependent channel opening. As H310Y stabilizes the voltage-sensor active conformation and abolishes N-type inactivation, it can serve as an investigative tool for functional and pharmacological studies.


Subject(s)
Epilepsy , Humans , Child , Epilepsy/genetics , Neurons/physiology , Signal Transduction , Cell Membrane , Phenotype , Kv1.2 Potassium Channel/genetics
7.
J Gen Physiol ; 154(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36197416

ABSTRACT

Voltage-activated potassium (Kv) channels open in response to membrane depolarization and subsequently inactivate through distinct mechanisms. For the model Shaker Kv channel from Drosophila, fast N-type inactivation is thought to occur by a mechanism involving blockade of the internal pore by the N-terminus, whereas slow C-type inactivation results from conformational changes in the ion selectivity filter in the external pore. Kv channel inactivation plays critical roles in shaping the action potential and regulating firing frequency, and has been implicated in a range of diseases including episodic ataxia and arrhythmias. Although structures of the closely related Shaker and Kv1.2 channels containing mutations that promote slow inactivation both support a mechanism involving dilation of the outer selectivity filter, mutations in the outer pores of these two Kv channels have been reported to have markedly distinct effects on slow inactivation, raising questions about the extent to which slow inactivation is related in both channels. In this study, we characterized the influence of a series of mutations within the external pore of Shaker and Kv1.2 channels and observed many distinct mutant phenotypes. We find that mutations at four positions near the selectivity filter promote inactivation less dramatically in Kv1.2 when compared to Shaker, and they identify one key variable position (T449 in Shaker and V381 in Kv1.2) underlying the different phenotypes in the two channels. Collectively, our results suggest that Kv1.2 is less prone to inactivate compared to Shaker, yet support a common mechanism of inactivation in the two channels.


Subject(s)
Ion Channel Gating , Potassium Channel Blockers , Ion Channel Gating/physiology , Kv1.2 Potassium Channel/genetics , Mutation , Potassium/metabolism , Potassium Channel Blockers/pharmacology
8.
Proc Natl Acad Sci U S A ; 119(17): e2113675119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35439054

ABSTRACT

We report on a heterozygous KCNA2 variant in a child with epilepsy. KCNA2 encodes KV1.2 subunits, which form homotetrameric potassium channels and participate in heterotetrameric channel complexes with other KV1-family subunits, regulating neuronal excitability. The mutation causes substitution F233S at the KV1.2 charge transfer center of the voltage-sensing domain. Immunocytochemical trafficking assays showed that KV1.2(F233S) subunits are trafficking deficient and reduce the surface expression of wild-type KV1.2 and KV1.4: a dominant-negative phenotype extending beyond KCNA2, likely profoundly perturbing electrical signaling. Yet some KV1.2(F233S) trafficking was rescued by wild-type KV1.2 and KV1.4 subunits, likely in permissible heterotetrameric stoichiometries: electrophysiological studies utilizing applied transcriptomics and concatemer constructs support that up to one or two KV1.2(F233S) subunits can participate in trafficking-capable heterotetramers with wild-type KV1.2 or KV1.4, respectively, and that both early and late events along the biosynthesis and secretion pathway impair trafficking. These studies suggested that F233S causes a depolarizing shift of ∼48 mV on KV1.2 voltage dependence. Optical tracking of the KV1.2(F233S) voltage-sensing domain (rescued by wild-type KV1.2 or KV1.4) revealed that it operates with modestly perturbed voltage dependence and retains pore coupling, evidenced by off-charge immobilization. The equivalent mutation in the Shaker K+ channel (F290S) was reported to modestly affect trafficking and strongly affect function: an ∼80-mV depolarizing shift, disrupted voltage sensor activation and pore coupling. Our work exposes the multigenic, molecular etiology of a variant associated with epilepsy and reveals that charge-transfer-center disruption has different effects in KV1.2 and Shaker, the archetypes for potassium channel structure and function.


Subject(s)
Epilepsy , Cell Membrane/metabolism , Child , Epilepsy/genetics , Epilepsy/metabolism , Humans , Kv1.1 Potassium Channel/genetics , Kv1.2 Potassium Channel/genetics , Kv1.2 Potassium Channel/metabolism , Mutation , Potassium/metabolism , Potassium Channels/metabolism
9.
Bioengineered ; 12(1): 7470-7480, 2021 12.
Article in English | MEDLINE | ID: mdl-34632937

ABSTRACT

Neuropathic pain is a kind of pain caused by damage to somatosensory nervous system. Currently, neuropathic pain is still a medical problem for clinicians. Ubiquitin conjugating enzyme E2B (Ube2b) is validated to be implicated with nerve function, but whether Ube2b can play a role in neuropathic pain is still elusive. In this work, we constructed chronic constriction injury (CCI) rat model by ligating the left sciatic nerve, Ube2b protein expression was confirmed to be decreased in spinal cord tissues of CCI rats via Western blot analysis and immunofluorescence (IF) staining. Moreover, Ube2b elevation alleviated the thermal hyperalgesia and mechanical hyperalgesia in CCI rats according to paw withdrawal thermal latency (PWTL) and paw withdrawal mechanic threshold (PWMT). In addition, Hematoxylin-eosin staining revealed that Ube2b elevation suppressed chronic sciatic nerve injury. All these data suggested that Ube2b could ameliorate neuropathic pain in CCI rats. Mechanically, Ube2b upregulation elevated the protein level of Kcna2 (potassium voltage-gated channel subfamily A member 2) and decreased the protein level of DNMT3a (DNA methyltransferase 3 alpha). Ube2b elevation could increase Kcna2 expression via suppressing DNMT3a. Rescue assays unveiled that Ube2b overexpression modulated-mechanical hyperalgesia and thermal hyperalgesia were reversed by Kcna2 depletion, indicating that Ube2b alleviated neuropathic pain via mediating Kcna2 via the regulation of DNMT3a. In summary, we found that Ube2b elevation ameliorated neuropathic pain through regulating Kcna2, which might offer a novel biomarker for the therapies of neuropathic pain.


Subject(s)
Kv1.2 Potassium Channel/genetics , Neuralgia , Neurons, Afferent/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Animals , DNA Methyltransferase 3A/genetics , DNA Methyltransferase 3A/metabolism , Kv1.2 Potassium Channel/metabolism , Male , Neuralgia/genetics , Neuralgia/metabolism , Neuralgia/physiopathology , Rats , Rats, Sprague-Dawley , Ubiquitin-Conjugating Enzymes/metabolism , Up-Regulation/genetics
10.
Int J Mol Sci ; 22(18)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34576077

ABSTRACT

Kv1.2 channels, encoded by the KCNA2 gene, are localized in the central and peripheral nervous system, where they regulate neuronal excitability. Recently, heterozygous mutations in KCNA2 have been associated with a spectrum of symptoms extending from epileptic encephalopathy, intellectual disability, and cerebellar ataxia. Patients are treated with a combination of antiepileptic drugs and 4-aminopyridine (4-AP) has been recently trialed in specific cases. We identified a novel variant in KCNA2, E236K, in a Serbian proband with non-progressive congenital ataxia and early onset epilepsy, treated with sodium valproate. To ascertain the pathogenicity of E236K mutation and to verify its sensitivity to 4-AP, we transfected HEK 293 cells with Kv1.2 WT or E236K cDNAs and recorded potassium currents through the whole-cell patch-clamp. In silico analysis supported the electrophysiological data. E236K channels showed voltage-dependent activation shifted towards negative potentials and slower kinetics of deactivation and activation compared with Kv1.2 WT. Heteromeric Kv1.2 WT+E236K channels, resembling the condition of the heterozygous patient, confirmed a mixed gain- and loss-of-function (GoF/LoF) biophysical phenotype. 4-AP inhibited both Kv1.2 and E236K channels with similar potency. Homology modeling studies of mutant channels suggested a reduced interaction between the residue K236 in the S2 segment and the gating charges at S4. Overall, the biophysical phenotype of E236K channels correlates with the mild end of the clinical spectrum reported in patients with GoF/LoF defects. The response to 4-AP corroborates existing evidence that KCNA2-disorders could benefit from variant-tailored therapeutic approaches, based on functional studies.


Subject(s)
4-Aminopyridine/therapeutic use , Cerebellar Ataxia/congenital , Cerebellar Ataxia/genetics , Epilepsy/drug therapy , Epilepsy/genetics , Kv1.2 Potassium Channel/genetics , Amino Acid Sequence , Brain/diagnostic imaging , Cerebellar Ataxia/diagnostic imaging , Cerebellar Ataxia/drug therapy , Child , Child, Preschool , Epilepsy/diagnostic imaging , Humans , Infant , Kv1.2 Potassium Channel/chemistry , Magnetic Resonance Imaging , Male , Molecular Dynamics Simulation , Young Adult
11.
Sci Transl Med ; 13(609): eaaz4957, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34516822

ABSTRACT

Developmental and epileptic encephalopathies are devastating disorders characterized by epilepsy, intellectual disability, and other neuropsychiatric symptoms, for which available treatments are largely ineffective. Following a precision medicine approach, we show for KCNA2-encephalopathy that the K+ channel blocker 4-aminopyridine can antagonize gain-of-function defects caused by variants in the KV1.2 subunit in vitro, by reducing current amplitudes and negative shifts of steady-state activation and increasing the firing rate of transfected neurons. In n-of-1 trials carried out in nine different centers, 9 of 11 patients carrying such variants benefitted from treatment with 4-aminopyridine. All six patients experiencing daily absence, myoclonic, or atonic seizures became seizure-free (except some remaining provoked seizures). Two of six patients experiencing generalized tonic-clonic seizures showed marked improvement, three showed no effect, and one worsening. Nine patients showed improved gait, ataxia, alertness, cognition, or speech. 4-Aminopyridine was well tolerated up to 2.6 mg/kg per day. We suggest 4-aminopyridine as a promising tailored treatment in KCNA2-(gain-of-function)­encephalopathy and provide an online tool assisting physicians to select patients with gain-of-function mutations suited to this treatment.


Subject(s)
Brain Diseases , Epilepsy , 4-Aminopyridine/therapeutic use , Gain of Function Mutation , Humans , Kv1.2 Potassium Channel/genetics , Mutation
12.
Int J Mol Sci ; 22(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33802230

ABSTRACT

Pathogenic variants in KCNA2, encoding for the voltage-gated potassium channel Kv1.2, have been identified as the cause for an evolving spectrum of neurological disorders. Affected individuals show early-onset developmental and epileptic encephalopathy, intellectual disability, and movement disorders resulting from cerebellar dysfunction. In addition, individuals with a milder course of epilepsy, complicated hereditary spastic paraplegia, and episodic ataxia have been reported. By analyzing phenotypic, functional, and genetic data from published reports and novel cases, we refine and further delineate phenotypic as well as functional subgroups of KCNA2-associated disorders. Carriers of variants, leading to complex and mixed channel dysfunction that are associated with a gain- and loss-of-potassium conductance, more often show early developmental abnormalities and an earlier onset of epilepsy compared to individuals with variants resulting in loss- or gain-of-function. We describe seven additional individuals harboring three known and the novel KCNA2 variants p.(Pro407Ala) and p.(Tyr417Cys). The location of variants reported here highlights the importance of the proline(405)-valine(406)-proline(407) (PVP) motif in transmembrane domain S6 as a mutational hotspot. A novel case of self-limited infantile seizures suggests a continuous clinical spectrum of KCNA2-related disorders. Our study provides further insights into the clinical spectrum, genotype-phenotype correlation, variability, and predicted functional impact of KCNA2 variants.


Subject(s)
Databases, Nucleic Acid , Genotype , Kv1.2 Potassium Channel , Mutation, Missense , Nervous System Diseases , Amino Acid Substitution , Female , Humans , Kv1.2 Potassium Channel/genetics , Kv1.2 Potassium Channel/metabolism , Male , Nervous System Diseases/genetics , Nervous System Diseases/metabolism
13.
Br J Anaesth ; 126(3): 706-719, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33303185

ABSTRACT

BACKGROUND: Nerve injury-induced changes in gene expression in the dorsal root ganglion (DRG) contribute to neuropathic pain genesis. Eukaryotic initiation factor 4 gamma 2 (eIF4G2) is a general repressor of cap-dependent mRNA translation. Whether DRG eIF4G2 participates in nerve injury-induced alternations in gene expression and nociceptive hypersensitivity is unknown. METHODS: The expression and distribution of eIF4G2 mRNA and protein in mouse DRG after spinal nerve ligation (SNL) were assessed. Effects of eIF4G2 siRNA microinjected through a glass micropipette into the injured DRG on the SNL-induced DRG mu opioid receptor (MOR) and Kv1.2 downregulation and nociceptive hypersensitivity were examined. In addition, effects of DRG microinjection of adeno-associated virus 5-expressing eIF4G2 (AAV5-eIF4G2) on basal DRG MOR and Kv1.2 expression and nociceptive thresholds were analysed. RESULTS: eIF4G2 protein co-expressed with Kv1.2 and MOR in DRG neurones. Levels of eIF4G2 mRNA (1.7 [0.24] to 2.3 [0.14]-fold of sham, P<0.01) and protein (1.6 [0.14] to 2.5 [0.22]-fold of sham, P<0.01) in injured DRG were time-dependently increased on days 3-14 after SNL. Blocking increased eIF4G2 through microinjection of eIF4G2 siRNA into the injured DRG attenuated SNL-induced downregulation of DRG MOR and Kv1.2 and development and maintenance of nociceptive hypersensitivities. DRG microinjection of AAV5-eIF4G2 reduced DRG MOR and Kv1.2 expression and elicited hypersensitivities to mechanical, heat and cold stimuli in naïve mice. CONCLUSIONS: eIF4G2 contributes to neuropathic pain through participation in downregulation of Kv1.2 and MOR in injured DRG and is a potential target for treatment of this disorder.


Subject(s)
Eukaryotic Initiation Factor-4G/genetics , Ganglia, Spinal/metabolism , Gene Expression Regulation , Kv1.2 Potassium Channel/genetics , Neuralgia/genetics , Receptors, Opioid, mu/genetics , Animals , Cells, Cultured , Disease Models, Animal , Down-Regulation , Male , Mice , Neuralgia/metabolism , Neurons/metabolism , Pain Measurement
14.
Mol Med ; 26(1): 113, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33225882

ABSTRACT

OBJECTIVES: Postherpetic neuralgia (PHN) is the most common complication of herpes zoster, but the mechanism of PHN is still unclear. Activation of spinal astrocytes is involved in PHN. Our study aims to explore whether lncRNA KCNA2 antisense RNA (KCNA2-AS) regulates spinal astrocytes in PHN through signal transducers and activators of transcription 3 (STAT3). METHODS: Varicella zoster virus (VZV)-infected CV-1 cells were injected into rats to construct a PHN model. Primary spinal cord astrocytes were activated using S-Nitrosoglutathione (GSNO). Glial fibrillary acidic protein (GFAP; marker of astrocyte activation), phosphorylated STAT3 (pSTAT3), and KCNA2-AS were analyzed by immunofluorescence and RNA fluorescence in situ hybridization. RNA pull-down and RNA immunoprecipitation were used to detect binding of KCNA2-AS to pSTAT3. RESULTS: KCNA2-AS was highly expressed in the spinal cord tissue of PHN model rats, and was positively correlated with GFAP expression. GFAP was significantly increased in GSNO-induced cells, but the knockdown of KCNA2-AS reversed this result. Meanwhile, pSTAT3 was significantly increased in GSNO-induced cells, but knockdown of KCNA2-AS reduced pSTAT3 within the nucleus while the total pSTAT3 did not change significantly. pSTAT3 bound to KCNA2-AS and this binding increased with GSNO treatment. Furthermore, knockdown of KCNA2-AS in PHN model rats relieved mechanical allodynia. CONCLUSION: Down-regulation of KCNA2-AS alleviates PHN partly by reducing the translocation of pSTAT3 cytoplasm to the nucleus and then inhibiting the activation of spinal astrocytes.


Subject(s)
Astrocytes/metabolism , Kv1.2 Potassium Channel/genetics , Neuralgia, Postherpetic/genetics , Neuralgia, Postherpetic/metabolism , RNA, Long Noncoding , STAT3 Transcription Factor/metabolism , Spinal Cord/metabolism , Animals , Cell Line , Disease Models, Animal , Female , Gene Knockdown Techniques , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Nitric Oxide/metabolism , RNA Interference , Rats , Spinal Cord/physiology
15.
Stem Cell Res ; 49: 102080, 2020 12.
Article in English | MEDLINE | ID: mdl-33232902

ABSTRACT

Mutations in KCNA2 gene, encoding for the voltage-gated K+ channel Kv1.2, has been reported to be associated with epilepsy disorders. This channel is mainly expressed in the central nervous system and plays an important role in neuronal excitability and neurotransmitter release. Herein, we generated an induced pluripotent stem cell (iPSC) line from the peripheral blood mononuclear cells of an eight-year-old girl with epileptic encephalopathy and electrical status epilepticus during sleep carrying a mutation (c.1214C > T, p.Pro405Leu) in KCNA2. These iPSCs exhibited stable amplification, expressed pluripotent markers, and differentiated spontaneously into three germ layers in vitro.


Subject(s)
Cell Line , Epilepsy , Induced Pluripotent Stem Cells , Status Epilepticus , Child , Epilepsy/genetics , Female , Humans , Kv1.2 Potassium Channel/genetics , Leukocytes, Mononuclear , Mutation , Sleep , Status Epilepticus/genetics
16.
Int J Mol Sci ; 21(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003279

ABSTRACT

Kv3.1 channel is abundantly expressed in neurons and its dysfunction causes sleep loss, neurodegenerative diseases and depression. Fluoxetine, a serotonin selective reuptake inhibitor commonly used to treat depression, acts also on Kv3.1. To define the relationship between Kv3.1 and serotonin receptors (SR) pharmacological modulation, we showed that 1C11, a serotonergic cell line, expresses different voltage gated potassium (VGK) channels subtypes in the presence (differentiated cells (1C11D)) or absence (not differentiated cells (1C11ND)) of induction. Only Kv1.2 and Kv3.1 transcripts increase even if the level of Kv3.1b transcripts is highest in 1C11D and, after fluoxetine, in 1C11ND but decreases in 1C11D. The Kv3.1 channel protein is expressed in 1C11ND and 1C11D but is enhanced by fluoxetine only in 1C11D. Whole cell measurements confirm that 1C11 cells express (VGK) currents, increasing sequentially as a function of cell development. Moreover, SR 5HT1b is highly expressed in 1C11D but fluoxetine increases the level of transcript in 1C11ND and significantly decreases it in 1C11D. Serotonin dosage shows that fluoxetine at 10 nM blocks serotonin reuptake in 1C11ND but slows down its release when cells are differentiated through a decrease of 5HT1b receptors density. We provide the first experimental evidence that 1C11 expresses Kv3.1b, which confirms its major role during differentiation. Cells respond to the fluoxetine effect by upregulating Kv3.1b expression. On the other hand, the possible relationship between the fluoxetine effect on the kinetics of 5HT1b differentiation and Kv3.1bexpression, would suggest the Kv3.1b channel as a target of an antidepressant drug as well as it was suggested for 5HT1b.


Subject(s)
Fluoxetine/pharmacology , Serotonergic Neurons/drug effects , Serotonin Plasma Membrane Transport Proteins/genetics , Shaw Potassium Channels/genetics , Animals , CHO Cells , Cell Differentiation/drug effects , Cell Line, Tumor , Cricetulus , Depression/drug therapy , Depression/genetics , Gene Expression Regulation, Developmental/drug effects , Humans , Kv1.2 Potassium Channel/genetics , Serotonergic Neurons/metabolism , Serotonin/genetics , Serotonin/metabolism , Serotonin Antagonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology
17.
BMC Cardiovasc Disord ; 20(1): 337, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32664860

ABSTRACT

BACKGROUND: High blood glucose impairs voltage-gated K+ (Kv) channel-mediated vasodilation in rat coronary artery smooth muscle cells (CSMCs) via oxidative stress. Advanced glycation end product (AGE) and receptor for AGE (RAGE) axis has been found to impair coronary dilation by reducing Kv channel activity in diabetic rat small coronary arteries (RSCAs). However, its underlying mechanism remain unclear. Here, we used isolated arteries and primary CSMCs to investigate the effect of AGE incubation on Kv channel-mediated coronary dilation and the possible involvement of peroxisome proliferators-activated receptor (PPAR) -γ pathway. METHODS: The RSCAs and primary CSMCs were isolated, cultured, and treated with bovine serum albumin (BSA), AGE-BSA, alagrebrium (ALA, AGE cross-linking breaker), pioglitazone (PIO, PPAR-γ activator) and/or GW9662 (PPAR-γ inhibitor). The groups were accordingly divided as control, BSA, AGE, AGE + ALA, AGE + PIO, or AGE + PIO + GW9662. Kv channel-mediated dilation was analyzed using wire myograph. Histology and immunohistochemistry of RSCAs were performed. Western blot was used to detect the protein expression of RAGE, major Kv channel subunits expressed in CSMCs (Kv1.2 and Kv1.5), PPAR-γ, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-2 (NOX-2). RESULTS: AGE markedly reduced Forskolin-induced Kv channel-mediated dilation of RSCAs by engaging with RAGE, and ALA or PIO significantly reversed the functional loss of Kv channel. In both RSCAs and CSMCs, AGE reduced Kv1.2/1.5 expression, increased RAGE and NOX-2 expression, and inhibited PPAR-γ expression, while ALA or PIO treatment partially reversed the inhibiting effects of AGE on Kv1.2/1.5 expression, accompanied by the downregulation of RAGE and decreased oxidative stress. Meanwhile, silencing of RAGE with siRNA remarkably alleviated the AGE-induced downregulation of Kv1.2/1.5 expression in CSMCs. CONCLUSION: AGE reduces the Kv channel expression in CSMCs and further impairs the Kv channel-mediated dilation in RSCAs. The AGE/RAGE axis may enhance oxidative stress by inhibiting the downstream PPAR-γ pathway, thus playing a critical role in the dysfunction of Kv channels.


Subject(s)
Glycation End Products, Advanced/pharmacology , Kv1.2 Potassium Channel/metabolism , Kv1.5 Potassium Channel/metabolism , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , PPAR gamma/metabolism , Serum Albumin, Bovine/pharmacology , Vasodilation/drug effects , Anilides/pharmacology , Animals , Cells, Cultured , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Kv1.2 Potassium Channel/genetics , Kv1.5 Potassium Channel/genetics , Male , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidative Stress/drug effects , PPAR gamma/drug effects , Pioglitazone/pharmacology , Rats, Sprague-Dawley , Signal Transduction
18.
Sci Rep ; 10(1): 6954, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32332769

ABSTRACT

Low threshold voltage activated Kv1 potassium channels play key roles in regulating action potential (AP) threshold, neural excitability, and synaptic transmission. Kv1 channels are highly expressed in the cerebellum and mutations of human Kv1 genes are associated to episodic forms of ataxia (EAT-1). Besides the well-established role of Kv1 channels in controlling the cerebellar basket-Purkinje cells synapses, Kv1 channels are expressed by the deep cerebellar nuclear neurons (DCNs) where they regulate the activity of principal DCNs carrying the cerebellar output. DCNs include as well GABAergic neurons serving important functions, such as those forming the inhibitory nucleo-olivary pathway, the nucleo-cortical DCNs providing feed-back inhibition to the cerebellar cortex, and those targeting principal DCNs, but whether their function is regulated by Kv1 channels remains unclear. Here, using cerebellar slices from mature GAD67-GFP mice to identify putative GABAergic-DCNs (GAD + DCN) we show that specific Kv1 channel blockers (dendrotoxin-alpha/I/K, DTXs) hyperpolarized the threshold of somatic action potentials, increased the spontaneous firing rate and hampered evoked high frequency repetitive responses of GAD + DCNs. Moreover, DTXs induced somatic depolarization and tonic firing in previously silent, putative nucleo-cortical DCNs. These results reveal a novel role of Kv1 channels in regulating GABAergic-DCNs activity and thereby, cerebellar function at multiple levels.


Subject(s)
Action Potentials/physiology , Cerebellar Nuclei/metabolism , GABAergic Neurons/metabolism , Kv1.1 Potassium Channel/metabolism , Kv1.2 Potassium Channel/metabolism , Shaker Superfamily of Potassium Channels/metabolism , Animals , Cerebellar Nuclei/cytology , Kv1.1 Potassium Channel/genetics , Kv1.2 Potassium Channel/genetics , Mice , Neurons/cytology , Neurons/metabolism
19.
Am J Physiol Cell Physiol ; 318(5): C954-C968, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32186932

ABSTRACT

The increase in cytosolic Ca2+ concentration ([Ca2+]cyt) and upregulation of calcium-sensing receptor (CaSR) and stromal interaction molecule 2 (STIM2) along with inhibition of voltage-gated K+ (KV) channels in pulmonary arterial smooth muscle cells (PASMC) have been implicated in the development of pulmonary arterial hypertension; however, the precise upstream mechanisms remain elusive. Activation of CaSR, a G protein-coupled receptor (GPCR), results in Ca2+ release from the endoplasmic/sarcoplasmic reticulum (ER/SR) and Ca2+ influx through receptor-operated and store-operated Ca2+ channels (SOC). Upon Ca2+ depletion from the SR, STIM forms clusters to mediate store-operated Ca2+ entry. Activity of KV channels, like KCNA5/KV1.5 and KCNA2/KV1.2, contributes to regulating membrane potential, and inhibition of KV channels results in membrane depolarization that increases [Ca2+]cyt by opening voltage-dependent Ca2+ channels. In this study, we show that activation of Notch by its ligand Jag-1 promotes the clustering of STIM2, and clustered STIM2 subsequently enhances the CaSR-induced Ca2+ influx through SOC channels. Extracellular Ca2+-mediated activation of CaSR increases [Ca2+]cyt in CASR-transfected HEK293 cells. Treatment of CASR-transfected cells with Jag-1 further enhances CaSR-mediated increase in [Ca2+]cyt. Moreover, CaSR-mediated increase in [Ca2+]cyt was significantly augmented in cells co-transfected with CASR and STIM2. CaSR activation results in STIM2 clustering in CASR/STIM2-cotransfected cells. Notch activation also induces significant clustering of STIM2. Furthermore, activation of Notch attenuates whole cell K+ currents in KCNA5- and KCNA2-transfected cells. Together, these results suggest that Notch activation enhances CaSR-mediated increases in [Ca2+]cyt by enhancing store-operated Ca2+ entry and inhibits KCNA5/KV1.5 and KCNA2/KV1.2, ultimately leading to voltage-activated Ca2+ entry.


Subject(s)
Kv1.2 Potassium Channel/genetics , Kv1.5 Potassium Channel/genetics , Pulmonary Arterial Hypertension/genetics , Receptors, Calcium-Sensing/genetics , Stromal Interaction Molecule 2/genetics , Calcium Channels/drug effects , Calcium Channels/genetics , Calcium Signaling/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Estrenes/pharmacology , HEK293 Cells , Humans , Indoles/pharmacology , Jagged-1 Protein/genetics , Membrane Potentials/drug effects , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pyrrolidinones/pharmacology , Receptors, Calcium-Sensing/drug effects , Receptors, Notch/genetics , Single-Cell Analysis
20.
Mol Genet Genomics ; 295(3): 751-763, 2020 May.
Article in English | MEDLINE | ID: mdl-32146541

ABSTRACT

It is thought that despite highly variable phenotypic expression, 70-80% of all epileptic cases are caused by one or more genetic mutations. Next generation sequencing technologies, such as whole exome sequencing (WES), can be used in a diagnostic or research setting to identify genetic mutations which may have significant prognostic implications for patients and their families. In this study, 398 genes associated with epilepsy or recurrent seizures were stratified into tiers based on genotype-phenotype concordance, tissue gene expression, frequency of affected individuals with mutations and evidence from functional and family studies. WES was completed on 14 DNA samples (2 with known mutations in SCN1A and 12 with no known mutations) from individuals diagnosed with epilepsy using an Ion AmpliSeq approach. WES confirmed positive SCN1A mutations in two samples. In n = 5/12 samples (S-3 to -14) we identified potentially causative mutations across five different genes. S-5 was identified to have a novel missense mutation in CCM2; S-6 a novel frameshift mutation identified in ADGRV1; S-10 had a previously reported pathogenic mutation in PCDH19, whilst a novel missense mutation in PCDH19 was shown in S-12; and S-13 identified to have separate missense mutations in KCNA2 and NPRL3. The application of WES followed by a targeted variant prioritization approach allowed for the discovery of potentially causative mutations in our cohort of previously undiagnosed epilepsy patients.


Subject(s)
Biomarkers/analysis , Epilepsy/diagnosis , Epilepsy/genetics , Exome Sequencing/methods , Exome/genetics , Mutation , Adolescent , Adult , Cadherins/genetics , Child , Child, Preschool , Cohort Studies , Female , GTPase-Activating Proteins/genetics , Genetic Testing/methods , Humans , Infant , Kv1.2 Potassium Channel/genetics , Male , Prognosis , Protocadherins
SELECTION OF CITATIONS
SEARCH DETAIL