Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.084
Filter
1.
Theriogenology ; 226: 343-349, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38964033

ABSTRACT

Two experiments evaluated the effect of different hormonal treatments to synchronize follicle wave emergence on follicle dynamics and pregnancies per AI (P/AI) in estradiol (E2)/progesterone (P4) timed-AI (TAI) protocols in lactating dairy cows. In Experiment 1, lactating, primiparous Holstein cows (n = 36) received a P4 releasing device (Day 0) and were allocated at random to one of the following three treatment groups: Group EB received 2 mg E2 benzoate (EB) intramuscularly (i.m.), Group EB + GnRH received 2 mg EB+20 µg buserelin (GnRH) i.m., or Group EB + P4 received 2 mg EB + 100 mg of injectable P4 (iP4) in oil i.m. All cows received 0.150 mg D-Cloprostenol on Days 7 and 8 followed by P4 device removal, 400 IU eCG and 1 mg ECP on Day 8. Daily ultrasound examinations revealed that although the interval from P4 device removal to ovulation was not affected by treatment, cows that received EB + GnRH had an earlier (P < 0.05) emergence of the new follicular wave (Day 2.6 ± 0.2) than the other two treatment groups (Days 3.5 ± 0.3 and 6.1 ± 0.3, for EB and EB + P4, respectively). In Experiment 2, 808 lactating cows were assigned randomly to the three treatments evaluated in Experiment 1, and all the cows were TAI to determine P/AI. Cows in the EB + GnRH group had greater P/AI (57.4 %, P < 0.01) than those in the EB (44.6 %) or EB + P4 (45.7 %) groups. In conclusion, the administration of GnRH, but not iP4, on the day of insertion of a P4 device improves P/AI in lactating dairy cows synchronized for TAI with an estradiol/P4-based protocol.


Subject(s)
Estradiol , Estrus Synchronization , Gonadotropin-Releasing Hormone , Insemination, Artificial , Lactation , Ovarian Follicle , Progesterone , Animals , Cattle/physiology , Female , Insemination, Artificial/veterinary , Insemination, Artificial/methods , Lactation/drug effects , Ovarian Follicle/drug effects , Ovarian Follicle/physiology , Progesterone/administration & dosage , Progesterone/pharmacology , Estradiol/pharmacology , Estradiol/administration & dosage , Estradiol/analogs & derivatives , Estrus Synchronization/methods , Pregnancy , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/administration & dosage , Buserelin/pharmacology , Buserelin/administration & dosage
2.
S D Med ; 77(4): 172-179, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38991162

ABSTRACT

This article presents a summary of information found within the existing medical literature on the pharmacological treatment options for maternal depression during lactation and the concurrent effects on the breastfeeding infant. Existing data on safety and efficacy varies by treatment modality. Medications used to treat depression are all secreted in breast milk to some extent; however, most antidepressants are considered relatively safe to use during breastfeeding. The selective serotonin reuptake inhibitors (SSRIs) sertraline and paroxetine are present in low levels and are considered preferred agents. Safety data for other antidepressants varies, however. monoamine oxidase inhibitors (MAOIs) should generally be avoided. Available references and resources can help providers optimize treatment of maternal depression while mitigating risk to the infant. Optimizing treatment of maternal depression is a complicated undertaking, which should be made in conjunction with the provider through shared decision making with the patient. Specific properties of any proposed medication, such as the relative infant dose and side effect profile, should always be taken into account during the decision-making process.


Subject(s)
Antidepressive Agents , Breast Feeding , Depression, Postpartum , Lactation , Humans , Antidepressive Agents/therapeutic use , Antidepressive Agents/adverse effects , Lactation/drug effects , Female , Depression, Postpartum/drug therapy , Milk, Human/chemistry , Selective Serotonin Reuptake Inhibitors/therapeutic use , Selective Serotonin Reuptake Inhibitors/adverse effects , Infant, Newborn
3.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892271

ABSTRACT

This study investigated the effects of rumen bypass dandelion extract on the lactation performance, immune index, and mammary oxidative stress of lactating dairy cows fed a high-concentrate diet. This study used a complete randomized block design, and initial milk production, somatic cell counts, and parities were set as block factors. Sixty Holstein cows with similar health conditions and lactating periods (70 ± 15 d) were divided into three groups with 20 replicates per group. The treatments included the LCD group (low-concentrate diet, concentrate-forage = 4:6), HCD group (high-concentrate group, concentrate-forage = 6:4), and DAE group (dandelion aqueous extract group, HCD group with 0.5% DAE). The experimental period was 35 d, and cows were fed three times in the morning, afternoon, and night with free access to water. The results showed the following: (1) Milk production in the HCD and DAE groups was significantly higher (p < 0.05) than that in the LCD group from WK4, and the milk quality differed during the experimental period. (2) The HCD group's pH values significantly differed (p < 0.01) from those of the LCD and DAE groups. (3) In WK2 and WK4 of the experimental period, the somatic cell counts of dairy cows in the HCD group were significantly higher (p < 0.05) than those in the DAE group. (4) The serum concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and protein carbonyl (PC) in the HCD group were significantly higher (p < 0.05) than those in the LCD group. The activity of catalase (CAT) in the LCD and DAE groups was stronger (p < 0.01) than that in the HCD group. (5) The correlation analysis revealed significantly positive correlations between the plasma LPS concentration and serum concentrations of 8-OHdG (p < 0.01), PC (p < 0.01), and malondialdehyde (MDA, p < 0.05) and significantly negative correlations (p < 0.01) between the plasma LPS concentration and activities of CAT and superoxide dismutase. (6) Compared with that in the HCD and DAE groups, the mRNA expression of α, ß, and κ casein and acetyl CoA carboxylase in bovine mammary epithelial cells was significantly higher (p < 0.05) in the LCD group, and the mRNA expression of fatty acid synthetase and stearoyl CoA desaturase in the LCD group was significantly higher (p < 0.01) than that in the HCD group. (7) Compared with that in the LCD and HCD groups, the mRNA expression of Nrf2 was significantly higher (p < 0.01) in the DAE group, and the mRNA expression of cystine/glutamate transporter and NAD (P) H quinone oxidoreductase 1 in the DAE group was significantly higher (p < 0.05) than that in the HCD group. Overall, feeding a high-concentrate diet could increase the milk yield of dairy cows, but the milk quality, rumen homeostasis, and antioxidative capability were adversely affected. The supplementation of DAE in a high-concentrate diet enhanced antioxidative capability by activating the Nrf2 regulatory factor and improved rumen homeostasis and production performance.


Subject(s)
Lactation , Mammary Glands, Animal , Milk , Oxidative Stress , Plant Extracts , Taraxacum , Animals , Cattle , Oxidative Stress/drug effects , Female , Taraxacum/chemistry , Lactation/drug effects , Milk/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/drug effects , Plant Extracts/pharmacology , Diet/veterinary , Animal Feed/analysis
4.
J Hazard Mater ; 474: 134800, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850955

ABSTRACT

Microplastics have emerged as a prominent global environmental contaminant, and they have been found in both human placenta and breast milk. However, the potential effects and mechanisms of maternal exposure to microplastics at various gestational stages on offspring neurodevelopment remain poorly understood. This investigation delves into the potential neurodevelopmental ramifications of maternal exposure to polystyrene nanoplastics (PS-NPs) during distinct phases of pregnancy and lactation. Targeted metabolomics shows that co-exposure during both pregnancy and lactation primarily engendered alterations in monoamine neurotransmitters within the cortex and amino acid neurotransmitters within the hippocampus. After prenatal exposure to PS-NPs, fetal rats showed appreciably diminished cortical thickness and heightened cortical cell proliferation. However, this exposure did not affect the neurodifferentiation of radial glial cells and intermediate progenitor cells. In addition, offspring are accompanied by disordered neocortical migration, typified by escalated superficial layer neurons proliferation and reduced deep layer neurons populations. Moreover, the hippocampal synapses showed significantly widened synaptic clefts and diminished postsynaptic density. Consequently, PS-NPs culminated in deficits in anxiolytic-like behaviors and spatial memory in adolescent offspring, aligning with concurrent neurotransmitter and synaptic alterations. In conclusion, this study elucidates the sensitive windows of early-life nanoplastic exposure and the consequential impact on offspring neurodevelopment.


Subject(s)
Lactation , Maternal Exposure , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Lactation/drug effects , Maternal Exposure/adverse effects , Hippocampus/drug effects , Hippocampus/growth & development , Polystyrenes/toxicity , Male , Microplastics/toxicity , Rats, Sprague-Dawley , Rats , Neurons/drug effects , Cell Proliferation/drug effects , Neurotransmitter Agents/metabolism , Nanoparticles/toxicity , Brain/drug effects , Brain/growth & development
5.
Sci Rep ; 14(1): 12673, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830990

ABSTRACT

Retained placenta is a common health issue, and appropriate prevention strategies are effective in postpartum health management. This study aimed to evaluate whether early intervention using GYS can prevent retained placenta and puerperal metritis, as well as enhance reproductive outcomes in cows. Each bovine in the GYS group (n = 591) received a single prophylactic dose of GYS (0.5 g/kg body weight) orally within 2 h after parturition, while those in the control group (n = 598) received no intervention. GYS treatment was associated with a decreased incidence of retained placenta (4.6% vs. 12.0%, P < 0.01, OR = 0.335), a lower puerperal metritis risk (8.8% vs. 20.1%, P < 0.01, OR = 0.369), and a reduced need for additional therapeutic antibiotics (11.2% vs. 26.1%, P < 0.01, OR = 0.342). We observed increases in the first service conception rate (59.7% vs. 49.1%, P < 0.01) and conception rate within 305 days postpartum (93.2% vs. 85.5%, P < 0.01) in the GYS group than in the control group. A significant decrease was observed in the number of services per conception (1.8 ± 1.1 vs. 2.1 ± 1.4, P < 0.01) and the calving-to-conception interval (83.6 ± 39.6 vs. 96.6 ± 52.5 days, P < 0.01) between the two groups. Additionally, GYS treatment increased milk yield on days 7, 14, and 28 postpartum without affecting milk fat, milk protein, somatic cell count (SCC), or milk urea nitrogen (MUN) on days 7 and 28 postpartum. Accordingly, the GYS was effective and safe in preventing retained placenta and to improve reproductive performance in cows. Therefore, it could be a prophylactic intervention for superior postpartum fertility in cows.


Subject(s)
Drugs, Chinese Herbal , Placenta, Retained , Reproduction , Animals , Female , Cattle , Pregnancy , Placenta, Retained/prevention & control , Placenta, Retained/veterinary , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Reproduction/drug effects , Cattle Diseases/prevention & control , Postpartum Period/drug effects , Lactation/drug effects
6.
Sultan Qaboos Univ Med J ; 24(2): 209-215, 2024 May.
Article in English | MEDLINE | ID: mdl-38828258

ABSTRACT

Objectives: This study aimed to compare the effects of green cumin (Cuminum cyminum) and nettle (Urtica dioica L.) oral drops on the indicators of breast milk adequacy in lactating mothers. Due to the presence of phytoestrogens in the combinations of cumin and nettle, it is stipulated that they may have milk-increasing properties. Methods: A triple-blind, randomised, controlled clinical trial was conducted on 117 lactating mothers who had given birth to healthy infants aged 10-15 days and who received cumin oral drops (n = 39), nettle oral drops (n = 39) or placebo (n = 39) from August 2020 to March 2021. The participants were recruited from a regional public health care centre affiliated with Iran University of Medical Sciences of Tehran, Tehran, Iran. The 3 study groups received 15 drops thrice a day for 4 weeks. Infant weight, breastfeeding frequency, number of wet diapers, diaper weight and frequency of infant defecation were evaluated before and after the intervention. Results: At the beginning of the trial, no statistically significant differences were observed between the 3 groups for infant weight (P = 0.891), breastfeeding frequency (P = 0.921), number of wet diapers (P = 0.783), diaper weight (P = 0.841) and frequency of infant defecation (P = 0.898). However, following the intervention, the mean scores of all indicators were significantly higher in the experimental groups than in the placebo group (P <0.001). In addition, all the indicators in the cumin group increased significantly compared to those in the nettle group (P <0.001). Conclusion: Considering the effectiveness of cumin and nettle drops in increasing milk and the availability of these native plants in Iran, it is suggested that they, especially cumin, be used postpartum to increase breast milk production.


Subject(s)
Breast Feeding , Cuminum , Lactation , Milk, Human , Humans , Iran , Female , Milk, Human/drug effects , Adult , Infant, Newborn , Breast Feeding/statistics & numerical data , Breast Feeding/methods , Lactation/drug effects , Mothers/statistics & numerical data , Infant
7.
Sci Rep ; 14(1): 13762, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877103

ABSTRACT

Selective Serotonin Reuptake Inhibitor (SSRI) therapy is common among perinatal populations for the treatment of mood disorders. Medications can affect diversity and composition of the gut microbiome, which plays a key role in modulating health. While previous studies have examined the effects of antidepressant exposure on the maternal gut microbiome, whether SSRI exposure affects the offspring gut microbiome is unknown. We investigated the effects of maternal fluoxetine exposure on the gut microbiome of maternal and offspring mice during pregnancy and lactation (embryonic day 10-lactation day 21; E10-L21). Stool samples collected on E17, L11, L15, and L21 were examined using 16S rRNA sequencing. Our results suggest that maternal fluoxetine exposure may result in decreased alpha diversity of the offspring gut microbiome in early life. Furthermore, we observed several genera-specific differences in the gut microbiome based on treatment, specifically of Turicibacter, Parasutterella, and Romboutsia. These findings support our understanding of gut health, as dysbiotic development of the gut microbiome has been associated with local and systemic health problems including gastrointestinal morbidities and interrupted growth patterns in infants. Future research should pursue study in human populations and those at high risk for gut microbial dysbiosis and intestinal injury.


Subject(s)
Fluoxetine , Gastrointestinal Microbiome , Lactation , RNA, Ribosomal, 16S , Animals , Gastrointestinal Microbiome/drug effects , Female , Pregnancy , Lactation/drug effects , Fluoxetine/pharmacology , Fluoxetine/adverse effects , Mice , RNA, Ribosomal, 16S/genetics , Prenatal Exposure Delayed Effects/microbiology , Selective Serotonin Reuptake Inhibitors/adverse effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Feces/microbiology , Maternal Exposure/adverse effects , Bacteria/drug effects , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
8.
Animal ; 18(7): 101203, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38935983

ABSTRACT

No single enteric CH4 mitigating strategy has been consistently effective or is readily applicable to ruminants in grassland systems. When CH4 mitigating strategies are effective under grazing conditions, mitigation is mild to moderate at best. A study was conducted to evaluate the potential of combining two CH4 mitigation strategies deemed feasible to apply in grazing dairy cows, the methanogenesis inhibitor 3-nitrooxypropanol additive (3-NOP) and cottonseed supplementation (CTS), seeking to enhance their individual CH4 mitigating potential. Forty-eight dairy cows were evaluated in a continuous grazing study and supplemented with either a starch-based concentrate (STA) or one that contained cottonseeds (1.75 kg DM/d; CTS), and with either 19 g/d of 10% 3-NOP (Bovaer®) or the additive's carrier (placebo), in a 2 × 2 factorial arrangement of treatments. Treatments were supplied mixed with a concentrate supplement (5 kg/d as fed) and offered in two equal rations at milking. Methane emissions were measured on weeks 4 and 8 using the sulphur hexafluoride tracer gas technique over a 5-d period. The 3-NOP and CTS treatments tended to interact on absolute CH4 such that 3-NOP decreased CH4 by 13.4% with STA, but there was no mitigation with 3-NOP and CTS. Treatment interactions were also obtained for CH4 yield, where 3-NOP tended to decrease CH4 when supplied with STA, and tended to increase it with CTS. The increase in CH4 yield with the CTS diet was driven by a numerical decrease in DM intake. Methane intensity was not affected by the 3-NOP or CTS treatments. Total volatile fatty acids in ruminal fluid were not affected by 3-NOP supplementation, but a reduction in acetate and an increase in propionate proportion occurred, resulting in decreased acetate: propionate. The 3-NOP additive decreased grass intake; however, energy-corrected milk yield and milk composition were largely unaffected. Milk urea increased with 3-NOP supplementation. Combining twice daily supplementation of 3-NOP and CTS did not enhance their CH4 mitigation potential when fed to grazing dairy cows. The relatively low inhibition of CH4 production by 3-NOP compared to studies with total mixed rations may result from the mode of delivery (pulse dosed twice daily) and time gap caused by experimental handling and moving of animals to pasture after 3-NOP supplementation in the milking parlour, which could have impaired the synchrony between the additive presence in the rumen and grass intake in paddocks.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Lactation , Methane , Milk , Propanols , Animals , Cattle/physiology , Methane/metabolism , Female , Lactation/drug effects , Animal Feed/analysis , Milk/chemistry , Milk/metabolism , Dietary Supplements/analysis , Diet/veterinary , Propanols/administration & dosage , Propanols/metabolism , Eating/drug effects , Dairying , Rumen/metabolism , Rumen/drug effects
9.
BMC Vet Res ; 20(1): 245, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849835

ABSTRACT

BACKGROUND: The utilization of live yeast (Saccharomyces cerevisiae, YE) in dairy cows is gaining traction in dairy production as a potential strategy to improve feed efficiency and milk yield. However, the effects of YE on dairy cow performance remain inconsistent across studies, leaving the underlying mechanisms unclear. Hence, the primary aim of this study was to investigate the impact of YE supplementation on lactation performance, ruminal microbiota composition and fermentation patterns, as well as serum antioxidant capacity and immune functions in dairy cows. RESULTS: Supplementation with YE (20 g/d/head) resulted in enhancements in dairy cow's dry matter intake (DMI) (P = 0.016), as well as increased yields of milk (P = 0.002) and its components, including solids (P = 0.003), fat (P = 0.014), protein (P = 0.002), and lactose (P = 0.001) yields. The addition of YE led to significant increases in the concentrations of ammonia nitrogen (NH3-N) (P = 0.023), acetate (P = 0.005), propionate (P = 0.025), valerate (P = 0.003), and total volatile fatty acids (VFAs) (P < 0.001) in rumen fermentation parameters. The analysis of 16s rRNA gene sequencing data revealed that the administration of YE resulted in a rise in the relative abundances of three primary genera including Ruminococcus_2 (P = 0.010), Rikenellaceae_RC9_gut_group (P = 0.009), and Ruminococcaceae_NK4A214_group (P = 0.054) at the genus level. Furthermore, this increase was accompanied with an enriched pathway related to amino acid metabolism. Additionally, enhanced serum antioxidative (P < 0.05) and immune functionalities (P < 0.05) were also observed in the YE group. CONCLUSIONS: In addition to improving milk performance, YE supplementation also induced changes in ruminal bacterial community composition and fermentation, while enhancing serum antioxidative and immunological responses during the mid-lactation stage. These findings suggest that YE may exert beneficial effects on both rumen and blood metabolism in mid-lactation dairy cows.


Subject(s)
Animal Feed , Antioxidants , Diet , Lactation , Rumen , Saccharomyces cerevisiae , Animals , Cattle , Female , Rumen/microbiology , Lactation/drug effects , Animal Feed/analysis , Antioxidants/metabolism , Diet/veterinary , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Milk/chemistry , Fermentation , Animal Nutritional Physiological Phenomena
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167258, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788910

ABSTRACT

The increasing prevalence of obesity, type 2 diabetes mellitus (T2DM), and gestational diabetes (GDM) among pregnant women has risen dramatically worldwide. The antihyperglycemic drug metformin is the most common drug for T2DM treatment in non-pregnant individuals; nevertheless, it is increasingly being used for diabetes-complicated pregnancies. Studies on the long-term metabolic effects of this drug in offspring remain scarce. This work aimed to determine the effect of metformin exposure during pregnancy and lactation on the offspring of a model of diet-induced maternal hyperglycemia. Cohorts of pregnant mice were fed a 46% fat diet (HFD) or a control standard diet (SD). A group of dams were exposed to metformin during pregnancy and lactation. After weaning, the offspring were fed SD for 8 weeks and then challenged with a 46% HFD after puberty for 12 weeks. Irrespective of the maternal diet, offspring of metformin-exposed mothers had a lower body weight and reduced inguinal white adipose tissue (iWAT) mass after HFD challenge. This was associated with increased expression of Pparg, Fabp4, Glut4, Srebp1, and Fasn in the iWAT during adulthood in the metabolically impaired dams exposed to metformin, suggesting increased adipogenesis and de novo lipogenesis. Increased expression of Fasn associated with decreased methylation levels at its promoter and proximal coding region in the iWAT was found. These results suggest that metformin modulates gene expression levels by epigenetic mechanisms in maternal metabolic-impaired conditions.


Subject(s)
Body Weight , Diet, High-Fat , Lactation , Metformin , Prenatal Exposure Delayed Effects , Sterol Regulatory Element Binding Protein 1 , Animals , Metformin/pharmacology , Female , Pregnancy , Lactation/drug effects , Mice , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/chemically induced , Diet, High-Fat/adverse effects , Body Weight/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Glucose Transporter Type 4/metabolism , Glucose Transporter Type 4/genetics , Hypoglycemic Agents/pharmacology , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , Obesity/metabolism , Obesity/pathology , Obesity/chemically induced , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Male , Mice, Inbred C57BL , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/chemically induced
11.
Trop Anim Health Prod ; 56(5): 176, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795263

ABSTRACT

The impact of heat stress on dairy cattle leads to significant economic losses and a negative impact on the welfare of the animals. The objective of this research was to evaluate the effect of the nutritional additive (Thermoplus®) in dairy cows under postpartum heat stress conditions, and its effects on the metabolic profile, production and quality of milk. Eighteen lactating Holstein cows (8 multiparous and ten primiparous), in a free-stall system, with a mean body condition score (BCS) of 3.14 ± 0.05, live weight of 624.55 ± 18, 61 kg, with initial mean days in milk (DIM) of 90 ± 10.11, were selected. The animals were grouped into a control (CG, n = 9) and a treatment (TG, n = 9). Both groups underwent 14 days of diet adaptation, the TG received the basal diet supplemented with 50 g of the additive, once a day, individually, while the control group received only the total diet. Data collection of metabolic and productive parameters were evaluated on days -14 (before adaptation), 1 (after the diet adaptation period), 16, 30, and 44. Milk, blood, and body condition score (BCS) were collected once a day, and heart rate, respiratory rate, and rectal temperature were collected twice a day. Serum concentrations of albumin, calcium, magnesium, glucose, gamma-glutamyl transferase (GGT), beta-hydroxybutyrate (BHBA), non-esterified fatty acids (NEFAs), and paraoxonase-1 (PON-1) were evaluated. In the milk, the percentage of fat, protein, lactose, and total solids were determined in each sampling. Milk yield was measured daily. Humidity and ambient temperature values were collected on the days of the collection every 30 min, from 5:30 am to 5:00 pm, to calculate the temperature-humidity index (THI). Statistical analyzes were performed using the SAS software (version 9.3, SAS Institute Inc., Cary, NC, USA). The THI ranged from 62.22 to 79.47. Our findings showed that when the THI was greater than 72, the animals in the TG were able to maintain milk yield (Odds ratio (OD) = -0.0577,), and the animals in the CG had a greater chance of reducing it (OD = -0.2301). Multiparous cows in the TG had higher milk yield than CG (32.57 ± 0.34 vs 30.50 ± 0.36 kg per day; P = 0.0078) and lower SCC (34.110 ± 6,940 vs 665.50 ± 214.41 cells per ml; P = 0.03), with the same percentages of total solids (P > 0.05). In multiparous metabolic markers, TG when compared CG had higher albumin concentrations (2.50 ± 0.07 vs 2.12 ± 0.07 g/dl; < 0.001), equal PON-1 (P > 0.05), and higher BHBA levels (0.49 ± 0.03 vs 0.39 ± 0.04 mmol/l). Primiparous from the CG had higher concentrations of NEFA (0.18 ± 0.02 mmol/l) than multiparous from the same group (0.09 ± 0.02 mmol/l) P = 0.0265. The use of the plant polyphenol extract in postpartum Holstein cows challenged by heat stress had beneficial effects on the production and health of the mammary gland in multiparous cows without decreasing milk solids. The non-reduction of the activities of the acute phase proteins indicates an immunomodulatory and inflammatory-reducing effect of the product used.


Subject(s)
Animal Feed , Diet , Dietary Supplements , Lactation , Milk , Polyphenols , Animals , Cattle/physiology , Female , Lactation/drug effects , Dietary Supplements/analysis , Milk/chemistry , Animal Feed/analysis , Diet/veterinary , Polyphenols/administration & dosage , Polyphenols/pharmacology , Polyphenols/analysis , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , Heat-Shock Response/drug effects , Hot Temperature
12.
Reprod Domest Anim ; 59(5): e14571, 2024 May.
Article in English | MEDLINE | ID: mdl-38698645

ABSTRACT

In this study, we examined whether the frequency of exogenous oestrogen treatment affects the induction of artificial lactation and milk production. Furthermore, we analysed changes in milk components obtained from artificially lactating sows. Pseudopregnant induced by treatment with 30 mg of estradiol dipropionate (EDP) on Day 10 (Day 0 = the last day of estrus) were divided into three groups: those administered 5 mg of EDP once on Day 39 (n = 5), twice on Days 32 and 39 (n = 5) and three times on Days 25, 32 and 39 (n = 6). All animals were treated with prostaglandin F2α (PGF2α) on Day 46 for induced lactation. Artificial lactation was induced in 66.7%-80.0% of sows, and the EDP treatment frequency before PGF2α administration had no significant effect on either the induction rate of artificial lactation or the milk yield during the experimental period. The milk composition (levels of crude protein, crude fat, crude ash, lactose and immunoglobulin) did not differ among the groups. In conclusion, the number of EDP treatments prior to PGF2α administration had no effect on either the efficiency of artificial lactation induction or milk production.


Subject(s)
Dinoprost , Estradiol , Estradiol/analogs & derivatives , Lactation , Milk , Pseudopregnancy , Animals , Female , Lactation/drug effects , Estradiol/pharmacology , Estradiol/administration & dosage , Milk/chemistry , Pseudopregnancy/veterinary , Dinoprost/pharmacology , Dinoprost/administration & dosage , Dinoprost/analogs & derivatives , Estrogens/pharmacology , Estrogens/administration & dosage , Swine , Pregnancy
14.
Parasit Vectors ; 17(1): 211, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730429

ABSTRACT

BACKGROUND: The health and productivity of dairy goats continue to be impacted by gastrointestinal nematodes (GIN) and lungworms (LW). Eprinomectin (EPN) is frequently selected for treatment because it is generally effective and does not require a milk withdrawal period. However, some factors, such as lactation, can have an impact on EPN pharmacokinetics and potentially its efficacy. To evaluate whether this can alter the efficacy of Eprecis® 2%, an eprinomectin injectable solution, a study was performed in lactating goats using the dose currently registered in cattle, sheep and goats (0.2 mg/kg). METHODS: This study was a blinded, randomized, controlled trial performed according to the VICH guidelines. Eighteen (18) worm-free lactating goats were included and experimentally challenged on day 28 with a mixed culture of infective gastrointestinal and lung nematode larvae (Haemonchus contortus, Trichostrongylus colubriformis, Teladorsagia circumcincta, Dictyocaulus filaria). At D-1, fecal samples were collected to confirm patent infection in all animals. On D0, the goats were randomly allocated into two groups of nine goats; group 1 was treated with Eprecis® 2% at 0.2 mg/kg BW by subcutaneous injection, while group 2 remained untreated. Fecal samples for egg counts were collected from all animals on days 3, 5, 7, 9, 11 and 14. On D14, all goats were killed, and the abomasum, small intestine and lungs were removed, processed and subsampled to record the number and species of worms. RESULTS: The treatment was well tolerated. After treatment, the arithmetic mean FEC decreased in the treated group and remained < 5 EPG until the end of the study, while the arithmetic mean FEC in the control group remained > 849.0 EPG. At D14, goats in the treated group had very limited or zero total worm counts, whereas all animals from the control group had a high worm burden. The measured efficacy was 100.0% against H. contortus and T. colubriformis, 99.9% against T. circumcincta and 98.0% against D. filaria. CONCLUSIONS: Eprinomectin (Eprecis®, 20 mg/ml), administered at the label dose (0.2 mg/kg), is highly effective against gastrointestinal nematodes and lungworms in lactating goats.


Subject(s)
Feces , Goat Diseases , Goats , Ivermectin , Lactation , Nematode Infections , Animals , Ivermectin/analogs & derivatives , Ivermectin/administration & dosage , Ivermectin/pharmacokinetics , Ivermectin/therapeutic use , Goat Diseases/drug therapy , Goat Diseases/parasitology , Female , Nematode Infections/veterinary , Nematode Infections/drug therapy , Nematode Infections/parasitology , Feces/parasitology , Lactation/drug effects , Parasite Egg Count/veterinary , Injections, Subcutaneous/veterinary , Anthelmintics/administration & dosage , Anthelmintics/therapeutic use , Anthelmintics/pharmacokinetics , Nematoda/drug effects , Gastrointestinal Diseases/veterinary , Gastrointestinal Diseases/parasitology , Gastrointestinal Diseases/drug therapy , Lung/parasitology
15.
J Clin Psychopharmacol ; 44(4): 337-344, 2024.
Article in English | MEDLINE | ID: mdl-38739007

ABSTRACT

PURPOSE/BACKGROUND: Zuranolone is a positive allosteric modulator of both synaptic and extrasynaptic γ-aminobutyric acid type A receptors and a neuroactive steroid approved as an oral, once-daily, 14-day treatment course for adults with postpartum depression in the United States. This study assessed zuranolone transfer into breast milk. METHODS/PROCEDURES: Healthy, nonpregnant, lactating adult female participants received once-daily 30 mg zuranolone from day (D)1 through D5 in this phase 1 open-label study. The relative infant dose (RID; weight-adjusted proportion of the maternal dose in breast milk over 24 hours) for 30 mg zuranolone was assessed at D5. An RID for 50 mg zuranolone was estimated using a simulation approach across a range of infant ages and weights. FINDINGS/RESULTS: Of 15 enrolled participants (mean age, 30.1 years), 14 completed the study. The mean RID for 30 mg zuranolone at D5 was 0.357%; the mean steady-state milk volume over D3 to D5 decreased from baseline by 8.3%. Overall unbound zuranolone in plasma was low (≤0.49%). Plasma concentrations peaked at D5 before decreasing in a biexponential manner. There was strong concordance between the temporal profiles of zuranolone concentrations in plasma and breast milk. The estimated mean RID for 50 mg zuranolone based on a milk intake of 200 mL/kg per day was 0.984%. All treatment-emergent adverse events reported by participants were mild, the most common being dizziness (n = 3). IMPLICATIONS/CONCLUSIONS: Zuranolone transfer into the breast milk of healthy, nonpregnant, lactating adult female participants was low; the estimated RID for 50 mg zuranolone was <1%, well below the <10% threshold generally considered compatible with breastfeeding.


Subject(s)
Lactation , Milk, Human , Humans , Female , Adult , Milk, Human/metabolism , Lactation/drug effects , Lactation/metabolism , Young Adult , Healthy Volunteers , Pregnanolone , Pyrazoles
16.
Mol Nutr Food Res ; 68(9): e2300703, 2024 May.
Article in English | MEDLINE | ID: mdl-38676329

ABSTRACT

Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκß) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.


Subject(s)
Galactogogues , Lactation , Polyphenols , Lactation/drug effects , Polyphenols/pharmacology , Female , Humans , Galactogogues/pharmacology , Animals , Dietary Supplements , Mammary Glands, Animal/drug effects , Signal Transduction/drug effects , Mammary Glands, Human/drug effects , Mammary Glands, Human/metabolism
19.
Environ Pollut ; 349: 123963, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38621455

ABSTRACT

Tributyltin (TBT) is the chemical substance commonly used worldwide to prevent biofouling of vessels. Due to its ability to bioaccumulate and biomagnify, even after being banned, significant concentrations of TBT can be detected in sediment, affecting marine and human life. Although studies have shown that direct exposure to TBT alters physiological parameters in mammals, the relationship between exposure to TBT during pregnancy and lactation, considered critical windows for metabolic programming, has not been fully elucidated. Our hypothesis is that offspring whose mothers were exposed to TBT during critical stages of development may exhibit dysfunctions in endocrine-metabolic parameters. We used pregnant Wistar rats that were divided into groups and received the following treatments from gestational day 7 until the end of lactation by intragastric gavage: vehicle (ethanol 0.01%; Control), low TBT dose (100 ng/kg of body weight (bw)/day; TBT100ng) and high TBT dose (1000 ng/kg bw/day; TBT1000ng). Dams and offspring at birth and weaning (21 days old) were studied. Maternal exposure to TBT promoted dose-dependent changes in dams. The findings for adiposity, milk composition and lipid profile were more pronounced in TBT100 ng dam; however, thyroid morphology was altered in TBT1000 ng dam. Female offspring were differentially affected by the dose of exposure. At birth, females in the TBT100ng group had low body weight, lower naso-anal length (NAL), and higher plasma T4, and at weaning, females in the TBT100ng group had lower insulin and leptin levels. Females in the TBT1000ng group had lower NAL at birth and lower leptinemia and weight of white adipose tissue at weaning. Male offspring from TBT groups showed high T3 at birth, without biometric alterations at birth or weaning. Despite these findings, both sexes exhibited dose-dependent morphological changes in the thyroid gland. Thus, maternal exposure to TBT constitutes an important route of contamination for both dams and offspring.


Subject(s)
Lactation , Maternal Exposure , Prenatal Exposure Delayed Effects , Rats, Wistar , Thyroid Gland , Trialkyltin Compounds , Animals , Female , Trialkyltin Compounds/toxicity , Rats , Pregnancy , Male , Thyroid Gland/drug effects , Lactation/drug effects , Animals, Newborn , Endocrine Disruptors/toxicity , Milk/chemistry , Milk/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL