Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.434
Filter
1.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963450

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Subject(s)
Benzo(a)pyrene , Biodegradation, Environmental , Citric Acid , Soil Pollutants , Benzo(a)pyrene/toxicity , Benzo(a)pyrene/metabolism , Citric Acid/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Laccase/metabolism , Soil Microbiology , Polyporaceae/metabolism , Trametes/metabolism , Biomass
2.
Physiol Plant ; 176(4): e14415, 2024.
Article in English | MEDLINE | ID: mdl-38962818

ABSTRACT

The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.


Subject(s)
Cotton Fiber , Gene Expression Regulation, Plant , Gossypium , Laccase , Lignin , Plant Proteins , Gossypium/genetics , Gossypium/metabolism , Gossypium/enzymology , Laccase/metabolism , Laccase/genetics , Lignin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Cell Wall/metabolism , Proanthocyanidins/metabolism , Color , Pigmentation/genetics
3.
Genes (Basel) ; 15(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927685

ABSTRACT

Laccase (LAC) is a diverse group of genes found throughout the plant genome essential for plant growth and the response to stress by converting monolignin into intricate lignin formations. However, a comprehensive investigation of maize laccase has not yet been documented. A bioinformatics approach was utilized in this research to conduct a thorough examination of maize (Zea mays L.), resulting in the identification and categorization of 22 laccase genes (ZmLAC) into six subfamilies. The gene structure and motifs of each subgroup were largely consistent. The distribution of the 22 LAC genes was uneven among the maize chromosomes, with the exception of chromosome 9. The differentiation of the genes was based on fragment replication, and the differentiation time was about 33.37 million years ago. ZmLAC proteins are primarily acidic proteins. There are 18 cis-acting elements in the promoter sequences of the maize LAC gene family associated with growth and development, stress, hormones, light response, and stress response. The analysis of tissue-specific expression revealed a high expression of the maize LAC gene family prior to the V9 stage, with minimal expression at post-V9. Upon reviewing the RNA-seq information from the publicly available transcriptome, it was discovered that ZmLAC5, ZmLAC10, and ZmLAC17 exhibited significant expression levels when exposed to various biotic and abiotic stress factors, suggesting their crucial involvement in stress responses and potential value for further research. This study offers an understanding of the functions of the LAC genes in maize's response to biotic and abiotic stress, along with a theoretical basis for comprehending the molecular processes at play.


Subject(s)
Gene Expression Regulation, Plant , Laccase , Multigene Family , Plant Proteins , Stress, Physiological , Zea mays , Zea mays/genetics , Zea mays/growth & development , Stress, Physiological/genetics , Laccase/genetics , Laccase/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Promoter Regions, Genetic , Chromosomes, Plant/genetics
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928160

ABSTRACT

Aflatoxin B1 (AFB1) contamination is a serious threat to nutritional safety and public health. The CotA-laccase from Bacillus licheniformis ANSB821 previously reported by our laboratory showed great potential to degrade AFB1 without redox mediators. However, the use of this CotA-laccase to remove AFB1 in animal feed is limited because of its low catalytic efficiency and low expression level. In order to make better use of this excellent enzyme to effectively degrade AFB1, twelve mutants of CotA-laccase were constructed by site-directed mutagenesis. Among these mutants, E186A and E186R showed the best degradation ability of AFB1, with degradation ratios of 82.2% and 91.8% within 12 h, which were 1.6- and 1.8-times higher than those of the wild-type CotA-laccase, respectively. The catalytic efficiencies (kcat/Km) of E186A and E186R were found to be 1.8- and 3.2-times higher, respectively, than those of the wild-type CotA-laccase. Then the expression vectors pPICZαA-N-E186A and pPICZαA-N-E186R with an optimized signal peptide were constructed and transformed into Pichia pastoris GS115. The optimized signal peptide improved the secretory expressions of E186A and E186R in P. pastoris GS115. Collectively, the current study provided ideal candidate CotA-laccase mutants for AFB1 detoxification in food and animal feed and a feasible protocol, which was desperately needed for the industrial production of CotA-laccases.


Subject(s)
Aflatoxin B1 , Bacillus licheniformis , Bacterial Proteins , Laccase , Aflatoxin B1/metabolism , Bacillus licheniformis/genetics , Bacillus licheniformis/metabolism , Bacillus licheniformis/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Laccase/metabolism , Laccase/genetics , Mutagenesis, Site-Directed , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Saccharomycetales
5.
Int J Biol Macromol ; 273(Pt 1): 133115, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38871108

ABSTRACT

Aflatoxin B1 (AFB1) contamination of oils is a serious concern for the safety of edible oil consumers. Enzyme-assisted detoxification of AFB1 is an efficient and safe method for decontaminating oils, but pristine enzymes are unstable in oils and require modifications before use. Therefore, we designed a novel and magnetically separable laccase-carrying biocatalyst containing spent-mushroom-substrate (SMS)-derived biochar (BF). Laccase was immobilized on NH2-activated magnetic biochar (BF-NH2) through covalent crosslinking, which provided physicochemical stability to the immobilized enzyme. After 30 days of storage at 4 °C, the immobilized laccase (product named "BF-NH2-Lac") retained ~95 % of its initial activity, while after five repeated cycles of ABTS oxidation, ~85 % activity retention was observed. BF-NH2-Lac was investigated for the oxidative degradation of AFB1, which exhibited superior performance compared to free laccase. Among many tested natural compounds as mediators, p-coumaric acid proved the most efficient in activating laccase for AFB1 degradation. BF-NH2-Lac demonstrated >90 % removal of AFB1 within 5.0 h, while the observed degradation efficiency in corn oil and buffer was comparable. An insight into the adsorptive and degradative removal of AFB1 revealed that AFB1 removal was governed mainly by degradation. The coexistence of multi-mycotoxins did not significantly affect the AFB1 degradation capability of BF-NH2-Lac. Investigation of the degradation products revealed the transformation of AFB1 into non-toxic AFQ1, while corn oil quality remained unaffected after BF-NH2-Lac treatment. Hence, this study holds practical importance for the research, knowledge-base and industrial application of newly proposed immobilized enzyme products.


Subject(s)
Aflatoxin B1 , Charcoal , Corn Oil , Enzymes, Immobilized , Laccase , Laccase/metabolism , Laccase/chemistry , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Charcoal/chemistry , Aflatoxin B1/chemistry , Aflatoxin B1/metabolism , Corn Oil/chemistry , Porosity , Recycling
6.
Microb Cell Fact ; 23(1): 167, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849849

ABSTRACT

BACKGROUND: White-rot fungi are known to naturally produce high quantities of laccase, which exhibit commendable stability and catalytic efficiency. However, their laccase production does not meet the demands for industrial-scale applications. To address this limitation, it is crucial to optimize the conditions for laccase production. However, the regulatory mechanisms underlying different conditions remain unclear. This knowledge gap hinders the cost-effective application of laccases. RESULTS: In this study, we utilized transcriptomic and metabolomic data to investigate a promising laccase producer, Cerrena unicolor 87613, cultivated with fructose as the carbon source. Our comprehensive analysis of differentially expressed genes (DEGs) and differentially abundant metabolites (DAMs) aimed to identify changes in cellular processes that could affect laccase production. As a result, we discovered a complex metabolic network primarily involving carbon metabolism and amino acid metabolism, which exhibited contrasting changes between transcription and metabolic patterns. Within this network, we identified five biomarkers, including succinate, serine, methionine, glutamate and reduced glutathione, that played crucial roles in co-determining laccase production levels. CONCLUSIONS: Our study proposed a complex metabolic network and identified key biomarkers that determine the production level of laccase in the commercially promising Cerrena unicolor 87613. These findings not only shed light on the regulatory mechanisms of carbon sources in laccase production, but also provide a theoretical foundation for enhancing laccase production through strategic reprogramming of metabolic pathways, especially related to the citrate cycle and specific amino acid metabolism.


Subject(s)
Laccase , Metabolic Networks and Pathways , Laccase/metabolism , Laccase/genetics , Biomarkers/metabolism , Carbon/metabolism , Gene Expression Regulation, Fungal , Transcriptome , Polyporaceae/enzymology , Polyporaceae/genetics , Polyporaceae/metabolism , Fructose/metabolism , Metabolomics , Fungal Proteins/metabolism , Fungal Proteins/genetics
7.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892114

ABSTRACT

This study presents the effects of treating polystyrene (PS) cell culture plastic with oxidoreductase enzyme laccase and the catechol substrates caffeic acid (CA), L-DOPA, and dopamine on the culturing of normal human epidermal melanocytes (NHEMs) and human embryonal carcinoma cells (NTERA-2). The laccase-substrate treatment improved PS hydrophilicity and roughness, increasing NHEM and NTERA-2 adherence, proliferation, and NHEM melanogenesis to a level comparable with conventional plasma treatment. Cell adherence dynamics and proliferation were evaluated. The NHEM endpoint function was quantified by measuring melanin content. PS surfaces treated with laccase and its substrates demonstrated the forming of polymer-like structures. The surface texture roughness gradient and the peak curvature were higher on PS treated with a combination of laccase and substrates than laccase alone. The number of adherent NHEM and NTERA-2 was significantly higher than on the untreated surface. The proliferation of NHEM and NTERA-2 correspondingly increased on treated surfaces. NHEM melanin content was enhanced 6-10-fold on treated surfaces. In summary, laccase- and laccase-substrate-modified PS possess improved PS surface chemistry/hydrophilicity and altered roughness compared to untreated and plasma-treated surfaces, facilitating cellular adherence, subsequent proliferation, and exertion of the melanotic phenotype. The presented technology is easy to apply and creates a promising custom-made, substrate-based, cell-type-specific platform for both 2D and 3D cell culture.


Subject(s)
Caffeic Acids , Cell Proliferation , Dopamine , Laccase , Melanins , Melanocytes , Polystyrenes , Humans , Laccase/metabolism , Melanocytes/metabolism , Melanocytes/drug effects , Cell Proliferation/drug effects , Polystyrenes/chemistry , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Dopamine/metabolism , Melanins/metabolism , Cell Adhesion/drug effects , Levodopa/pharmacology , Levodopa/metabolism , Levodopa/chemistry , Surface Properties , Cell Line, Tumor , Embryonal Carcinoma Stem Cells/metabolism , Embryonal Carcinoma Stem Cells/drug effects
8.
Sci Rep ; 14(1): 14303, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906902

ABSTRACT

Dopamine is one of the significant neurotransmitters and its monitoring in biological fluids is a critical issue in healthcare and modern biomedical technology. Here, we have developed a dopamine biosensor based on surface plasmon resonance (SPR). For this purpose, the carboxymethyl dextran SPR chip was used as a surface to immobilize laccase as a bioaffinity recognition element. Data analysis exhibited that the acidic pH value is the optimal condition for dopamine interaction. Calculated kinetic affinity (KD) (48,545 nM), obtained from a molecular docking study, showed strong association of dopamine with the active site of laccase. The biosensor exhibited a linearity from 0.01 to 189 µg/ml and a lower detection limit of 0.1 ng/ml (signal-to-noise ratio (S/N) = 3) that is significantly higher than the most direct dopamine detecting sensors reported so far. Experiments for specificity in the presence of compounds that can co-exist with dopamine detection such as ascorbic acid, urea and L-dopa showed no significant interference. The current dopamine biosensor with high sensitivity and specificity, represent a novel detection tool that offers a label-free, simple procedure and cost effective monitoring system.


Subject(s)
Biosensing Techniques , Dopamine , Molecular Docking Simulation , Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Dopamine/analysis , Dopamine/metabolism , Biosensing Techniques/methods , Laccase/metabolism , Laccase/chemistry , Limit of Detection , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Kinetics , Hydrogen-Ion Concentration , Dextrans/chemistry
9.
J Hazard Mater ; 474: 134779, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850935

ABSTRACT

Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.


Subject(s)
Bacillus pumilus , Benzhydryl Compounds , Biodegradation, Environmental , Endocrine Disruptors , Laccase , Phenols , Benzhydryl Compounds/metabolism , Laccase/metabolism , Laccase/genetics , Phenols/metabolism , Bacillus pumilus/enzymology , Bacillus pumilus/genetics , Bacillus pumilus/metabolism , Endocrine Disruptors/metabolism , Hydrogen-Ion Concentration , Saccharomycetales/metabolism , Saccharomycetales/genetics
10.
Sci Rep ; 14(1): 13371, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862560

ABSTRACT

Broad-spectrum biocatalysts enzymes, Laccases, have been implicated in the complete degradation of harmful pollutants into less-toxic compounds. In this study, two extracellularly produced Laccases were purified to homogeneity from two different Ascomycetes spp. Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12). The purified enzymes are monomeric units, with a molecular mass of 44 kDa and 68.7 kDa for TlFLU1 and TpFLU12, respectively, on SDS-PAGE and zymogram. It reveals distinct properties beyond classic protein absorption at 270-280 nm, with TlFLU1's peak at 270 nm aligning with this typical range of type II Cu site (white Laccase), while TpFLU12's unique 600 nm peak signifies a type I Cu2+ site (blue Laccase), highlighting the diverse spectral fingerprints within the Laccase family. The Km and kcat values revealed that ABTS is the most suitable substrate as compared to 2,6-dimethoxyphenol, caffeic acid and guaiacol for both Laccases. The bioinformatics analysis revealed critical His, Ile, and Arg residues for copper binding at active sites, deviating from the traditional two His and a Cys motif in some Laccases. The predicted biological functions of the Laccases include oxidation-reduction, lignin metabolism, cellular metal ion homeostasis, phenylpropanoid catabolism, aromatic compound metabolism, cellulose metabolism, and biological adhesion. Additionally, investigation of degradation of polycyclic aromatic hydrocarbons (PAHs) by purified Laccases show significant reductions in residual concentrations of fluoranthene and anthracene after a 96-h incubation period. TlFLU1 Laccase achieved 39.0% and 44.9% transformation of fluoranthene and anthracene, respectively, while TpFLU12 Laccase achieved 47.2% and 50.0% transformation, respectively. The enzyme structure-function relationship study provided insights into the catalytic mechanism of these Laccases for possible biotechnological and industrial applications.


Subject(s)
Laccase , Talaromyces , Trichoderma , Talaromyces/enzymology , Laccase/metabolism , Laccase/chemistry , Laccase/isolation & purification , Laccase/genetics , Trichoderma/enzymology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/isolation & purification , Fungal Proteins/genetics , Substrate Specificity , Copper/metabolism , Kinetics , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/isolation & purification , Catalytic Domain
11.
Biotechnol Lett ; 46(4): 559-569, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38748066

ABSTRACT

The effective recovery of the immobilized enzymes using magnetic carriers has led to growing interest in this technology. The objective of this research was to evaluate the efficiency of immobilized laccase on magnetized multiwall carbon nanotubes (m-MWCNTs) in terms of stability and reusability. Laccases were efficiently adsorbed onto magnetized multiwall carbon nanotubes (m-MWCNTs) synthesized using water. The concentration of 7 mg laccase/mL was found to be ideal for immobilization. The optimal activity of both free and immobilized laccases was observed at pH 5, while for the latter, the optimal temperature was shifted from 40 to 50 °C. Compared to the free laccase, the immobilized laccase exhibited a greater range of stability at more extreme temperatures. At the fourth cycle of reactions, the immobilized laccase exhibited more than 60% relative activity in terms of reusability. Based on the fourier-transform infrared spectroscopy (FTIR) peak at 2921 cm-1, saccharification of paddy straw using immobilized laccase verified lignin degradation. The easy recovery of the immobilized laccase on m-MWCNTs lends credence to its potential use in biomass hydrolysis.


Subject(s)
Enzymes, Immobilized , Laccase , Nanotubes, Carbon , Laccase/chemistry , Laccase/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Nanotubes, Carbon/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , Temperature , Lignin/chemistry , Lignin/metabolism , Oryza/chemistry
12.
J Basic Microbiol ; 64(7): e2400049, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38715338

ABSTRACT

Endophytic microbial communities colonize plants growing under various abiotic stress conditions. Candelilla (Euphorbia antisyphilitica Zucc.) is a shrub that develops functionally in arid and semi-arid zones of Mexico; these conditions generate an association between the plant and the microorganisms, contributing to the production of enzymes as a defense mechanism for resistance to abiotic stress. The objective of this research was to isolate and identify endophyte fungi of candelilla and bioprospection of these endophytic fungi for enzyme production using candelilla by-products. Fungi were isolated and identified using ITS1/ITS4 sequencing. Their potency index (PI) was evaluated in producing endoglucanase, xylanase, amylase, and laccase. Fermentation was carried out at 30°C for 8 days at 200 rpm, with measurements every 2 days, using candelilla by-products as substrate. All fungi exhibited higher cellulase, amylase, and laccase activities on the 2nd, 6th, and 8th day of fermentation, respectively, of fermentation. The fungus Aspergillus niger ITD-IN4.1 showed the highest amylase activity (246.84 U/mg), the genus Neurospora showed the highest cellulase activity, reaching up to 13.45 FPU/mg, and the strain Neurospora sp. ITD-IN5.2 showed the highest laccase activity (3.46 U/mg). This work provides the first report on the endophytic diversity of E. antisyphilitica and its potential role in enzyme production.


Subject(s)
Bioprospecting , Cellulase , Endophytes , Fermentation , Laccase , Endophytes/isolation & purification , Endophytes/enzymology , Endophytes/metabolism , Endophytes/genetics , Laccase/metabolism , Laccase/biosynthesis , Cellulase/metabolism , Cellulase/biosynthesis , Amylases/metabolism , Aspergillus niger/isolation & purification , Aspergillus niger/enzymology , Mexico , Neurospora , Fungi/isolation & purification , Fungi/enzymology , Fungi/classification , Fungi/genetics
13.
Microbiol Spectr ; 12(6): e0401323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38712938

ABSTRACT

Laccases (EC 1.10.3.2) are oxidoreductases that belong to the multicopper oxidase subfamily and are classified as yellow/white or blue according to their absorption spectrum. Yellow laccases are more useful for industrial processes since they oxidize nonphenolic compounds in the absence of a redox mediator and stand out for being more stable and functional under extreme conditions. This study aimed to characterize a new laccase that was predicted to be present in the genome of Chitinophaga sp. CB10 - Lac_CB10. Lac_CB10, with a molecular mass of 100.06 kDa, was purified and characterized via biochemical assays using guaiacol as a substrate. The enzyme demonstrated extremophilic characteristics, exhibiting relative activity under alkaline conditions (CAPS buffer pH 10.5) and thermophilic conditions (80-90°C), as well as maintaining its activity above 50% for 5 h at 80°C and 90°C. Furthermore, Lac_CB10 presented a spectral profile typical of yellow laccases, exhibiting only one absorbance peak at 300 nm (at the T2/T3 site) and no peak at 600 nm (at the T1 site). When lignin was degraded using copper as an inducer, 52.27% of the material was degraded within 32 h. These results highlight the potential of this enzyme, which is a novel yellow laccase with thermophilic and alkaline activity and the ability to act on lignin. This enzyme could be a valuable addition to the biorefinery process. In addition, this approach has high potential for industrial application and in the bioremediation of contaminated environments since these processes often occur at extreme temperatures and pH values. IMPORTANCE: The characterization of the novel yellow laccase, Lac_CB10, derived from Chitinophaga sp. CB10, represents a significant advancement with broad implications. This enzyme displays exceptional stability and functionality under extreme conditions, operating effectively under both alkaline (pH 10.5) and thermophilic (80-90°C) environments. Its capability to maintain considerable activity over extended periods, even at high temperatures, showcases its potential for various industrial applications. Moreover, its distinctive ability to efficiently degrade lignin-demonstrated by a significant 52.27% degradation within 32 h-signifies a promising avenue for biorefinery processes. This newfound laccase's characteristics position it as a crucial asset in the realm of bioremediation, particularly in scenarios involving contamination at extreme pH and temperature levels. The study's findings highlight the enzyme's capacity to address challenges in industrial processes and environmental cleanup, signifying its vital role in advancing biotechnological solutions.


Subject(s)
Enzyme Stability , Laccase , Lignin , Laccase/metabolism , Laccase/genetics , Laccase/isolation & purification , Laccase/chemistry , Lignin/metabolism , Hydrogen-Ion Concentration , Bacteroidetes/enzymology , Bacteroidetes/genetics , Substrate Specificity , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Temperature , Biodegradation, Environmental , Guaiacol/metabolism , Copper/metabolism
14.
Molecules ; 29(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38792074

ABSTRACT

The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide-hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide-hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide-hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested.


Subject(s)
Hydrazones , Laccase , Hydrazones/pharmacology , Hydrazones/chemistry , Laccase/metabolism , Crops, Agricultural/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Ascomycota/drug effects , Animals , Plant Diseases/microbiology , Plant Diseases/prevention & control , Hydroxybenzoates/pharmacology , Hydroxybenzoates/chemistry , Botrytis/drug effects , Humans , Mice , Parabens
15.
J Colloid Interface Sci ; 669: 712-722, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38735253

ABSTRACT

The industrial applications of enzymes are usually hindered by the high production cost, intricate reusability, and low stability in terms of thermal, pH, salt, and storage. Therefore, the de novo design of nanozymes that possess the enzyme mimicking biocatalytic functions sheds new light on this field. Here, we propose a facile one-pot synthesis approach to construct Cu-chelated polydopamine nanozymes (PDA-Cu NPs) that can not only catalyze the chromogenic reaction of 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP), but also present enhanced photothermal catalytic degradation for typical textile dyes. Compared with natural laccase, the designed mimic has higher affinity to the substrate of 2,4-DP with Km of 0.13 mM. Interestingly, PDA-Cu nanoparticles are stable under extreme conditions (temperature, ionic strength, storage), are reusable for 6 cycles with 97 % activity, and exhibit superior substrate universality. Furthermore, PDA-Cu nanozymes show a remarkable acceleration of the catalytic degradation of dyes, malachite green (MG) and methylene blue (MB), under near-infrared (NIR) laser irradiation. These findings offer a promising paradigm on developing novel nanozymes for biomedicine, catalysis, and environmental engineering.


Subject(s)
Coloring Agents , Copper , Indoles , Laccase , Polymers , Copper/chemistry , Indoles/chemistry , Coloring Agents/chemistry , Laccase/chemistry , Laccase/metabolism , Catalysis , Polymers/chemistry , Particle Size , Surface Properties , Chlorophenols/chemistry , Chlorophenols/metabolism , Methylene Blue/chemistry , Methylene Blue/metabolism , Rosaniline Dyes
16.
J Hazard Mater ; 473: 134595, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38761769

ABSTRACT

A biocatalytic system comprising fungal laccase and mediators can generate phenol radicals and efficiently eliminate various triarylmethane dyes. This study systematically explores the kinetic impact of dissolved organic matter (DOM), represented by humic substance (HS consisting of 90% fulvic acid, from lignite), on the decolorization of seven typical triarylmethane dyes by Trametes versicolor laccase and twenty natural mediators. Among these, 4-hydroxybenzyl alcohol (4-HA) and methyl violet (MV) undergo in-depth investigation regarding degradation products, pathways, and reaction mechanisms. In instances where HS hampers laccase-alone decolorization, such as malachite green, Coomassie brilliant blue, bromophenol blue, and acid magenta, this inhibition may persist despite mediator introduction. Conversely, in cases where HS facilitates decolorization, such as crystalline violet and ethyl violet, most laccase-mediator systems (LMSs) can still benefit. For MV decolorization by laccase and 4-HA, HS's kinetic effect is controlled by concentration and reaction time. A 5 mg/L HS increased the decolorization rate from 50% to 67% within the first hour, whereas 10 mg/L HS only achieved 45%. After 16 h of reaction, HS's impact on decolorization rate diminishes. Furthermore, the addition of HS enhances precipitation production, probably due to its involvement in polymerization with MV and mediator. Computational simulations and spectral monitoring reveal that low HS concentrations accelerate laccase-mediated demethylation by disrupting the chromophores bound to MV, thus promoting the decolorization of MV. Conversely, inhibition by high HS concentrations stems from the competitive binding of the enzyme pocket to the mediator, and the reduction of phenol free radicals in the system. Molecular docking and kinetic simulations revealed that laccase forms complexes with both the mediator and MV. Interestingly, the decolorization of MV occurred through a non-radical mechanism in the presence of HS. This work provided a reference for screening of high catalytic performance mediators to remove triarylmethane dyes in the actual water environment.


Subject(s)
Coloring Agents , Laccase , Laccase/metabolism , Laccase/chemistry , Coloring Agents/chemistry , Humic Substances , Kinetics , Water Pollutants, Chemical/chemistry , Benzopyrans/chemistry , Molecular Docking Simulation , Polyporaceae/enzymology
17.
J Agric Food Chem ; 72(23): 13371-13381, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809574

ABSTRACT

The enzymatic biodegradation of mycotoxins in food and feed has attracted the most interest in recent years. In this paper, the laccase gene from Bacillus swezeyi was cloned and expressed in Escherichia coli BL 21(D3). The sequence analysis indicated that the gene consisted of 1533 bp. The purified B. swezeyi laccase was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis -12% with an estimated molecular weight of 56.7 kDa. The enzyme is thermo-alkali-tolerant, displaying the optimal degradation of zearalenone (ZEN) and aflatoxin B1 (AFB1) at pH 8 and 9, with incubation temperatures of 55 and 50 °C, respectively, within 24 h. The degradation potentials of the 50 µg of the enzyme against ZEN (5.0 µg/mL) and AFB1 (2.5 µg/mL) were 99.60 and 96.73%, respectively, within 24 h. To the best of our knowledge, this is the first study revealing the recombinant production of laccase from B. swezeyi, its biochemical properties, and potential use in ZEN and AFB1 degradation in vitro and in vivo.


Subject(s)
Aflatoxin B1 , Bacillus , Bacterial Proteins , Enzyme Stability , Laccase , Recombinant Proteins , Zearalenone , Laccase/genetics , Laccase/metabolism , Laccase/chemistry , Aflatoxin B1/metabolism , Aflatoxin B1/chemistry , Zearalenone/metabolism , Zearalenone/chemistry , Bacillus/enzymology , Bacillus/genetics , Bacillus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Hydrogen-Ion Concentration , Temperature , Molecular Weight , Escherichia coli/genetics , Escherichia coli/metabolism , Cloning, Molecular , Alkalies/metabolism , Alkalies/chemistry
18.
Chemosphere ; 360: 142370, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763399

ABSTRACT

Decolorization of textile dyes and study of their intermediate compounds is necessary to comprehend the mechanism of dye degradation. In the present study, different fungal mediated solutions were explored to provide an alternative to treat the reactive dyes. Growing biomass of Pleurotus sajor caju showed 83% decolorization (249.99 mg L-1 removal) of Reactive Blue 13 (RB 13) and 63% decolorization (188.83 mg L-1) of Reactive Black 5 (RB 5) at 300 mg L-1 initial concentration on 8 d. Higher laccase activity was positively correlated with increase in decolorization. However, increasing dye concentration has inhibitory effect on fungal biomass due to increase in toxicity. In laccase mediated decolorization, laccase produced from P. sajor caju using carbon rich waste material as substrate showed 89% decolorization (276.36 mg L-1 removal) of RB 13 and 33% decolorization (105.37 mg L-1 removal) of RB 5 at 300 mg L-1 initial dye concentration in 100 min at 30 °C and pH 3.0'. Comparing the two methods, laccase-mediated decolorization shows better decolorization in less time and does not produce sludge. Further, the present work also attempted to study the dye degradation pathway for Reactive blue 13 via laccase mediated process. Fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) were utilized to identify the degraded products. The GC-MS analysis showed the formation of naphthalene, naphthalene 2-ol, benzene,1-2, dicarboxylic acid, 4, amino, 6,chloro, 1-3-5, triazin-2-ol as the final degraded products after enzymatic degradation of RB 13. These findings provide in-depth study of laccase-mediated textile dye degradation mechanism.


Subject(s)
Biodegradation, Environmental , Coloring Agents , Fungi , Textiles , Coloring Agents/chemistry , Coloring Agents/toxicity , Fungi/metabolism , Gas Chromatography-Mass Spectrometry , Laccase/metabolism
19.
BMC Microbiol ; 24(1): 181, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789935

ABSTRACT

BACKGROUND: Lignin is an intricate phenolic polymer found in plant cell walls that has tremendous potential for being converted into value-added products with the possibility of significantly increasing the economics of bio-refineries. Although lignin in nature is bio-degradable, its biocatalytic conversion is challenging due to its stable complex structure and recalcitrance. In this context, an understanding of strain's genomics, enzymes, and degradation pathways can provide a solution for breaking down lignin to unlock the full potential of lignin as a dominant valuable bioresource. A gammaproteobacterial strain AORB19 has been isolated previously from decomposed wood based on its high laccase production. This work then focused on the detailed genomic and functional characterization of this strain based on whole genome sequencing, the identification of lignin degradation products, and the strain's laccase production capabilities on various agro-industrial residues. RESULTS: Lignin degrading bacterial strain AORB19 was identified as Serratia quinivorans based on whole genome sequencing and core genome phylogeny. The strain comprised a total of 123 annotated CAZyme genes, including ten cellulases, four hemicellulases, five predicted carbohydrate esterase genes, and eight lignin-degrading enzyme genes. Strain AORB19 was also found to possess genes associated with metabolic pathways such as the ß-ketoadipate, gentisate, anthranilate, homogentisic, and phenylacetate CoA pathways. LC-UV analysis demonstrated the presence of p-hydroxybenzaldehyde and vanillin in the culture media which constitutes potent biosignatures indicating the strain's capability to degrade lignin. Finally, the study evaluated the laccase production of Serratia AORB19 grown with various industrial raw materials, with the highest activity detected on flax seed meal (257.71 U/L), followed by pea hull (230.11 U/L), canola meal (209.56 U/L), okara (187.67 U/L), and barley malt sprouts (169.27 U/L). CONCLUSIONS: The whole genome analysis of Serratia quinivorans AORB19, elucidated a repertoire of genes, pathways and enzymes vital for lignin degradation that widens the understanding of ligninolytic metabolism among bacterial lignin degraders. The LC-UV analysis of the lignin degradation products coupled with the ability of S. quinivorans AORB19 to produce laccase on diverse agro-industrial residues underscores its versatility and its potential to contribute to the economic viability of bio-refineries.


Subject(s)
Laccase , Lignin , Serratia , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genome, Bacterial , Genomics , Laccase/metabolism , Laccase/genetics , Lignin/metabolism , Phylogeny , Serratia/genetics , Serratia/metabolism , Serratia/classification , Whole Genome Sequencing
20.
Microb Cell Fact ; 23(1): 150, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790055

ABSTRACT

BACKGROUND: Azo dyes represent a common textile dye preferred for its high stability on fabrics in various harsh conditions. Although these dyes pose high-risk levels for all biological forms, fungal laccase is known as a green catalyst for its ability to oxidize numerous dyes. METHODS: Trichoderma isolates were identified and tested for laccase production. Laccase production was optimized using Plackett-Burman Design. Laccase molecular weight and the kinetic properties of the enzyme, including Km and Vmax, pH, temperature, and ionic strength, were detected. Azo dye removal efficiency by laccase enzyme was detected for Congo red, methylene blue, and methyl orange. RESULTS: Eight out of nine Trichoderma isolates were laccase producers. Laccase production efficiency was optimized by the superior strain T. harzianum PP389612, increasing production from 1.6 to 2.89 U/ml. In SDS-PAGE, purified laccases appear as a single protein band with a molecular weight of 41.00 kDa. Km and Vmax values were 146.12 µmol guaiacol and 3.82 µmol guaiacol/min. Its activity was stable in the pH range of 5-7, with an optimum temperature range of 40 to 50 °C, optimum ionic strength of 50 mM NaCl, and thermostability properties up to 90 °C. The decolorization efficiency of laccase was increased by increasing the time and reached its maximum after 72 h. The highest efficiency was achieved in Congo red decolorization, which reached 99% after 72 h, followed by methylene blue at 72%, while methyl orange decolorization efficiency was 68.5%. CONCLUSION: Trichoderma laccase can be used as an effective natural bio-agent for dye removal because it is stable and removes colors very well.


Subject(s)
Azo Compounds , Coloring Agents , Laccase , Temperature , Laccase/metabolism , Laccase/chemistry , Laccase/isolation & purification , Azo Compounds/metabolism , Coloring Agents/metabolism , Coloring Agents/chemistry , Kinetics , Hydrogen-Ion Concentration , Congo Red/metabolism , Osmolar Concentration , Hypocreales/enzymology , Hypocreales/metabolism , Biodegradation, Environmental , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...