Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.746
Filter
1.
PeerJ ; 12: e18103, 2024.
Article in English | MEDLINE | ID: mdl-39329138

ABSTRACT

Commercial dairy production occurs in a complex management environment, but increasingly, the dairy manager is expected to provide detailed reporting of productivity and environmental outcomes, for which conventional research methods double-blind crossover or case:control trials are inappropriate. This paper demonstrates the development of a milk protein production monitoring tool using a temporal (baseline) control in longitudinal, census-type investigations of modulation of system performance in response to factor change. It utilises farm-derived current and historical data, and contrasts seasonal responses with those achieved on neighbouring farms in a 2 × 2 contingency table. The approach is then shown to be useful in assessing the effect of two approaches to moderating milk urea concentration. Firstly, milk urea content can be monitored as it falls due to reduced feed protein content, and this fall can be arrested when milk protein content starts to decline relative to the value expected for the herd at any lactation stage. Secondly, by providing a dietary intervention aimed at increasing the availability of metabolic energy in the last month before calving, udder development can be augmented, leading to greater protein secretion capacity, meaning greater utilisation of circulating amino acids, and thus more limited substrate for urea synthesis. Thus, the changing impact of differing nutrition practices on dairy herd nitrogen excretion to environment can be followed with daily precision. In principle this approach can provide useful insights into a wide range of practical management interventions.


Subject(s)
Dairying , Milk Proteins , Milk , Urea , Animals , Dairying/methods , Milk Proteins/analysis , Milk Proteins/metabolism , Cattle , Milk/chemistry , Milk/metabolism , Urea/metabolism , Female , Lactation/metabolism , Animal Feed/analysis , Seasons
2.
Int J Mol Sci ; 25(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39337271

ABSTRACT

The core clock gene Period2 (PER2) is associated with mammary gland development and lipid synthesis in rodents and has recently been found to have a diurnal variation in the process of lactation, but has not yet been demonstrated in bovine mammary epithelial cells (BMECs). To explore the regulatory function of PER2 on milk fat synthesis in bovine mammary epithelial cells, we initially assessed the expression of clock genes and milk fat metabolism genes for 24 h using real-time quantitative PCR and fitted the data to a cosine function curve. Subsequently, we overexpressed the PER2 in BMECs using plasmid vector (pcDNA3.1-PER2), with empty vector pcDNA3.1-myc as the control. After transfecting BMECs for 48 h, we assessed the protein abundance related to milk fat synthesis by Western blot, the expression of genes coding for these proteins using real time-quantitative PCR, the production of triacylglycerol, and the fatty acid profile. The findings indicated that a total of nine clock genes (PER1/2, CRY1/2, REV-ERBα, BMAL1, NCOR1, NR2F2, FBXW11), seven fatty acid metabolism genes (CD36, ACSS2, ACACA, SCD, FADS1, DGAT1, ADFP), and six nuclear receptor-related genes (INSIG1, SCAP, SREBF1, C/EBP, PPARG, LXR) exhibited oscillation with a period close to 24 h in non-transfected BMECs (R2 ≥ 0.7). Compared to the control group (transfected with empty pcDNA3.1-myc), the triglyceride content significantly increased in the PER2 overexpression group (p < 0.05). The lipogenic genes for fatty acid transport and triglyceride synthesis (ACACA, SCD, LPIN1, DGAT1, and SREBF1) were upregulated after PER2 overexpression, along with the upregulation of related protein abundance (p < 0.05). The contents and ratios of palmitic acid (C16:0), oleic acid (C18:1n9c), and trans-oleic acid (C18:1n9t) were significantly increased in the overexpression group (p < 0.05). Overall, the data supported that PER2 participated in the process of milk fat metabolism and is potentially involved in the de novo synthesis and desaturation of fatty acid in bovine mammary epithelial cells.


Subject(s)
Epithelial Cells , Fatty Acids , Mammary Glands, Animal , Period Circadian Proteins , Triglycerides , Animals , Cattle , Epithelial Cells/metabolism , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Triglycerides/metabolism , Triglycerides/biosynthesis , Female , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Lipogenesis/genetics , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Lactation/metabolism , Lactation/genetics , Gene Expression Regulation , Cells, Cultured , Lipid Metabolism/genetics
3.
Einstein (Sao Paulo) ; 22: eAO0619, 2024.
Article in English | MEDLINE | ID: mdl-39258689

ABSTRACT

OBJECTIVE: Glucagon-like peptide-1 (GLP1) and leptin (Lep) are afferent signals that regulate energy metabolism. Lactational hypernutrition results in hyperphagia and adiposity in adult life, and these events can be prevented by exercise. We evaluated the effects of swimming training on hypothalamic (GLP1-R) and Lep receptor (Lep-R) gene expressions in lactational hypernutrition-induced obesity. METHODS: On the 3rd postnatal day, the litter sizes of lactating dams were adjusted to small litters (SL; 3 pups/dams) or normal litters (NL; 9 pups/dams). After weaning (21 days), NL and SL male rats were randomly distributed to sedentary (Sed) and exercised (Exe) groups. Exercised mice swam (30 min/3 times/week) for 68 days. Food intake and body weight gain were registered. At 92 days, intraperitoneal glucose and insulin tolerance tests were performed and rats were euthanized at 93 days; adipose tissue depots were weighed, and blood counts and plasma biochemical analyses performed. Hypothalamus were isolated to evaluate Lep-R and GLP1-R gene expressions. RESULTS: Small litters sedentary rats presented increased body weight gain, adiposity, insulin sensibility and higher fasting values of glucose and triglycerides, besides higher hypothalamic gene expressions of Lep-R and GLP1-R, compared to NLSed animals. SLExe rats did not develop obesity or metabolic abnormalities and Lep-R and GLP1-R hypothalamic gene expressions were normalized. CONCLUSION: Lactational hypernutrition induces obesity and metabolic dysfunction in adult life, in association with higher hypothalamic expressions of the Lep-R and GLP1-R genes. Exercise prevented obesity and improved metabolic state in SL overnourished rats, and normalized their hypothalamic Lep-R and GLP1-R gene expressions.


Subject(s)
Hypothalamus , Obesity , Physical Conditioning, Animal , Rats, Wistar , Receptors, Leptin , Swimming , Animals , Hypothalamus/metabolism , Obesity/metabolism , Obesity/genetics , Obesity/prevention & control , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/methods , Male , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Female , Swimming/physiology , Litter Size , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Rats , Lactation/metabolism , Lactation/physiology , Glucagon-Like Peptide 1/metabolism , Leptin/blood , Leptin/metabolism , Random Allocation , Gene Expression , Eating/physiology , Adiposity/physiology
4.
Neurochem Res ; 49(11): 3143-3155, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39235577

ABSTRACT

Prolactin (PRL) assumes a pivotal role during the postpartum phase, particularly within the hippocampus-a region densely populated with receptors for stress hormones, where stress significantly inhibits adult hippocampal neurogenesis (AHN). The reduction in neurogenesis is implicated in the pathogenesis of anxiety and depression. Mothers are at an increased risk of developing depression when exposed to chronic stress. Therefore, it is imperative to investigate the potential role of PRL in depression-like behaviors stemming from prolonged postpartum stress, and to explore any underlying mechanisms. Despite pup separation (PS) being a natural postpartum care practice, the impact of various PS methods on lactating dams remains uncertain. Lactating C57BL/6J mice, from postpartum day (PPD) 1 to PPD 21, underwent no PS (NPS), brief PS (15 min per day, PS15), or long PS (180 min per day, PS180), followed by 21 days of chronic restraint stress (CRS). Behavioral tests were conducted, and measurements included serum PRL concentration, PRL-R expression, and AHN in the hippocampus. Dams with CRS exhibited cognitive decline, depressive- and anxiety-like behaviors, and reduced PRL secretion, correlating with lower levels of AHN. PS15 dams displayed lower levels of depressive- and anxiety-like behaviors and cognitive decline compared to NPS and PS180 dams. Significantly, PS15 dams exhibited higher levels of AHN, PRL-R expression in the hippocampus, and serum PRL concentration. This study collectively reveals reduced serum PRL and AHN in dams with cognitive decline and depressive- and anxiety-like behaviors after CRS. Brief PS confers resistance to behavioral deficits after CRS, increasing serum PRL concentration and reversing AHN decrease in dams.


Subject(s)
Hippocampus , Lactation , Mice, Inbred C57BL , Neurogenesis , Prolactin , Stress, Psychological , Animals , Prolactin/blood , Prolactin/metabolism , Female , Hippocampus/metabolism , Neurogenesis/physiology , Stress, Psychological/metabolism , Lactation/metabolism , Mice , Postpartum Period , Anxiety/metabolism , Maternal Deprivation , Depression/metabolism , Receptors, Prolactin/metabolism
5.
Int J Mol Sci ; 25(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39201245

ABSTRACT

In this study, the expression profiles of miR-148a were constructed in eight different ovine tissues, including mammary gland tissue, during six different developmental periods. The effect of miR-148a on the viability, proliferation, and milk fat synthesis of ovine mammary epithelial cells (OMECs) was investigated, and the target relationship of miR-148a with two predicted target genes was verified. The expression of miR-148a exhibited obvious tissue-specific and temporal-specific patterns. miR-148a was expressed in all eight ovine tissues investigated, with the highest expression level in mammary gland tissue (p < 0.05). Additionally, miR-148a was expressed in ovine mammary gland tissue during each of the six developmental periods studied, with its highest level at peak lactation (p < 0.05). The overexpression of miR-148a increased the viability of OMECs, the number and percentage of Edu-labeled positive OMECs, and the expression levels of two cell-proliferation marker genes. miR-148a also increased the percentage of OMECs in the S phase. In contrast, transfection with an miR-148a inhibitor produced the opposite effect compared to the miR-148a mimic. These results indicate that miR-148a promotes the viability and proliferation of OMECs in Small-tailed Han sheep. The miR-148a mimic increased the triglyceride content by 37.78% (p < 0.01) and the expression levels of three milk fat synthesis marker genes in OMECs. However, the miR-148a inhibitor reduced the triglyceride level by 87.11% (p < 0.01). These results suggest that miR-148a promotes milk fat synthesis in OMECs. The dual-luciferase reporter assay showed that miR-148a reduced the luciferase activities of DNA methyltransferase 1 (DNMT1) and peroxisome proliferator-activated receptor gamma coactivator 1-A (PPARGC1A) in wild-type vectors, suggesting that they are target genes of miR-148a. The expression of miR-148a was highly negatively correlated with PPARGC1A (r = -0.789, p < 0.001) in ovine mammary gland tissue, while it had a moderate negative correlation with DNMT1 (r = -0.515, p = 0.029). This is the first study to reveal the molecular mechanisms of miR-148a underlying the viability, proliferation, and milk fat synthesis of OMECs in sheep.


Subject(s)
Cell Proliferation , Cell Survival , DNA (Cytosine-5-)-Methyltransferase 1 , Epithelial Cells , Mammary Glands, Animal , MicroRNAs , Milk , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Female , Sheep , Milk/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Lactation/genetics , Lactation/metabolism , Gene Expression Regulation
6.
Clin Nutr ESPEN ; 63: 878-886, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39209029

ABSTRACT

BACKGROUND & AIMS: Pregnancy and lactation are associated with metabolic changes, including alterations in energy metabolism, which are closely linked to body mass and composition due to hormonal status. Therefore, the objective of this study was to investigate the energy metabolism in exclusively or predominantly breastfeeding mothers with normal weight (NW) and overweight/obesity (OW/OB) and evaluate its associations with fasting serum leptin. METHODS: This cross-sectional BLOOM study was conducted among 39 mothers (n = 19 NW, n = 20 OW/OB) in 15.5 ± 1.2 weeks of lactation. The leptin was analyzed in a blood sample using an enzyme-linked immunosorbent assay, body composition was analyzed by dual-energy X-ray absorptiometry, and resting metabolic rate (RMR) was measured by indirect calorimetry method. RESULTS: The average RMR for all groups was 1747.5 ± 281.9 kcal/d, with a statistically significant difference between groups (1932.7 ± 222.6 vs. 1550.5 ± 190.6, p < 0.001, respectively in the OW/OB and NW group). The OW/OB mothers had higher oxygen uptake (VO2) and exhaled carbon dioxide (VCO2), but not respiratory quotient (RQ), carbohydrate (CHO%) and lipid oxidation (FAT%). When analyzing correlations stratified by BMI category, we found that serum leptin was correlated with CHO% negatively, and with FAT% positively in the NW but not in OW/OB mothers. Additionally, serum leptin was a significant predictor of RMR, VCO2, VO2, CHO%, and RMR/kg of total body weight. However, after adjusting for confounders, the observed associations were no longer statistically significant (RMR: ß = 0.113, 95% CI -0.354-0.319; VO2: ß = 0.141, 95% CI -0.462-0.744; VCO2: ß = 0.238, 95% CI -0.411-0.888; CHO%: ß = -0.146, 95% CI -0.151-0.444; RMR/kg of total body weight: ß = -0.294, 95% CI -0.831-0.244). CONCLUSIONS: Our results did not support the hypothesis that leptin plays a role in regulating energy homeostasis during lactation.


Subject(s)
Energy Metabolism , Lactation , Leptin , Milk, Human , Obesity , Overweight , Humans , Female , Leptin/blood , Lactation/metabolism , Adult , Cross-Sectional Studies , Milk, Human/metabolism , Milk, Human/chemistry , Obesity/metabolism , Obesity/blood , Case-Control Studies , Overweight/metabolism , Overweight/blood , Breast Feeding , Body Composition , Basal Metabolism , Body Mass Index , Mothers , Maternal Nutritional Physiological Phenomena , Diet , Pregnancy
7.
Glycobiology ; 34(9)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39115362

ABSTRACT

α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.


Subject(s)
Colostrum , Lactalbumin , Milk , Lactalbumin/metabolism , Lactalbumin/chemistry , Animals , Glycosylation , Colostrum/chemistry , Colostrum/metabolism , Cattle , Milk/chemistry , Milk/metabolism , Female , Lactation/metabolism , Amino Sugars/chemistry , Amino Sugars/metabolism , Glycopeptides/metabolism , Glycopeptides/chemistry , Glycopeptides/analysis , Lactose/metabolism , Lactose/chemistry
8.
Reprod Biol Endocrinol ; 22(1): 106, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164703

ABSTRACT

Hormonal changes in pregnant and lactating women significantly affect bone metabolism and overall stress levels, positioning them as a unique group within the orthodontic population. Fluctuations in estrogen, progesterone, prolactin, and other hormones are closely linked to bone remodeling and the periodontal tissue's response to inflammation caused by dental plaque. Hormones such as thyrotropin, leptin, and melatonin also play crucial roles in pregnancy and bone remodeling, with potential implications for orthodontic tooth movement. Additionally, adverse personal behaviors and changes in dietary habits worsen periodontal conditions and complicate periodontal maintenance during orthodontic treatment. Notably, applying orthodontic force during pregnancy and lactation may trigger stress responses in the endocrine system, altering hormone levels. However, these changes do not appear to adversely affect the mother or fetus. This review comprehensively examines the interaction between hormone levels and orthodontic tooth movement in pregnant and lactating women, offering insights to guide clinical practice.


Subject(s)
Lactation , Humans , Female , Lactation/physiology , Lactation/metabolism , Pregnancy , Hormones/metabolism , Hormones/blood , Tooth Movement Techniques/methods , Bone Remodeling/physiology
9.
Anim Sci J ; 95(1): e13988, 2024.
Article in English | MEDLINE | ID: mdl-39165081

ABSTRACT

Short-chain fatty acids (SCFAs) produced in the rumen are key factors affecting dairy cows' energy balance (EB). This study aimed to quantitatively evaluate the effects of SCFAs production on EB in dairy cows. Primiparous dairy cows were divided into high non-esterified fatty acid (NEFA; group H) and low NEFA (group L) groups based on their blood NEFA levels at week 3 postpartum, which served as an indicator of EB. The amounts of SCFAs produced in the rumen, including acetate, propionate, and butyrate (SCFAsP), were calculated using the predicted rumen volume. Because there were no differences between the groups in SCFAsP/dry matter intake, whereas 4% fat-corrected milk (FCM)/SCFAsP was significantly higher in group H, it was suggested that more body fat was mobilized for milk production in group H. However, group L, which showed better EB, had propionate dominant and lower FCM/SCFAsP and milk energy/SCFAs energy at 3 and 7 weeks postpartum, indicating that group L had a better energy supply for milk production. These results suggest that SCFAsP produced by rumen fermentation and the composition of SCFAs in the rumen affect milk production and EB.


Subject(s)
Energy Metabolism , Fatty Acids, Nonesterified , Fatty Acids, Volatile , Fermentation , Lactation , Milk , Rumen , Animals , Rumen/metabolism , Cattle/metabolism , Cattle/physiology , Female , Fatty Acids, Volatile/metabolism , Lactation/metabolism , Lactation/physiology , Milk/metabolism , Fatty Acids, Nonesterified/metabolism , Fatty Acids, Nonesterified/blood , Pregnancy , Parity , Postpartum Period/metabolism , Propionates/metabolism
10.
Clin Nutr ; 43(9): 1929-1936, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024772

ABSTRACT

BACKGROUND: Concentrations of vitamin D (VitD) and 25-hydroxyvitamin D (25OHD) in breastmilk are low despite the essential role of VitD for normal infant bone development, yet additional metabolic forms of vitamin D may be present. This study evaluates the contribution of sulfated vitamin D metabolites, vitamin D3-sulfate (VitD3-S) and 25-hydroxyvitamin D3-sulfate (25OHD3-S) for lactating women and assesses the response to high-dose VitD3 supplementation. METHODS: Serum and breastmilk were measured before and after 28 days with 5000 IU/day VitD3 intake in 20 lactating women. Concentrations of VitD3-S and 25OHD3-S in milk, and 25OHD2, 25OHD3, 25OHD3-S, VitD3 and VitD3-S in serum were determined by mass spectrometry. RESULTS: Baseline vitamin D status was categorized as sufficient (mean ± SD serum 25OHD3 69 ± 19 nmol/L), and both serum VitD3 and 25OHD3 increased following supplementation (p < 0.001). 25OHD3-S was 91 ± 19 nmol/L in serum and 0.47 ± 0.09 nmol/L in breastmilk. VitD3-S concentrations were 2.92 ± 0.70 nmol/L in serum and 6.4 ± 3.9 nmol/L in breastmilk. Neither sulfated metabolite significantly changed with supplementation in either serum or breastmilk. CONCLUSIONS: Sulfated vitamin D metabolites have prominent roles for women during lactation with 25OHD3-S highly abundant in serum and VitD3-S distinctly abundant in breastmilk. These data support the notion that 25OHD3-S and VitD3-S may have physiological relevance during lactation and nutritional usage for nursing infants.


Subject(s)
Dietary Supplements , Lactation , Milk, Human , Vitamin D , Humans , Female , Lactation/metabolism , Milk, Human/chemistry , Adult , Vitamin D/analogs & derivatives , Vitamin D/blood , Cholecalciferol/blood , Cholecalciferol/administration & dosage , Young Adult , Calcifediol/blood , Sulfates/blood
11.
Food Chem ; 460(Pt 1): 140427, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39033635

ABSTRACT

This study aimed to compare the composition of fatty acids in goat milk during lactation with human milk, as well as analyze the differences in their interaction with odor and metabolites. Polyunsaturated fatty acids content was higher in human milk, while odd-chain, branched-chain, and monounsaturated fatty acids content were higher in goat milk with a decreasing trend during lactation. PUFAs in human milk undergo auto-oxidation to produce aldehydes (hexanal), giving it a mild aroma. Butyric acid in goat colostrum mediates the synthesis and auto-oxidation of PUFA, while taurine mediated the hydrolysis of amino acids. They produce a furanone compound (2(5H)-furanone) with a buttery flavor. The presence of butyric acid in goat transitional milk had an impact on flavor and metabolites. The medium chain fatty acid composition of the goat mature milk was affected by nucleic acid compounds, which then oxidized to produce methyl ketone (2-nonanone), giving it an unpleasant flavor.


Subject(s)
Fatty Acids , Goats , Lactation , Milk, Human , Milk , Volatile Organic Compounds , Animals , Goats/metabolism , Fatty Acids/metabolism , Fatty Acids/chemistry , Fatty Acids/analysis , Female , Humans , Lactation/metabolism , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Milk/chemistry , Milk/metabolism , Milk, Human/chemistry , Milk, Human/metabolism , Odorants/analysis , Taste , Oxidation-Reduction
12.
Biochem Biophys Res Commun ; 728: 150346, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-38972085

ABSTRACT

Tissue-specific deficiency of nicotinamide phosphoribosyl transferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD+)-salvage pathway, causes a decrease of NAD+ in the tissue, resulting in functional abnormalities. The NAD+-salvage pathway is drastically activated in the mammary gland during lactation, but the significance of this has not been established. To investigate the impact of NAD+ perturbation in the mammary gland, we generated two new lines of mammary gland epithelial-cell-specific Nampt-knockout mice (MGKO). LC-MS/MS analyses confirmed that the levels of NAD+ and its precursor nicotinamide mononucleotide (NMN) were significantly increased in lactating mammary glands. We found that murine milk contained a remarkably high level of NMN. MGKO exhibited a significant decrease in tissue NAD+ and milk NMN levels in the mammary gland during lactation periods. Despite the decline in NAD+ levels, the mammary glands of MGKO appeared to develop normally. Transcriptome analysis revealed that the gene profiles of MGKO were indistinguishable from those of their wild-type counterparts, except for Nampt. Although the NMN levels in milk from MGKO were decreased, the metabolomic profile of milk was otherwise unaltered. The mammary gland also contains adipocytes, but adipocyte-specific deficiency of Nampt did not affect mammary gland NAD+ metabolism or mammary gland development. These results demonstrate that the NAD+ -salvage pathway is activated in mammary epithelial cells during lactation and suggest that this activation is required for production of milk NMN rather than mammary gland development. Our MGKO mice could be a suitable model for exploring the potential roles of NMN in milk.


Subject(s)
Epithelial Cells , Lactation , Mammary Glands, Animal , Mice, Knockout , Milk , Nicotinamide Mononucleotide , Nicotinamide Phosphoribosyltransferase , Animals , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Mononucleotide/metabolism , Mammary Glands, Animal/metabolism , Female , Epithelial Cells/metabolism , Milk/metabolism , Mice , Lactation/metabolism , Cytokines/metabolism , NAD/metabolism , Mice, Inbred C57BL
14.
Nature ; 632(8024): 357-365, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987585

ABSTRACT

In lactating mothers, the high calcium (Ca2+) demand for milk production triggers significant bone loss1. Although oestrogen normally counteracts excessive bone resorption by promoting bone formation, this sex steroid drops precipitously during this postpartum period. Here we report that brain-derived cellular communication network factor 3 (CCN3) secreted from KISS1 neurons of the arcuate nucleus (ARCKISS1) fills this void and functions as a potent osteoanabolic factor to build bone in lactating females. We began by showing that our previously reported female-specific, dense bone phenotype2 originates from a humoral factor that promotes bone mass and acts on skeletal stem cells to increase their frequency and osteochondrogenic potential. This circulatory factor was then identified as CCN3, a brain-derived hormone from ARCKISS1 neurons that is able to stimulate mouse and human skeletal stem cell activity, increase bone remodelling and accelerate fracture repair in young and old mice of both sexes. The role of CCN3 in normal female physiology was revealed after detecting a burst of CCN3 expression in ARCKISS1 neurons coincident with lactation. After reducing CCN3 in ARCKISS1 neurons, lactating mothers lost bone and failed to sustain their progeny when challenged with a low-calcium diet. Our findings establish CCN3 as a potentially new therapeutic osteoanabolic hormone for both sexes and define a new maternal brain hormone for ensuring species survival in mammals.


Subject(s)
Bone Density , Bone and Bones , Brain , Hormones , Mothers , Nephroblastoma Overexpressed Protein , Osteogenesis , Adolescent , Animals , Female , Humans , Male , Mice , Aging , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/metabolism , Bone and Bones/cytology , Bone and Bones/metabolism , Bone Remodeling , Bone Resorption/metabolism , Brain/cytology , Brain/metabolism , Calcium/administration & dosage , Calcium/metabolism , Lactation/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Nephroblastoma Overexpressed Protein/metabolism , Hormones/metabolism
15.
Nutrients ; 16(14)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39064726

ABSTRACT

The mammary gland is an exocrine gland whose main function is to produce milk. Breast morphogenesis begins in the embryonic period; however, its greatest development takes place during the lactation period. Studies have found the expression of serum amyloid A protein (SAA) in both breast cells and breast milk, yet the function of this protein in these contexts remains unknown. Insufficient milk production is one of the most frequent reasons for early weaning, a problem that can be related to the mother, the newborn, or both. This study aims to investigate the relationship between lactogenesis II (the onset of milk secretion) and the role of SAA in the human breast. To this end, mammary epithelial cell cultures were evaluated for the expression of SAA and the influence of various cytokines. Additionally, we sought to assess the activation pathway through which SAA acts in the breast, its glucose uptake capacity, and the morphological changes induced by SAA treatment. SAA expression was observed in mammary epithelial cells; however, it was not possible to establish its activation pathway, as treatments with inhibitors of the ERK1/2, p38MAPK, and PI3K pathways did not alter its expression. This study demonstrated that SAA can stimulate IL-6 expression, inhibit glucose uptake, and cause morphological changes in the cells, indicative of cellular stress. These mechanisms could potentially contribute to early breastfeeding cessation due to reduced milk production and breast involution.


Subject(s)
Interleukin-6 , Mammary Glands, Human , Serum Amyloid A Protein , Serum Amyloid A Protein/metabolism , Humans , Female , Interleukin-6/metabolism , Mammary Glands, Human/metabolism , Milk, Human/metabolism , Epithelial Cells/metabolism , Lactation/metabolism , Breast/metabolism , Glucose/metabolism
16.
Adv Exp Med Biol ; 1445: 169-177, 2024.
Article in English | MEDLINE | ID: mdl-38967759

ABSTRACT

Over the past 20 years, increasing evidence has demonstrated that immunoglobulins (Igs) can be widely generated from non B cells, including normal and malignant mammary epithelial cells. In normal breast tissue, the expression of IgG and IgA has been identified in epithelial cells of mammary glands during pregnancy and lactation, which can be secreted into milk, and might participate in neonatal immunity. On the other hand, non B-IgG is highly expressed in breast cancer cells, correlating with the poor prognosis of patients with breast cancer. Importantly, a specific group of IgG, bearing a unique N-linked glycan on the Asn162 site and aberrant sialylation modification at the end of the novel glycan (referred to as sialylated IgG (SIA-IgG)), has been found in breast cancer stem/progenitor-like cells. SIA-IgG can significantly promote the capacity of migration, invasiveness, and metastasis, as well as enhance self-renewal and tumorigenicity in vitro and in vivo. These findings suggest that breast epithelial cells can produce Igs with different biological activities under physiological and pathological conditions. During lactation, these Igs could be the main source of milk Igs to protect newborns from pathogenic infections, while under pathological conditions, they display oncogenic activity and promote the occurrence and progression of breast cancer.


Subject(s)
Breast Neoplasms , Epithelial Cells , Mammary Glands, Human , Humans , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/immunology , Epithelial Cells/metabolism , Animals , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Lactation/metabolism , Pregnancy , Immunoglobulin G/metabolism , Immunoglobulin G/immunology , Immunoglobulins/metabolism
17.
Mol Metab ; 86: 101975, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925247

ABSTRACT

OBJECTIVE: The lactational period is associated with profound hyperphagia to accommodate the energy demands of nursing. These changes are important for the long-term metabolic health of the mother and children as altered feeding during lactation increases the risk of mothers and offspring developing metabolic disorders later in life. However, the specific behavioral mechanisms and neural circuitry mediating the hyperphagia of lactation are incompletely understood. METHODS: Here, we utilized home cage feeding devices to characterize the dynamics of feeding behavior in lactating mice. A combination of pharmacological and behavioral assays were utilized to determine how lactation alters meal structure, circadian aspects of feeding, hedonic feeding, and sensitivity to hunger and satiety signals in lactating mice. Finally, we utilized chemogenetic, immunohistochemical, and in vivo imaging approaches to characterize the role of hypothalamic agouti-related peptide (AgRP) neurons in lactational-hyperphagia. RESULTS: The lactational period is associated with increased meal size, altered circadian patterns of feeding, reduced sensitivity to gut-brain satiety signals, and enhanced sensitivity to negative energy balance. Hypothalamic AgRP neurons display increased sensitivity to negative energy balance and altered in vivo activity during the lactational state. Further, using in vivo imaging approaches we demonstrate that AgRP neurons are directly activated by lactation. Chemogenetic inhibition of AgRP neurons acutely reduces feeding in lactating mice, demonstrating an important role for these neurons in lactational-hyperphagia. CONCLUSIONS: Together, these results show that lactation collectively alters multiple components of feeding behavior and position AgRP neurons as an important cellular substrate mediating the hyperphagia of lactation.


Subject(s)
Agouti-Related Protein , Feeding Behavior , Hyperphagia , Hypothalamus , Lactation , Neurons , Animals , Agouti-Related Protein/metabolism , Lactation/metabolism , Hyperphagia/metabolism , Female , Mice , Neurons/metabolism , Hypothalamus/metabolism , Feeding Behavior/physiology , Energy Metabolism , Mice, Inbred C57BL
18.
PLoS One ; 19(6): e0304910, 2024.
Article in English | MEDLINE | ID: mdl-38837989

ABSTRACT

During lactation, the murine mammary gland is responsible for a significant increase in circulating serotonin. However, the role of mammary-derived serotonin in energy homeostasis during lactation is unclear. To investigate this, we utilized C57/BL6J mice with a lactation and mammary-specific deletion of the gene coding for the rate-limiting enzyme in serotonin synthesis (TPH1, Wap-Cre x TPH1FL/FL) to understand the metabolic contributions of mammary-derived serotonin during lactation. Circulating serotonin was reduced by approximately 50% throughout lactation in Wap-Cre x TPH1FL/FL mice compared to wild-type mice (TPH1FL/FL), with mammary gland and liver serotonin content reduced on L21. The Wap-Cre x TPH1FL/FL mice had less serotonin and insulin immunostaining in the pancreatic islets on L21, resulting in reduced circulating insulin but no changes in glucose. The mammary glands of Wap-Cre x TPH1FL/FL mice had larger mammary alveolar areas, with fewer and smaller intra-lobular adipocytes, and increased expression of milk protein genes (e.g., WAP, CSN2, LALBA) compared to TPH1FL/FL mice. No changes in feed intake, body composition, or estimated milk yield were observed between groups. Taken together, mammary-derived serotonin appears to contribute to the pancreas-mammary cross-talk during lactation with potential implications in the regulation of insulin homeostasis.


Subject(s)
Lactation , Liver , Mammary Glands, Animal , Mice, Inbred C57BL , Serotonin , Tryptophan Hydroxylase , Animals , Lactation/metabolism , Serotonin/metabolism , Female , Mammary Glands, Animal/metabolism , Mice , Liver/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Pancreas/metabolism , Insulin/metabolism , Insulin/blood
19.
J Clin Psychopharmacol ; 44(4): 337-344, 2024.
Article in English | MEDLINE | ID: mdl-38739007

ABSTRACT

PURPOSE/BACKGROUND: Zuranolone is a positive allosteric modulator of both synaptic and extrasynaptic γ-aminobutyric acid type A receptors and a neuroactive steroid approved as an oral, once-daily, 14-day treatment course for adults with postpartum depression in the United States. This study assessed zuranolone transfer into breast milk. METHODS/PROCEDURES: Healthy, nonpregnant, lactating adult female participants received once-daily 30 mg zuranolone from day (D)1 through D5 in this phase 1 open-label study. The relative infant dose (RID; weight-adjusted proportion of the maternal dose in breast milk over 24 hours) for 30 mg zuranolone was assessed at D5. An RID for 50 mg zuranolone was estimated using a simulation approach across a range of infant ages and weights. FINDINGS/RESULTS: Of 15 enrolled participants (mean age, 30.1 years), 14 completed the study. The mean RID for 30 mg zuranolone at D5 was 0.357%; the mean steady-state milk volume over D3 to D5 decreased from baseline by 8.3%. Overall unbound zuranolone in plasma was low (≤0.49%). Plasma concentrations peaked at D5 before decreasing in a biexponential manner. There was strong concordance between the temporal profiles of zuranolone concentrations in plasma and breast milk. The estimated mean RID for 50 mg zuranolone based on a milk intake of 200 mL/kg per day was 0.984%. All treatment-emergent adverse events reported by participants were mild, the most common being dizziness (n = 3). IMPLICATIONS/CONCLUSIONS: Zuranolone transfer into the breast milk of healthy, nonpregnant, lactating adult female participants was low; the estimated RID for 50 mg zuranolone was <1%, well below the <10% threshold generally considered compatible with breastfeeding.


Subject(s)
Lactation , Milk, Human , Humans , Female , Adult , Milk, Human/metabolism , Lactation/drug effects , Lactation/metabolism , Young Adult , Healthy Volunteers , Pregnanolone , Pyrazoles
20.
J Clin Pharmacol ; 64(10): 1278-1287, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38736033

ABSTRACT

The novel dual orexin receptor antagonist daridorexant was approved in 2022 for the treatment of adult patients with insomnia. The aim of this post-marketing study was to measure daridorexant and its major metabolites in breast milk and plasma of 10 healthy lactating subjects. This single-center, open-label study evaluated the transfer of the analytes into breast milk. A single dose of 50 mg was orally administered in the morning. Milk and blood samples were collected pre-dose and over a period of 72 h after dosing. The pharmacokinetics of daridorexant in milk and plasma were assessed including the cumulative amount and fraction of dose excreted, daily infant dose, and relative infant dose. Safety and tolerability were also investigated. All subjects completed the study. Daridorexant was rapidly absorbed into and distributed from plasma. Daridorexant and its major metabolites were measurable in breast milk. The cumulative total amount of daridorexant excreted over 72 h was 0.010 mg, which corresponds to 0.02% of the maternal dose. This corresponds to a mean daily infant dose of 0.009 mg/day and a relative infant dose of less than 0.22% over 24 h. The maternal safety profile was similar to that observed in previous studies. Low amounts of daridorexant and its metabolites were detected in the breast milk of healthy lactating women. Since the exposure and potential effects on the breastfed infant are unknown, a risk of somnolence or other depressant effects cannot be excluded.


Subject(s)
Lactation , Milk, Human , Orexin Receptor Antagonists , Humans , Female , Milk, Human/metabolism , Milk, Human/chemistry , Lactation/metabolism , Adult , Orexin Receptor Antagonists/pharmacokinetics , Orexin Receptor Antagonists/administration & dosage , Young Adult , Imidazoles/pharmacokinetics , Imidazoles/administration & dosage , Imidazoles/blood , Administration, Oral , Pyrrolidines
SELECTION OF CITATIONS
SEARCH DETAIL