Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.189
Filter
1.
Signal Transduct Target Ther ; 9(1): 159, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937432

ABSTRACT

The ORF9b protein, derived from the nucleocapsid's open-reading frame in both SARS-CoV and SARS-CoV-2, serves as an accessory protein crucial for viral immune evasion by inhibiting the innate immune response. Despite its significance, the precise regulatory mechanisms underlying its function remain elusive. In the present study, we unveil that the ORF9b protein of SARS-CoV-2, including emerging mutant strains like Delta and Omicron, can undergo ubiquitination at the K67 site and subsequent degradation via the proteasome pathway, despite certain mutations present among these strains. Moreover, our investigation further uncovers the pivotal role of the translocase of the outer mitochondrial membrane 70 (TOM70) as a substrate receptor, bridging ORF9b with heat shock protein 90 alpha (HSP90α) and Cullin 5 (CUL5) to form a complex. Within this complex, CUL5 triggers the ubiquitination and degradation of ORF9b, acting as a host antiviral factor, while HSP90α functions to stabilize it. Notably, treatment with HSP90 inhibitors such as GA or 17-AAG accelerates the degradation of ORF9b, leading to a pronounced inhibition of SARS-CoV-2 replication. Single-cell sequencing data revealed an up-regulation of HSP90α in lung epithelial cells from COVID-19 patients, suggesting a potential mechanism by which SARS-CoV-2 may exploit HSP90α to evade the host immunity. Our study identifies the CUL5-TOM70-HSP90α complex as a critical regulator of ORF9b protein stability, shedding light on the intricate host-virus immune response dynamics and offering promising avenues for drug development against SARS-CoV-2 in clinical settings.


Subject(s)
COVID-19 , Cullin Proteins , HSP90 Heat-Shock Proteins , SARS-CoV-2 , Ubiquitination , Virus Replication , Humans , Cullin Proteins/genetics , Cullin Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/drug effects , Virus Replication/drug effects , Virus Replication/genetics , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , COVID-19/virology , COVID-19/genetics , COVID-19/metabolism , COVID-19/immunology , Ubiquitination/genetics , HEK293 Cells , Benzoquinones/pharmacology , Protein Stability , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism , Lactams, Macrocyclic
2.
Anal Chim Acta ; 1312: 342755, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834267

ABSTRACT

BACKGROUND: Identifying drug-binding targets and their corresponding sites is crucial for drug discovery and mechanism studies. Limited proteolysis-coupled mass spectrometry (LiP-MS) is a sophisticated method used for the detection of compound and protein interactions. However, in some cases, LiP-MS cannot identify the target proteins due to the small structure changes or the lack of enrichment of low-abundant protein. To overcome this drawback, we developed a thermostability-assisted limited proteolysis-coupled mass spectrometry (TALiP-MS) approach for efficient drug target discovery. RESULTS: We proved that the novel strategy, TALiP-MS, could efficiently identify target proteins of various ligands, including cyclosporin A (a calcineurin inhibitor), geldanamycin (an HSP90 inhibitor), and staurosporine (a kinase inhibitor), with accurately recognizing drug-binding domains. The TALiP protocol increased the number of target peptides detected in LiP-MS experiments by 2- to 8-fold. Meanwhile, the TALiP-MS approach can not only identify both ligand-binding stability and destabilization proteins but also shows high complementarity with the thermal proteome profiling (TPP) and machine learning-based limited proteolysis (LiP-Quant) methods. The developed TALiP-MS approach was applied to identify the target proteins of celastrol (CEL), a natural product known for its strong antioxidant and anti-cancer angiogenesis effect. Among them, four proteins, MTHFD1, UBA1, ACLY, and SND1 were further validated for their strong affinity to CEL by using cellular thermal shift assay. Additionally, the destabilized proteins induced by CEL such as TAGLN2 and CFL1 were also validated. SIGNIFICANCE: Collectively, these findings underscore the efficacy of the TALiP-MS method for identifying drug targets, elucidating binding sites, and even detecting drug-induced conformational changes in target proteins in complex proteomes.


Subject(s)
Proteolysis , Humans , Mass Spectrometry/methods , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Benzoquinones/chemistry , Benzoquinones/pharmacology , Temperature , Pentacyclic Triterpenes/chemistry , Cyclosporine/pharmacology , Cyclosporine/chemistry , Cyclosporine/metabolism , Staurosporine/pharmacology , Staurosporine/metabolism , Ligands , Drug Discovery , Binding Sites
3.
Viruses ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38932215

ABSTRACT

BACKGROUND: Lipids, as a fundamental cell component, play an regulating role in controlling the different cellular biological processes involved in viral infections. A notable feature of coronavirus disease 2019 (COVID-19) is impaired lipid metabolism. The function of lipophagy-related genes in COVID-19 is unknown. The present study aimed to investigate biomarkers and drug targets associated with lipophagy and lipophagy-based therapeutic agents for COVID-19 through bioinformatics analysis. METHODS: Lipophagy-related biomarkers for COVID-19 were identified using machine learning algorithms such as random forest, Support Vector Machine-Recursive Feature Elimination, Generalized Linear Model, and Extreme Gradient Boosting in three COVID-19-associated GEO datasets: scRNA-seq (GSE145926) and bulk RNA-seq (GSE183533 and GSE190496). The cMAP database was searched for potential COVID-19 medications. RESULTS: The lipophagy pathway was downregulated, and the lipid droplet formation pathway was upregulated, resulting in impaired lipid metabolism. Seven lipophagy-related genes, including ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2, were used as biomarkers and drug targets for COVID-19. Moreover, lipophagy may play a role in COVID-19 pathogenesis. As prospective drugs for treating COVID-19, seven potential downregulators (phenoxybenzamine, helveticoside, lanatoside C, geldanamycin, loperamide, pioglitazone, and trichostatin A) were discovered. These medication candidates showed remarkable binding energies against the seven biomarkers. CONCLUSIONS: The lipophagy-related genes ACADVL, HYOU1, DAP, AUP1, PRXAB2, LSS, and PLIN2 can be used as biomarkers and drug targets for COVID-19. Seven potential downregulators of these seven biomarkers may have therapeutic effects for treating COVID-19.


Subject(s)
Antiviral Agents , Biomarkers , COVID-19 Drug Treatment , COVID-19 , Lipid Metabolism , SARS-CoV-2 , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , SARS-CoV-2/genetics , COVID-19/virology , Lipid Metabolism/drug effects , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Computational Biology/methods , Machine Learning , Lactams, Macrocyclic/therapeutic use , Hydroxamic Acids/therapeutic use , Hydroxamic Acids/pharmacology , Benzoquinones/pharmacology , Benzoquinones/therapeutic use
4.
ACS Nano ; 18(26): 17145-17161, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38906828

ABSTRACT

The induction of heat stress response (HSR) mediated by the generation of heat shock proteins (HSPs) on exposure to magnetic hyperthermia-mediated cancer therapy (MHCT) decreases the efficacy of localized heat treatment at the tumor site, and thus therapy remains a significant challenge. Hence, the present study examined differential HSR elicited in glioma cells post-MHCT under different tumor microenvironment conditions (2D monolayers, 3D monoculture, and coculture spheroids) to recognize target genes that, when downregulated, could enhance the therapeutic effect of MHCT. Gene expression analysis following MHCT revealed that HSP90 was upregulated as compared to HSP70. Hence, to enhance the efficacy of the treatment, a combinatorial strategy using 17-DMAG as an inhibitor of HSP90 following MHCT was investigated. The effects of combinatorial therapy in terms of cell viability, HSP levels by immunofluorescence and gene expression analysis, oxidative stress generation, and alterations in cellular integrity were evaluated, where combinatorial therapy demonstrated an enhanced therapeutic outcome with maximum glioma cell death. Further, in the murine glioma model, a rapid tumor inhibition of 65 and 53% was observed within 8 days at the primary and secondary tumor sites, respectively, in the MCHT + 17-DMAG group, with abscopal effect-mediated complete tumor inhibition at both the tumor sites within 20 days of MHCT. The extracellularly released HSP90 from dying tumor cells further suggested the induction of immune response supported by the upregulation of IFN-γ and calreticulin genes in the MHCT + 17-DMAG group. Overall, our findings indicate that MHCT activates host immune systems and efficiently cooperates with the HSP90 blockade to inhibit the growth of distant metastatic tumors.


Subject(s)
Benzoquinones , Glioma , HSP90 Heat-Shock Proteins , Hyperthermia, Induced , Lactams, Macrocyclic , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Glioma/therapy , Glioma/pathology , Glioma/immunology , Glioma/drug therapy , Animals , Mice , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Humans , Benzoquinones/pharmacology , Benzoquinones/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Tumor Microenvironment/drug effects
5.
Aliment Pharmacol Ther ; 60(2): 201-211, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38695095

ABSTRACT

BACKGROUND: Sofosbuvir, velpatasvir and voxilaprevir (SOF/VEL/VOX) is the recommended rescue therapy for patients with chronic hepatitis C infection who fail direct-acting antivirals (DAAs). Data are limited on the effectiveness of this treatment after the current first-line therapies. Our aim was to analyse the effectiveness and safety of SOF/VEL/VOX among patients failing sofosbuvir/velpatasvir (SOF/VEL) or glecaprevir/pibrentasvir (GLE/PIB). METHODS: Retrospective multicentre study (26 Spanish hospitals), including chronic hepatitis C patients unsuccessfully treated with SOF/VEL or GLE/PIB, and retreated with SOF/VEL/VOX ± ribavirin for 12 weeks between December 2017 and December 2022. RESULTS: In total, 142 patients included: 100 (70.4%) had failed SOF/VEL and 42 (29.6%) GLE/PIB. Patients were mainly men (84.5%), White (93.9%), with hepatitis C virus genotype (GT) 3 (49.6%) and 47.2% had liver cirrhosis. Sustained virological response (SVR) was evaluated in 132 patients who completed SOF/VEL/VOX and were followed 12 weeks after end of treatment; 117 (88.6%) achieved SVR. There were no significant differences in SVR rates according to initial DAA treatment (SOF/VEL 87.9% vs. GLE/PIB 90.2%, p = 0.8), cirrhosis (no cirrhosis 90% vs. cirrhosis 87.1%, p = 0.6) or GT3 infection (non-GT3 91.9% vs. GT3 85.5%, p = 0.3). However, when considering the concurrent presence of SOF/VEL treatment, cirrhosis and GT3 infection, SVR rates dropped to 82.8%. Ribavirin was added in 8 (6%) patients, all achieved SVR. CONCLUSION: SOF/VEL/VOX is an effective rescue therapy for failures to SOF/VEL or GLE/PIB, with an SVR of 88.6%. Factors previously linked to lower SVR rates, such as GT3 infection, cirrhosis and first-line therapy with SOF/VEL were not associated with lower SVRs.


Subject(s)
Aminoisobutyric Acids , Antiviral Agents , Benzimidazoles , Carbamates , Cyclopropanes , Hepatitis C, Chronic , Heterocyclic Compounds, 4 or More Rings , Proline , Quinoxalines , Sofosbuvir , Sulfonamides , Sustained Virologic Response , Humans , Male , Female , Hepatitis C, Chronic/drug therapy , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Antiviral Agents/therapeutic use , Sofosbuvir/therapeutic use , Carbamates/therapeutic use , Middle Aged , Retrospective Studies , Sulfonamides/therapeutic use , Benzimidazoles/therapeutic use , Quinoxalines/therapeutic use , Proline/analogs & derivatives , Proline/therapeutic use , Cyclopropanes/therapeutic use , Aged , Pyrrolidines/therapeutic use , Lactams, Macrocyclic/therapeutic use , Drug Combinations , Leucine/analogs & derivatives , Leucine/therapeutic use , Drug Therapy, Combination , Treatment Outcome , Hepacivirus/genetics , Hepacivirus/drug effects , Benzopyrans
6.
PLoS One ; 19(5): e0299424, 2024.
Article in English | MEDLINE | ID: mdl-38781172

ABSTRACT

Mutations in the non-structural protein regions of hepatitis C virus (HCV) are a cause of a non-sustained virological response (SVR) to treatment with direct-acting antivirals (DAAs) for chronic hepatitis; however, there are non-SVR cases without these mutations. In this study, we examined immune cell profiles in peripheral blood before and after ombitasvir/paritaprevir/ritonavir treatment and screened for genes that could be used to predict the therapeutic effects of DAAs. Fluorescence-activated cell sorting analysis indicated that the median frequencies of programmed cell death-1-positive (PD-1+) effector regulatory T cells (eTregs), PD-1+CD8+ T cells, and PD-1+Helper T cells were decreased significantly in SVR cases, but without significant changes in non-SVR cases. The frequency of PD-1+ naïve Tregs was significantly higher in the SVR group than in the non-SVR group before and after treatment. Similar results were found in patients treated with other DAAs (e.g., daclatasvir plus asunaprevir) and supported an immune response after HCV therapy. RNA-sequencing analysis indicated a significant increase in the expression of genes associated with the immune response in the SVR group, while genes related to intracellular and extracellular signal transduction were highly expressed in the non-SVR group. Therefore, we searched for genes associated with PD-1+ eTregs and CD8+ T cells that were significantly different between the SVR and non-SVR groups and found that T-box transcription factor 21 was associated with the non-SVR state. These results indicate that PD-1-related signaling pathways are associated with a non-SVR mechanism after DAAs treatment separate from mutation-related drug resistance.


Subject(s)
Antiviral Agents , CD8-Positive T-Lymphocytes , Carbamates , Hepacivirus , Hepatitis C, Chronic , Programmed Cell Death 1 Receptor , Sulfonamides , T-Lymphocytes, Regulatory , Humans , Antiviral Agents/therapeutic use , Male , Hepacivirus/drug effects , Hepacivirus/immunology , Hepacivirus/genetics , Female , Middle Aged , Carbamates/therapeutic use , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/immunology , Sulfonamides/therapeutic use , Sulfonamides/pharmacology , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/virology , Hepatitis C, Chronic/blood , Cyclopropanes/therapeutic use , Valine/analogs & derivatives , Proline/analogs & derivatives , Anilides/therapeutic use , Anilides/pharmacology , Lactams, Macrocyclic/therapeutic use , Macrocyclic Compounds/therapeutic use , Macrocyclic Compounds/pharmacology , Aged , Ritonavir/therapeutic use , Adult , Drug Therapy, Combination , T-Lymphocytes, Helper-Inducer/immunology , Imidazoles , Isoquinolines , Pyrrolidines
7.
J Agric Food Chem ; 72(23): 13164-13174, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38819965

ABSTRACT

Obtaining a microorganism strain with a broad-spectrum resistance property and highly efficient antifungal activity is important to the biocontrol strategy. Herein, a marine Streptomyces sp. HNBCa1 demonstrated a broad-spectrum resistance to 17 tested crop pathogenic fungi and exhibited a high biocontrol efficiency against mango anthracnose and banana fusarium wilt. To uncover the critical bioactive secondary metabolites basis, genome assembly and annotation, metabolomic analysis, and a semipreparative HPLC-based activity-guide method were employed. Finally, geldanamycin and ectoine involved in codifferential secondary metabolites were also found to be related to biosynthetic gene clusters in the genome of HNBCa1. Reblastatin and geldanamycin were uncovered in response to broad-spectrum resistance to the 17 crop pathogenic fungi. Our results suggested that reblastatin and geldanamycin were critical to maintaining the broad-spectrum resistance property and highly efficient antifungal activity of HNBCa1, which could be further developed as a biological control agent to control crop fungal diseases.


Subject(s)
Fusarium , Lactams, Macrocyclic , Plant Diseases , Secondary Metabolism , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/chemistry , Plant Diseases/microbiology , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/metabolism , Lactams, Macrocyclic/chemistry , Fusarium/drug effects , Benzoquinones/pharmacology , Benzoquinones/metabolism , Benzoquinones/chemistry , Fungi/genetics , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Antifungal Agents/chemistry
8.
Anticancer Res ; 44(6): 2555-2565, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821604

ABSTRACT

BACKGROUND/AIM: Breast cancer is the most prevalent form of cancer among women worldwide, with a high mortality rate. While the most common cause of breast cancer death is metastasis, there is currently no potential treatment for patients at the metastatic stage. The present study investigated the potential of using a combination of HSP90 and mTOR inhibitor in the treatment of breast cancer cell growth, migration, and invasion. MATERIALS AND METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) was used to investigate the gene expression profiles. Western blot analysis and fluorescence staining were used for protein expression and localization, respectively. MTT, wound healing, and transwell invasion assays were used for cell proliferation, migration, and invasion, respectively. RESULTS: GEPIA demonstrated that HSP90 expression was significantly higher in breast invasive carcinoma compared to other tumor types, and this expression correlated with mTOR levels. Treatment with 17-AAG, an HSP90 inhibitor, and Torkinib, an mTORC1/2 inhibitor, significantly inhibited cell proliferation. Moreover, combination treatment led to down-regulation of AKT. Morphological changes revealed a reduction in F-actin intensity, a marked reduction of YAP, with interference in nuclear localization. CONCLUSION: Targeting HSP90 and mTOR has the potential to suppress breast cancer cell growth and progression by disrupting AKT signaling and inhibiting F-actin polymerization. This combination treatment may hold promise as a therapeutic strategy for breast cancer treatment that ameliorates adverse effects of a single treatment.


Subject(s)
Actins , Breast Neoplasms , Cell Movement , Cell Proliferation , HSP90 Heat-Shock Proteins , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Phosphorylation/drug effects , Actins/metabolism , Actins/genetics , Cell Line, Tumor , Neoplasm Invasiveness , Signal Transduction/drug effects , Lactams, Macrocyclic/pharmacology , Benzoquinones/pharmacology , MTOR Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects
9.
Sci Rep ; 14(1): 10244, 2024 05 03.
Article in English | MEDLINE | ID: mdl-38702350

ABSTRACT

Access to Hepatis C treatment in Sub-Saharan Africa is a clinical, public health and ethical concern. The multi-country open-label trial TAC ANRS 12311 allowed assessing the feasibility, safety, efficacy of a specific care model of HCV treatment and retreatment in patients with hepatitis C in Sub Saharan Africa. Between November 2015 and March 2017, with follow-up until mid 2019, treatment-naïve patients with HCV without decompensated cirrhosis or liver cancer were recruited to receive 12 week-treatment with either sofosbuvir + ribavirin (HCV genotype 2) or sofosbuvir + ledipasvir (genotype 1 or 4) and retreatment with sofosbuvir + velpatasvir + voxilaprevir in case of virological failure. The primary outcome was sustained virological response at 12 weeks after end of treatment (SVR12). Secondary outcomes included treatment adherence, safety and SVR12 in patients who were retreated due to non-response to first-line treatment. The model of care relied on both viral load assessment and educational sessions to increase patient awareness, adherence and health literacy. The study recruited 120 participants, 36 HIV-co-infected, and 14 cirrhotic. Only one patient discontinued treatment because of return to home country. Neither death nor severe adverse event occurred. SVR12 was reached in 107 patients (89%): (90%) in genotype 1 or 2, and 88% in GT-4. All retreated patients (n = 13) reached SVR12. HCV treatment is highly acceptable, safe and effective under this model of care. Implementation research is now needed to scale up point-of-care HCV testing and SVR assessment, along with community involvement in patient education, to achieve HCV elimination in Sub-Saharan Africa.


Subject(s)
Antiviral Agents , Hepacivirus , Sofosbuvir , Adult , Female , Humans , Male , Middle Aged , Africa, Central , Africa, Western , Aminoisobutyric Acids , Antiviral Agents/therapeutic use , Antiviral Agents/adverse effects , Benzimidazoles/therapeutic use , Benzimidazoles/adverse effects , Benzopyrans , Carbamates/therapeutic use , Cyclopropanes/therapeutic use , Cyclopropanes/adverse effects , Drug Therapy, Combination , Feasibility Studies , Fluorenes/therapeutic use , Fluorenes/adverse effects , Genotype , Hepacivirus/genetics , Hepacivirus/drug effects , Hepatitis C/drug therapy , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Heterocyclic Compounds, 4 or More Rings/adverse effects , Lactams, Macrocyclic , Leucine/analogs & derivatives , Proline/analogs & derivatives , Proline/therapeutic use , Quinoxalines , Ribavirin/therapeutic use , Ribavirin/adverse effects , Sofosbuvir/therapeutic use , Sofosbuvir/adverse effects , Sulfonamides/therapeutic use , Sulfonamides/adverse effects , Sustained Virologic Response , Treatment Outcome
10.
Life Sci ; 348: 122699, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38718854

ABSTRACT

AIMS: Azoles have been widely employed for the treatment of invasive fungal diseases; however, their efficacy is diminished as pathogenic fungi tolerate them due to their fungistatic properties. Geldanamycin (GdA) can render azoles fungicidal by inhibiting the ATPase and molecular chaperone activities of heat shock protein 90 (Hsp90). Nonetheless, the clinical applicability of GdA is restricted due to its cytotoxic ansamycin scaffold structure, its induction of cytoprotective heat shock responses, and the conservative nature of Hsp90. Hence, it is imperative to elucidate the mechanism of action of GdA to confer fungicidal properties to azoles and mitigate the toxic adverse effects associated with GdA. MATERIALS AND METHODS: Through various experimental methods, including the construction of gene-deleted Candida albicans mutants, in vitro drug sensitivity experiments, Western blot analysis, reactive oxygen species (ROS) assays, and succinate dehydrogenase activity assays, we identified Hsp90 client proteins associated with the tolerance of C. albicans to azoles. KEY FINDINGS: It was observed that GdA effectively hindered the entry of Hsp90 into mitochondria, resulting in the alleviation of inhibitory effect of Hsp90 on succinate dehydrogenase. Consequently, the activation of succinate dehydrogenase led to an increased production of ROS. within the mitochondria, thereby facilitating the antifungal effects of azoles against C. albicans. SIGNIFICANCE: This research presents a novel approach for conferring fungicidal properties to azoles, which involves specifically disrupting the interaction of between Hsp90 and succinate dehydrogenase rather than employing a non-specific inhibition of ATPase activity of Hsp90.


Subject(s)
Antifungal Agents , Azoles , Benzoquinones , Candida albicans , HSP90 Heat-Shock Proteins , Lactams, Macrocyclic , Reactive Oxygen Species , Succinate Dehydrogenase , Benzoquinones/pharmacology , Lactams, Macrocyclic/pharmacology , Candida albicans/drug effects , Antifungal Agents/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/antagonists & inhibitors , Azoles/pharmacology , Reactive Oxygen Species/metabolism , Microbial Sensitivity Tests , Mitochondria/drug effects , Mitochondria/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Drug Resistance, Fungal/drug effects
11.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38658187

ABSTRACT

Species from Candida parapsilosis complex are frequently found in neonatal candidemia. The antifungal agents to treat this infection are limited and the occurrence of low in vitro susceptibility to echinocandins such as micafungin has been observed. In this context, the chaperone Hsp90 could be a target to reduce resistance. Thus, the objective of this research was to identify isolates from the C. parapsilosis complex and verify the action of Hsp90 inhibitors associated with micafungin. The fungal identification was based on genetic sequencing and mass spectrometry. Minimal inhibitory concentrations were determined by broth microdilution method according to Clinical Laboratory and Standards Institute. The evaluation of the interaction between micafungin with Hsp90 inhibitors was realized using the checkerboard methodology. According to the polyphasic taxonomy, C. parapsilosis sensu stricto was the most frequently identified, followed by C. orthopsilosis and C. metapsilosis, and one isolate of Lodderomyces elongisporus was identified by genetic sequencing. The Hsp90 inhibitor geladanamycin associated with micafungin showed a synergic effect in 31.25% of the isolates, a better result was observed with radicicol, which shows synergic effect in 56.25% tested yeasts. The results obtained demonstrate that blocking Hsp90 could be effective to reduce antifungal resistance to echinocandins.


Subject(s)
Antifungal Agents , Candida parapsilosis , Candidemia , HSP90 Heat-Shock Proteins , Micafungin , Humans , Infant, Newborn , Antifungal Agents/pharmacology , Benzoquinones/pharmacology , Candida parapsilosis/drug effects , Candida parapsilosis/isolation & purification , Candida parapsilosis/genetics , Candidemia/microbiology , Drug Resistance, Fungal , Drug Synergism , Echinocandins/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Lactams, Macrocyclic/pharmacology , Lipopeptides/pharmacology , Micafungin/pharmacology , Microbial Sensitivity Tests
12.
Commun Biol ; 7(1): 412, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575808

ABSTRACT

The CLIP1-LTK fusion was recently discovered as a novel oncogenic driver in non-small cell lung cancer (NSCLC). Lorlatinib, a third-generation ALK inhibitor, exhibited a dramatic clinical response in a NSCLC patient harboring CLIP1-LTK fusion. However, it is expected that acquired resistance will inevitably develop, particularly by LTK mutations, as observed in NSCLC induced by oncogenic tyrosine kinases treated with corresponding tyrosine kinase inhibitors (TKIs). In this study, we evaluate eight LTK mutations corresponding to ALK mutations that lead to on-target resistance to lorlatinib. All LTK mutations show resistance to lorlatinib with the L650F mutation being the highest. In vitro and in vivo analyses demonstrate that gilteritinib can overcome the L650F-mediated resistance to lorlatinib. In silico analysis suggests that introduction of the L650F mutation may attenuate lorlatinib-LTK binding. Our study provides preclinical evaluations of potential on-target resistance mutations to lorlatinib, and a novel strategy to overcome the resistance.


Subject(s)
Aminopyridines , Carcinoma, Non-Small-Cell Lung , Lactams , Lung Neoplasms , Pyrazoles , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/therapeutic use , Drug Resistance, Neoplasm/genetics , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/therapeutic use , Mutation , Cytoskeletal Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics
13.
J Antibiot (Tokyo) ; 77(6): 393-396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594387

ABSTRACT

A new polycyclic tetramate macrolactam designated allostreptamide (1), together with four known congeners, were isolated from the culture extract of Allostreptomyces RD068384. The planar structure of the new compound was elucidated through interpretation of NMR and MS data. The absolute configuration was determined through ROESY and ECD analyses. The isolated compounds revealed antifungal potential against fourteen Candida albicans isolates with minimum inhibitory concentrations (MICs) ranging from 64 to 2048 µg ml-1. Compound 3 showed antibiofilm action and considerably reduced the viability of five isolates (36%) in the formed biofilm. The qRT-PCR revealed that 3 downregulated the BCR1, PLB2, ALS1, and SAP5 biofilm related gene expression. Therefore, 3 could be a promising antifungal therapy for C. albicans infections.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Biofilms/drug effects , Candida albicans/drug effects , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/isolation & purification , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Stereoisomerism
15.
Mar Drugs ; 22(4)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38667806

ABSTRACT

Polyene macrolactams are a special group of natural products with great diversity, unique structural features, and a wide range of biological activities. Herein, a cryptic gene cluster for the biosynthesis of putative macrolactams was disclosed from a sponge-associated bacterium, Streptomyces sp. DSS69, by genome mining. Cloning and heterologous expression of the whole biosynthetic gene cluster led to the discovery of weddellamycin, a polyene macrolactam bearing a 23/5/6 ring skeleton. A negative regulator, WdlO, and two positive regulators, WdlA and WdlB, involved in the regulation of weddellamycin production were unraveled. The fermentation titer of weddellamycin was significantly improved by overexpression of wdlA and wdlB and deletion of wdlO. Notably, weddellamycin showed remarkable antibacterial activity against various Gram-positive bacteria including MRSA, with MIC values of 0.10-0.83 µg/mL, and antifungal activity against Candida albicans, with an MIC value of 3.33 µg/mL. Weddellamycin also displayed cytotoxicity against several cancer cell lines, with IC50 values ranging from 2.07 to 11.50 µM.


Subject(s)
Anti-Bacterial Agents , Lactams, Macrocyclic , Microbial Sensitivity Tests , Multigene Family , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Humans , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/isolation & purification , Polyenes/pharmacology , Polyenes/isolation & purification , Polyenes/chemistry , Candida albicans/drug effects , Cell Line, Tumor , Antarctic Regions , Animals , Porifera/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification
16.
Expert Rev Anticancer Ther ; 24(6): 347-361, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630549

ABSTRACT

INTRODUCTION: The emergence of anaplastic lymphoma kinase (ALK) rearrangements in non-small cell lung cancer (NSCLC) has revolutionized targeted therapy. This dynamic landscape, featuring novel ALK inhibitors and combination therapies, necessitates a profound understanding of resistance mechanisms for effective treatment strategies. Recognizing two primary categories - on-target and off-target resistance - underscores the need for comprehensive assessment. AREAS COVERED: This review delves into the intricacies of resistance to ALK inhibitors, exploring complexities in identification and management. Molecular testing, pivotal for early detection and accurate diagnosis, forms the foundation for patient stratification and resistance management. The literature search methodology involved comprehensive exploration of Pubmed and Embase. The multifaceted perspective encompasses new therapeutic horizons, ongoing clinical trials, and their clinical implications post the recent approval of lorlatinib. EXPERT OPINION: Our expert opinion encapsulates the critical importance of understanding resistance mechanisms in the context of ALK inhibitors for shaping successful treatment approaches. With a focus on molecular testing and comprehensive assessment, this review contributes valuable insights to the evolving landscape of NSCLC therapy.


Subject(s)
Aminopyridines , Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lactams, Macrocyclic , Lactams , Lung Neoplasms , Protein Kinase Inhibitors , Pyrazoles , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Lactams/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/administration & dosage , Aminopyridines/pharmacology , Aminopyridines/administration & dosage , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/administration & dosage , Pyrazoles/pharmacology , Pyrazoles/administration & dosage , Molecular Targeted Therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Gene Rearrangement
17.
Int J Drug Policy ; 127: 104396, 2024 May.
Article in English | MEDLINE | ID: mdl-38593518

ABSTRACT

BACKGROUND: There exist many barriers to hepatitis C virus (HCV) treatment for those with substance use disorder (SUD) or who lack access to routine medical care. A hospital-based telehealth program was developed to provide treatment opportunities for hospitalized patients living with HCV. METHODS: This single site prospective cohort study conducted from July 2022 to March 2023 aimed to measure linkage to care with an HCV clinician and initiation of HCV treatment in hospitalized patients. Patients were assessed in-person by a social worker then seen via telehealth by a clinician who prescribed either glecaprevir/pibrentasvir or sofosbuvir/velpatasvir. Treatment was initiated with pharmacist assistance. The team conducted in-person and/or telephonic outreach during and after hospitalization. Cure was confirmed by sustained virologic response at 12 weeks (SVR12) post-treatment. RESULTS: A total of 25 patients were enrolled and completed telehealth visits. All patients had a history of SUD and 18 (72 %) were unstably housed. Nineteen patients (76 %) initiated treatment, and 14 (56 %) successfully completed treatment. Twelve patients (48 %) completed post-treatment labs, including two who prematurely discontinued treatment. Eleven patients (44 %) achieved confirmed cure with SVR12. CONCLUSION: A hospital-based, multidisciplinary telehealth program can be an innovative care model to successfully treat HCV in a difficult-to-treat patient populations.


Subject(s)
Antiviral Agents , Sofosbuvir , Sustained Virologic Response , Telemedicine , Humans , Male , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Female , Middle Aged , Prospective Studies , Sofosbuvir/administration & dosage , Adult , Quinoxalines/administration & dosage , Quinoxalines/therapeutic use , Drug Combinations , Sulfonamides/administration & dosage , Carbamates/administration & dosage , Pyrrolidines/administration & dosage , Hepatitis C/drug therapy , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Benzimidazoles/therapeutic use , Benzimidazoles/administration & dosage , Cohort Studies , Hospitalization/statistics & numerical data , Hepatitis C, Chronic/drug therapy , Aged , Lactams, Macrocyclic
18.
J Surg Res ; 298: 14-23, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537450

ABSTRACT

INTRODUCTION: Activated hepatic stellate cells (HSCs) are the primary effector cells in hepatic fibrosis, over depositing extracellular matrix (ECM) proteins. Our previous work found oridonin analog CYD0682 attenuates proliferation, Transforming Growth Factor ß (TGFß)-induced signaling, and ECM production in immortalized HSCs. The underlying mechanism behind these reductions is unclear. The Signal Transduction and Activator of Transcription 3 (STAT3) pathway plays a central role in HSC activation and has been found to be overexpressed in models of hepatic injury. In this study, we will examine the effect of CYD0682 on STAT3 signaling. METHODS: Immortalized human (LX-2) and rat (HSC-T6) HSC lines were treated with CYD0682 or Tanespimycin (17-AAG) with or without TGF-ß. Nuclear and cytosolic proteins were extracted. Protein expression was analyzed with Western blot. DNA binding activity was assessed with STAT3 DNA Binding ELISA. Cell viability was assessed with Alamar blue assay. RESULTS: CYD0682 treatment inhibited STAT3 phosphorylation at tyrosine 705 in a dose-dependent manner in LX-2 and HSC-T6 cells. STAT3 DNA binding activity and STAT3 regulated protein c-myc were significantly decreased by CYD0682. Notably, TGFß-induced STAT3 phosphorylation and ECM protein expression were inhibited by CYD0682. STAT3 is reported to be a Heat Shock Protein 90 (HSP90) client protein. Notably, CYD0682 attenuated the expression of endogenous STAT3 and other HSP90 client proteins FAK, IKKα, AKT and CDK9. HSP90 specific inhibitor 17-AAG suppressed endogenous and TGFß-induced STAT3 phosphorylation and ECM protein production. CONCLUSIONS: CYD0682 attenuates endogenous and TGFß-induced STAT3 activation and ECM production via an HSP90 dependent pathway in HSCs. Further study of this pathway may present new targets for therapeutic intervention in hepatic fibrosis.


Subject(s)
Benzoquinones , Diterpenes, Kaurane , HSP90 Heat-Shock Proteins , Hepatic Stellate Cells , STAT3 Transcription Factor , Signal Transduction , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , STAT3 Transcription Factor/metabolism , Humans , Rats , Animals , Diterpenes, Kaurane/pharmacology , Signal Transduction/drug effects , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Benzoquinones/pharmacology , Transforming Growth Factor beta/metabolism , Cell Line , Phosphorylation/drug effects , Lactams, Macrocyclic/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
19.
J Antibiot (Tokyo) ; 77(5): 265-271, 2024 May.
Article in English | MEDLINE | ID: mdl-38531967

ABSTRACT

During our screening for anti-mycobacterial agents against Mycobacterium avium complex (MAC), two new polycyclic tetramate macrolactams (PTMs), named hydroxycapsimycin (1) and brokamycin (2), were isolated along with the known PTM, ikarugamycin (3), from the culture broth of marine-derived Streptomyces sp. KKMA-0239. The relative structures of 1 and 2 were elucidated by spectroscopic data analyses, including 1D and 2D NMR. Furthermore, the absolute configuration of 1 was confirmed by a single-crystal X-ray diffraction analysis. Compounds 2 and 3 exhibited moderate antimycobacterial activities against MAC, including clinically isolated drug-resistant M. avium.


Subject(s)
Anti-Bacterial Agents , Lactams , Microbial Sensitivity Tests , Streptomyces , Streptomyces/metabolism , Streptomyces/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Mycobacterium avium Complex/drug effects , Magnetic Resonance Spectroscopy , Lactams, Macrocyclic/pharmacology , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/isolation & purification , Crystallography, X-Ray , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Antitubercular Agents/isolation & purification , Polycyclic Compounds/pharmacology , Polycyclic Compounds/isolation & purification , Polycyclic Compounds/chemistry , Molecular Structure
20.
Lung Cancer ; 191: 107535, 2024 May.
Article in English | MEDLINE | ID: mdl-38554546

ABSTRACT

Lorlatinib is a brain-penetrant, third-generation tyrosine kinase inhibitor (TKI) indicated for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer (NSCLC). In clinical trials, lorlatinib has shown durable efficacy and a manageable safety profile in treatment-naive patients and in those who have experienced progression while receiving first- and/or second-generation ALK TKIs. Lorlatinib has a distinct safety profile from other ALK TKIs, including hyperlipidemia and central nervous system effects. Clinical trial data showed that most adverse events (AEs) can be managed effectively or reversed with dose modifications (such as dose interruptions or reductions) or with concomitant medications without compromising clinical efficacy or quality of life for patients. A pragmatic approach to managing AEs related to lorlatinib is required. We present patient-focused recommendations for the evaluation and management of select AEs associated with lorlatinib developed by clinicians and nurses with extensive lorlatinib expertise in routine clinical practice. The recommendations follow the general framework of "prepare, monitor, manage, reassess" to streamline AE management and assist in practical, actionable, and personalized patient care.


Subject(s)
Aminopyridines , Carcinoma, Non-Small-Cell Lung , Lactams, Macrocyclic , Lactams , Lung Neoplasms , Protein Kinase Inhibitors , Pyrazoles , Humans , Lactams/adverse effects , Aminopyridines/adverse effects , Aminopyridines/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Pyrazoles/adverse effects , Pyrazoles/therapeutic use , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/therapeutic use , Lactams, Macrocyclic/therapeutic use , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Drug-Related Side Effects and Adverse Reactions , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Disease Management
SELECTION OF CITATIONS
SEARCH DETAIL
...