Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.091
Filter
1.
Mikrochim Acta ; 191(8): 455, 2024 07 09.
Article in English | MEDLINE | ID: mdl-38980437

ABSTRACT

A novel optical lactate biosensor is presented that utilizes a colorimetric interaction between H2O2 liberated by a binary enzymatic reaction and bis(neocuproine)copper(II) complex ([Cu(Nc)2]2+) known as CUPRAC (cupric reducing antioxidant capacity) reagent. In the first step, lactate oxidase (LOx) and pyruvate oxidase (POx) were separately immobilized on silanized magnetite nanoparticles (SiO2@Fe3O4 NPs), and thus, 2 mol of H2O2 was released per 1 mol of the substrate due to a sequential enzymatic reaction of the mixture of LOx-SiO2@Fe3O4 and POx-SiO2@Fe3O4 NPs with lactate and pyruvate, respectively. In the second step, the absorbance at 450 nm of the yellow-orange [Cu(Nc)2]+ complex formed through the color reaction of enzymatically produced H2O2 with [Cu(Nc)2]2+ was recorded. The results indicate that the developed colorimetric binary enzymatic biosensor exhibits a broad linear range of response between 0.5 and 50.0 µM for lactate under optimal conditions with a detection limit of 0.17 µM. The fabricated biosensor did not respond to other saccharides, while the positive interferences of certain reducing compounds such as dopamine, ascorbic acid, and uric acid were minimized through their oxidative removal with a pre-oxidant (NaBiO3) before enzymatic and colorimetric reactions. The fabricated optical biosensor was applied to various samples such as artificial blood, artificial/real sweat, and cow milk. The high recovery values (close to 100%) achieved for lactate-spiked samples indicate an acceptable accuracy of this colorimetric biosensor in the determination of lactate in real samples. Due to the increase in H2O2 production with the bienzymatic lactate sensor, the proposed method displays double-fold sensitivity relative to monoenzymatic biosensors and involves a neat color reaction with cupric-neocuproine having a clear stoichiometry as opposed to the rather indefinite stoichiometry of analogous redox dye methods.


Subject(s)
Biosensing Techniques , Colorimetry , Copper , Enzymes, Immobilized , Hydrogen Peroxide , Lactic Acid , Magnetite Nanoparticles , Mixed Function Oxygenases , Pyruvate Oxidase , Biosensing Techniques/methods , Colorimetry/methods , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Copper/chemistry , Magnetite Nanoparticles/chemistry , Pyruvate Oxidase/chemistry , Pyruvate Oxidase/metabolism , Lactic Acid/analysis , Lactic Acid/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Animals , Silicon Dioxide/chemistry , Phenanthrolines
2.
PLoS One ; 19(7): e0306062, 2024.
Article in English | MEDLINE | ID: mdl-39018277

ABSTRACT

Practitioners place importance on high-speed running (HSR) to monitor training practice and match-play demands, whilst attempting to maximise fitness and minimize the risk of injury occurrence. Practitioners apply various methods to quantify HSR, such as absolute thresholds, percentage of maximum sprint speed and maximal aerobic speed (MAS). A recent survey demonstrates the 5-minute run and 1200m shuttle test (ST) to be implemented among rugby league practitioners to quantify HSR by incorporating MAS. However, it is unclear as to how valid these methods are to accurately quantify MAS. Therefore, the aim of this study was to assess the validity of the 5-minute run and 1200m ST when compared to a gold standard measure for MAS. Twenty 1st team professional rugby league players competing in the European Super League participated in this study. Players were required to complete an incremental treadmill test, 5-minute run and 1200m ST over a two-week period in pre-season. MAS, peak heart rate (HRmax), peak lactate (Lapeak) and rating of perceived exertion (RPE) where collected upon completion of each test. Results demonstrated the 1200m ST to have a higher correlation for MAS than the 5-minute run (1200m ST: r = 0.73, 5-minute run: r = 0.64). However, when assessing validity using the level of agreement between data, the 5-minute run underreported MAS by 0.45 m·s-1 whereas the 1200m ST underreported MAS by 0.77 m·s-1. Ultimately, both field-based tests used in this study underreport MAS when compared to an incremental treadmill test, although the 5-minute run provides a closer agreement and therefore a more valid measurement for MAS than the 1200m ST.


Subject(s)
Exercise Test , Football , Heart Rate , Running , Humans , Running/physiology , Exercise Test/methods , Adult , Male , Football/physiology , Heart Rate/physiology , Young Adult , Athletic Performance/physiology , Rugby , Lactic Acid/blood , Lactic Acid/analysis , Athletes
3.
Anal Chim Acta ; 1317: 342914, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39030012

ABSTRACT

BACKGROUND: Human sweat can be collected non-invasively with low infectivity; however, its application as a determination method has been challenged due to the presence of trace amounts of chiral metabolites. Moreover, its application as a biological fluid for disease diagnosis has not been previously reported. In this study, the human dried sweat spot paper (DSSP) method was proposed for the derivatization of a novel mass spectrometric chiral probe, N-[1-Oxo-5-(triphenylphosphonium) pentyl]-(S)-3-aminopyrrolidine (OTPA), determination and resolution of DL-lactic acid (DL-LA) enantiomers in human elbow sweat. RESULTS: The methodological validation revealed the resolution (Rs) as 1.78, the limit of detection (S/N = 3) as 20.83 fmol, good linearity (R2 ≥ 0.9996), and the intra-day and intra-day stability with RSD ranging from 0.53 to 10.85 %, while the average recovery rate of D-LA and L-LA were 104.00 % ± 4.68 % and 107.41 % ± 8.34 %, respectively, with high accuracy. In addition, the method was applied for the determination of DL-LA in the sweat on elbow of 10 healthy volunteers and 30 diabetic patients. The results demonstrated that the D/L ratio and L/D ratio were significantly different (p < 0.0001). In addition, a moderate positive linear correlation between the D/L-LA ratio in human sweat and fasting blood glucose level (r = 0.7744, p < 0.0001) was observed, thereby suggesting that the D/L ratio of lactate in human sweat correlate the glucose level in human fasting blood. SIGNIFICANCE AND NOVELTY: The D/L lactate ratio in human sweat could be used as a potential biomarker for diabetes screening. The method can be used to screen for diabetes by providing a dry sweat paper to test equipment and has the potential to be a non-invasive early-warning diagnostic tool for diabetes.


Subject(s)
Biomarkers , Diabetes Mellitus , Lactic Acid , Paper , Sweat , Humans , Sweat/chemistry , Biomarkers/analysis , Stereoisomerism , Lactic Acid/analysis , Diabetes Mellitus/diagnosis , Male , Adult , Mass Spectrometry , Female , Middle Aged , Limit of Detection
4.
Sensors (Basel) ; 24(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38894238

ABSTRACT

In this paper, a novel fluorescent detection method for glucose and lactic acid was developed based on fluorescent iron nanoclusters (Fe NCs). The Fe NCs prepared using hemin as the main raw material exhibited excellent water solubility, bright red fluorescence, and super sensitive response to hydrogen peroxide (H2O2). This paper demonstrates that Fe NCs exhibit excellent peroxide-like activity, catalyzing H2O2 to produce hydroxyl radicals (•OH) that can quench the red fluorescence of Fe NCs. In this paper, a new type of glucose sensor was established by combining Fe NCs with glucose oxidase (GluOx). With the increase in glucose content, the fluorescence of Fe NCs decreases correspondingly, and the glucose content can be detected in the scope of 0-200 µmol·L-1 (µM). Similarly, the lactic acid sensor can also be established by combining Fe NCs with lactate oxidase (LacOx). With the increase in lactic acid concentration, the fluorescence of Fe NCs decreases correspondingly, and the lactic acid content can be detected in the range of 0-100 µM. Furthermore, Fe NCs were used in the preparation of gel test strip, which can be used to detect H2O2, glucose and lactic acid successfully by the changes of fluorescent intensity.


Subject(s)
Glucose Oxidase , Glucose , Hydrogen Peroxide , Iron , Lactic Acid , Lactic Acid/analysis , Lactic Acid/chemistry , Glucose/analysis , Glucose/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Iron/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Biosensing Techniques/methods , Fluorescence , Spectrometry, Fluorescence/methods , Fluorescent Dyes/chemistry , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Metal Nanoparticles/chemistry
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124638, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38880076

ABSTRACT

This work aimed to set inline Raman spectroscopy models to monitor biochemically (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, and ammonium) all upstream stages of a virus-like particle-making process. Linear (Partial least squares, PLS; Principal components regression, PCR) and nonlinear (Artificial neural networks, ANN; supported vector machine, SVM) modeling approaches were assessed. The nonlinear models, ANN and SVM, were the more suitable models with the lowest absolute errors. The mean absolute error of the best models within the assessed parameter ranges for viable cell density (0.01-8.83 × 106 cells/mL), cell viability (1.3-100.0 %), glucose (5.22-10.93 g/L), lactate (18.6-152.7 mg/L), glutamine (158-1761 mg/L), glutamate (807.6-2159.7 mg/L), and ammonium (62.8-117.8 mg/L) were 1.55 ± 1.37 × 106 cells/mL (ANN), 5.01 ± 4.93 % (ANN), 0.27 ± 0.22 g/L (SVM), 4.7 ± 2.6 mg/L (SVM), 51 ± 49 mg/L (ANN), 57 ± 39 mg/L (SVM) and 2.0 ± 1.8 mg/L (ANN), respectively. The errors achieved, and best-fitted models were like those for the same bioprocess using offline data and others, which utilized inline spectra for mammalian cell lines as a host.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Least-Squares Analysis , Glucose/analysis , Neural Networks, Computer , Cell Survival/drug effects , Glutamic Acid/analysis , Support Vector Machine , Principal Component Analysis , Glutamine/analysis , Lactic Acid/analysis , Ammonium Compounds/analysis
6.
Sci Rep ; 14(1): 12570, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38821996

ABSTRACT

Due to growing interest in the investigation of exercise induced sweat biomarkers to assess an individual's health and the increasing prevalence of tattoos in the world's population, investigators sought to determine whether local sweat concentrations and excretion rates of epidermal growth factor (EGF), interleukin (IL) -1α, IL-6, IL-8, cortisol, glucose, blood urea nitrogen (BUN), and lactate differ between tattooed and contralateral non-tattooed skin during exercise. Sixteen recreational exercisers [female (50%)] (age = 25-48 years) with ≥ 1 unilateral permanent tattoo [median tattoo age = 6 years, IQR = 5] on the arm/torso completed an outdoor group fitness session. There were no significant differences between tattooed and non-tattooed skin for sweat EGF, IL-1α, IL-8, cortisol, glucose, BUN, or lactate concentrations. There were no significant differences between tattooed and non-tattooed skin for sweat EGF, IL-1α, IL-8, cortisol, glucose, BUN, or lactate excretion rate. Findings suggest that permanent tattoos older than 1 year may not impact local sweat EGF, IL-1α, IL-8, cortisol, glucose, BUN, and lactate concentrations or excretion rates during exercise.Clinical trial identifier NCT04920266 was registered on June 9, 2021.


Subject(s)
Blood Urea Nitrogen , Cytokines , Exercise , Hydrocortisone , Lactic Acid , Sweat , Tattooing , Adult , Female , Humans , Male , Middle Aged , Biomarkers/analysis , Cytokines/metabolism , Cytokines/analysis , Exercise/physiology , Glucose/metabolism , Glucose/analysis , Hydrocortisone/analysis , Hydrocortisone/blood , Hydrocortisone/metabolism , Lactic Acid/metabolism , Lactic Acid/analysis , Sweat/metabolism , Sweat/chemistry
7.
Biosens Bioelectron ; 259: 116386, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38749285

ABSTRACT

Faced with the increasing prevalence of chronic kidney disease (CKD), portable monitoring of CKD-related biomarkers such as potassium ion (K+), creatinine (Cre), and lactic acid (Lac) levels in sweat has shown tremendous potential for early diagnosis. However, a rapidly manufacturable portable device integrating multiple CKD-related biomarker sensors for ease of sweat testing use has yet to be reported. Here, a portable electrochemical sensor integrated with multifunctional laser-induced graphene (LIG) circuits and laser-printed nanomaterials based working electrodes fabricated by fully automatic laser manufacturing is proposed for non-invasive human kidney function monitoring. The sensor comprises a two-electrode LIG circuit for K+ sensing, a three-electrode LIG circuit with a Kelvin compensating connection for Cre and Lac sensing, and a printed circuit board based portable electrochemical workstation. The working electrodes containing Cu and Cu2O nanoparticles fabricated by two-step laser printing show good sensitivity and selectivity toward Cre and Lac sensing. The sensor circuits are fabricated by generating a hydrophilic-hydrophobic interface on a patterned LIG through laser. This sensor recruited rapid laser manufacturing and integrated with multifunctional LIG circuits and laser-printed nanomaterials based working electrodes, which is a potential kidney function monitoring solution for healthy people and kidney disease patients.


Subject(s)
Biosensing Techniques , Graphite , Lasers , Nanostructures , Renal Insufficiency, Chronic , Humans , Graphite/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Nanostructures/chemistry , Renal Insufficiency, Chronic/diagnosis , Kidney/chemistry , Creatinine/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Sweat/chemistry , Equipment Design , Lactic Acid/analysis , Electrodes , Kidney Function Tests/instrumentation , Biomarkers/analysis , Copper/chemistry
8.
ACS Sens ; 9(6): 3212-3223, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38820602

ABSTRACT

Wearable sweat biosensors have shown great progress in noninvasive, in situ, and continuous health monitoring to demonstrate individuals' physiological states. Advances in novel nanomaterials and fabrication methods promise to usher in a new era of wearable biosensors. Here, we introduce a three-dimensional (3D)-printed flexible wearable health monitor fabricated through a unique one-step continuous manufacturing process with self-supporting microfluidic channels and novel single-atom catalyst-based bioassays for measuring the sweat rate and concentration of three biomarkers. Direct ink writing is adapted to print the microfluidic device with self-supporting structures to harvest human sweat, which eliminates the need for removing sacrificial supporting materials and addresses the contamination and sweat evaporation issues associated with traditional sampling methods. Additionally, the pick-and-place strategy is employed during the printing process to accurately integrate the bioassays, improving manufacturing efficiency. A single-atom catalyst is developed and utilized in colorimetric bioassays to improve sensitivity and accuracy. A feasibility study on human skin successfully demonstrates the functionality and reliability of our health monitor, generating reliable and quantitative in situ results of sweat rate, glucose, lactate, and uric acid concentrations during physical exercise.


Subject(s)
Biomarkers , Printing, Three-Dimensional , Sweat , Wearable Electronic Devices , Humans , Sweat/chemistry , Biomarkers/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Lab-On-A-Chip Devices , Lactic Acid/analysis , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Uric Acid/analysis , Colorimetry/instrumentation , Colorimetry/methods
10.
ACS Sens ; 9(6): 3115-3125, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38778463

ABSTRACT

Lactate is an important diagnostic and prognostic biomarker of several human pathological conditions, such as sepsis, malaria, and dengue fever. Unfortunately, due to the lack of reliable analytical decentralized platforms, the determination of lactate yet relies on discrete blood-based assays, which are invasive and inefficient and may cause tension and pain in the patient. Herein, we demonstrate the potential of a fully integrated microneedle (MN) sensing system for the minimally invasive transdermal detection of lactate in an interstitial fluid (ISF). The originality of this analytical technology relies on: (i) a strategy to provide a uniform coating of a doped polymer-based membrane as a diffusion-limiting layer on the MN structure, optimized to perform full-range lactate detection in the ISF (linear range of response: 0.25-35 mM, 30 s assay time, 8 h operation), (ii) double validation of ex vivo and in vivo results based on ISF and blood measurements in rats, (iii) monitoring of lactate level fluctuations under the administration of anesthesia to mimic bedside clinical scenarios, and (iv) in-house design and fabrication of a fully integrated and portable sensing device in the form of a wearable patch including a custom application and user-friendly interface in a smartphone for the rapid, routine, continuous, and real-time lactate monitoring. The main analytical merits of the lactate MN sensor include appropriate selectivity, reversibility, stability, and durability by using a two-electrode amperometric readout. The ex-vivo testing of the MN patch of preconditioned rat skin pieces and euthanized rats successfully demonstrated the accuracy in measuring lactate levels. The in vivo measurements suggested the existence of a positive correlation between ISF and blood lactate when a lag time of 10 min is considered (Pearson's coefficient = 0.85, mean difference = 0.08 mM). The developed MN-based platform offers distinct advantages over noncontinuous blood sampling in a wide range of contexts, especially where access to laboratory services is limited or blood sampling is not suitable. Implementation of the wearable patch in healthcare could envision personalized medicine in a variety of clinical settings.


Subject(s)
Lactic Acid , Needles , Lactic Acid/analysis , Lactic Acid/blood , Lactic Acid/chemistry , Animals , Rats , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Extracellular Fluid/chemistry , Rats, Sprague-Dawley , Skin/chemistry , Male , Humans
11.
PLoS One ; 19(5): e0301041, 2024.
Article in English | MEDLINE | ID: mdl-38701088

ABSTRACT

OBJECTIVE: To evaluate the safety and performance of an implantable near-infrared (NIR) spectroscopy sensor for multi-metabolite monitoring of glucose, ketones, lactate, and ethanol. RESEARCH DESIGN AND METHODS: This is an early feasibility study (GLOW, NCT04782934) including 7 participants (4 with type 1 diabetes (T1D), 3 healthy volunteers) in whom the YANG NIR spectroscopy sensor (Indigo) was implanted for 28 days. Metabolic challenges were used to vary glucose levels (40-400 mg/dL, 2.2-22.2 mmol/L) and/or induce increases in ketones (ketone drink, up to 3.5 mM), lactate (exercise bike, up to 13 mM) and ethanol (4-8 alcoholic beverages, 40-80g). NIR spectra for glucose, ketones, lactate, and ethanol levels analyzed with partial least squares regression were compared with blood values for glucose (Biosen EKF), ketones and lactate (GlucoMen LX Plus), and breath ethanol levels (ACE II Breathalyzer). The effect of potential confounders on glucose measurements (paracetamol, aspartame, acetylsalicylic acid, ibuprofen, sorbitol, caffeine, fructose, vitamin C) was investigated in T1D participants. RESULTS: The implanted YANG sensor was safe and well tolerated and did not cause any infectious or wound healing complications. Six out 7 sensors remained fully operational over the entire study period. Glucose measurements were sufficiently accurate (overall mean absolute (relative) difference MARD of 7.4%, MAD 8.8 mg/dl) without significant impact of confounders. MAD values were 0.12 mM for ketones, 0.16 mM for lactate, and 0.18 mM for ethanol. CONCLUSIONS: The first implantable multi-biomarker sensor was shown to be well tolerated and produce accurate measurements of glucose, ketones, lactate, and ethanol. TRIAL REGISTRATION: Clinical trial identifier: NCT04782934.


Subject(s)
Ethanol , Feasibility Studies , Ketones , Lactic Acid , Spectroscopy, Near-Infrared , Humans , Ketones/analysis , Male , Ethanol/analysis , Spectroscopy, Near-Infrared/methods , Adult , Female , Lactic Acid/analysis , Lactic Acid/blood , Blood Glucose/analysis , Middle Aged , Diabetes Mellitus, Type 1/blood , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Glucose/analysis
12.
An Acad Bras Cienc ; 96(2): e20231388, 2024.
Article in English | MEDLINE | ID: mdl-38747802

ABSTRACT

This study is the first to apply training impulse (TRIMP) and Training Monotony (TM) methodologies, within the realm of sport science, in animal model studies. Rats were divided into Sedentary (SED, n=10) and Training (TR, n=13). TR performed a four-week moderate-intensity interval training with load progression. Lactate kinetics, lactate training impulse (TRIMPLac), maximal speed training impulse (TRIMPSmax) and TM were utilized to develop and monitor training protocol. TR showed an 11.9% increase in time to exhaustion at the second maximum incremental test and a 17.5% increase at the third test. External work was increased by 17.8% at the second test and 30.3% at the third. There was a 10.6% increase in external work at the third test compared to the second for TR. No difference in TRIMPLac between the 1st week (94±9 A.U) and 3rdweek (83±10 A.U) were seen. TRIMPSmax was 2400 A.U. in the 1st week, 2760 A.U. in the 2nd and 3rd weeks, and 3120 A.U. in the 4th week. The TM remained at 1.24 A.U throughout the protocol and there was no dropouts. TRIMPLac and TRIMPSmax contributed to the development and monitoring loads, demonstrating their potential to improve the accuracy of training protocols in animal model research.


Subject(s)
Lactic Acid , Physical Conditioning, Animal , Rats, Wistar , Animals , Physical Conditioning, Animal/physiology , Male , Lactic Acid/blood , Lactic Acid/analysis , Rats , Time Factors
13.
Rapid Commun Mass Spectrom ; 38(15): e9769, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38782757

ABSTRACT

RATIONALE: Succinic acid and lactic acid have been associated with diarrhea in weaned piglets. The level of succinic acid and lactic acid in serum, meat, and intestinal contents is important to elucidate the mechanism of diarrhea in weaned piglets. METHODS: A facile method was developed for the quantification of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC/MS/MS). The serum samples underwent protein precipitation with methanol. The meat and intestinal contents were freeze-dried and homogenized using a tissue grinding apparatus. Methanol-water mixture (80:20, v/v) was used for homogenizing the meat, while water was used for homogenizing the intestinal contents. An additional step of protein precipitation with acetonitrile was required for the intestinal contents. The resulting solution was diluted with water before being analyzed by UHPLC/MS/MS. Separation of succinic acid and lactic acid could be achieved within 3 min using a Kinetic XB-C18 column. RESULTS: The coefficients of variation for peak areas of succinic acid and lactic acid were less than 5.0%. The established method demonstrated good linearity as indicated by correlation coefficients exceeding 0.996. Additionally, satisfactory recoveries ranging from 88.58% to 108.8% were obtained. The detection limits (RS/N = 3) for succinic acid and lactic acid were determined to be 0.75 ng/mL and 0.02 µg/mL, respectively. CONCLUSION: This method exhibited high sensitivity, simplicity in operation, and small sample weight, making it suitable for quantitative determination of succinic acid and lactic acid in pigs' serum, intestinal contents, and meat. The method developed will provide valuable technical support in studying the metabolic mechanisms of succinic acid and lactic acid in pigs.


Subject(s)
Lactic Acid , Succinic Acid , Tandem Mass Spectrometry , Animals , Tandem Mass Spectrometry/methods , Lactic Acid/blood , Lactic Acid/analysis , Chromatography, High Pressure Liquid/methods , Swine , Succinic Acid/blood , Succinic Acid/analysis , Succinic Acid/chemistry , Meat/analysis , Reproducibility of Results , Limit of Detection , Linear Models
14.
Anal Chem ; 96(22): 9159-9166, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38726669

ABSTRACT

Flexible photonics offers the possibility of realizing wearable sensors by bridging the advantages of flexible materials and photonic sensing elements. Recently, optical resonators have emerged as a tool to improve their oversensitivity by integrating with flexible photonic sensors. However, direct monitoring of multiple psychological information on human skin remains challenging due to the subtle biological signals and complex tissue interface. To tackle the current challenges, here, we developed a functional thin film laser formed by encapsulating liquid crystal droplet lasers in a flexible hydrogel for monitoring metabolites in human sweat (lactate, glucose, and urea). The three-dimensional cross-linked hydrophilic polymer serves as the adhesive layer to allow small molecules to penetrate from human tissue to generate strong light--matter interactions on the interface of whispering gallery modes resonators. Both the hydrogel and cholesteric liquid crystal microdroplets were modified specifically to achieve high sensitivity and selectivity. As a proof of concept, wavelength-multiplexed sensing and a prototype were demonstrated on human skin to detect human metabolites from perspiration. These results present a significant advance in the fabrication and potential guidance for wearable and functional microlasers in healthcare.


Subject(s)
Hydrogels , Lasers , Skin , Sweat , Wearable Electronic Devices , Humans , Skin/chemistry , Skin/metabolism , Hydrogels/chemistry , Sweat/chemistry , Sweat/metabolism , Glucose/analysis , Glucose/metabolism , Urea/chemistry , Urea/analysis , Lactic Acid/analysis , Lactic Acid/chemistry , Liquid Crystals/chemistry , Methylgalactosides
15.
Biosensors (Basel) ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38667180

ABSTRACT

A lactic acid (LA) monitoring system aimed at sweat monitoring was fabricated and tested. The sweat LA monitoring system uses a continuous flow of phosphate buffer saline, instead of chambers or cells, for collecting and storing sweat fluid excreted at the skin surface. To facilitate the use of the sweat LA monitoring system by subjects when exercising, the fluid control system, including the sweat sampling device, was designed to be unaffected by body movements or muscle deformation. An advantage of our system is that the skin surface condition is constantly refreshed by continuous flow. A real sample test was carried out during stationary bike exercise, which showed that LA secretion increased by approximately 10 µg/cm2/min compared to the baseline levels before exercise. The LA levels recovered to baseline levels after exercise due to the effect of continuous flow. This indicates that the wristwatch sweat LA monitor has the potential to enable a detailed understanding of the LA distribution at the skin surface.


Subject(s)
Lactic Acid , Sweat , Humans , Sweat/chemistry , Lactic Acid/analysis , Monitoring, Physiologic , Wearable Electronic Devices , Biosensing Techniques , Exercise , Skin
16.
Med Biol Eng Comput ; 62(8): 2409-2434, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38609577

ABSTRACT

ASTRACT: One of the most common oral diseases affecting millions of people worldwide is periodontitis. Usually, proteins in body fluids are used as biomarkers of diseases. This study focused on hydrogen peroxide, lipopolysaccharide (LPS), and lactic acid as salivary non-protein biomarkers for oxidative stress conditions of periodontitis. Electrochemical analysis of artificial saliva was done using Gamry with increasing hydrogen peroxide, bLPS, and lactic acid concentrations. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were conducted. From EIS data, change in capacitance and CV plot area were calculated for each test condition. Hydrogen peroxide groups had a decrease in CV area and an increase in percentage change in capacitance, lipopolysaccharide groups had a decrease in CV area and a decrease in percentage change in capacitance, and lactic acid groups had an increase of CV area and an increase in percentage change in capacitance with increasing concentrations. These data showed a unique combination of electrochemical properties for the three biomarkers. Scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) employed to observe the change in the electrode surface and elemental composition data present on the sensor surface also showed a unique trend of elemental weight percentages. Machine learning models using hydrogen peroxide, LPS, and lactic acid electrochemical data were applied for the prediction of risk levels of periodontitis. The detection of hydrogen peroxide, LPS, and lactic acid by electrochemical biosensors indicates the potential to use these molecules as electrochemical biomarkers and use the data for ML-driven prediction tool for the periodontitis risk levels.


Subject(s)
Biosensing Techniques , Dielectric Spectroscopy , Hydrogen Peroxide , Lactic Acid , Lipopolysaccharides , Oxidative Stress , Periodontitis , Saliva , Humans , Saliva/chemistry , Saliva/metabolism , Periodontitis/metabolism , Hydrogen Peroxide/analysis , Hydrogen Peroxide/metabolism , Biosensing Techniques/methods , Lactic Acid/analysis , Lactic Acid/metabolism , Dielectric Spectroscopy/methods , Biomarkers/analysis , Biomarkers/metabolism , Machine Learning
17.
World J Pediatr Congenit Heart Surg ; 15(4): 459-466, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38646826

ABSTRACT

Objectives: We previously demonstrated cerebral mitochondrial dysfunction in neonatal swine immediately following a period of full-flow cardiopulmonary bypass (CPB). The extent to which this dysfunction persists in the postoperative period and its correlation with other markers of cerebral bioenergetic failure and injury is unknown. We utilized a neonatal swine model to investigate the early evolution of mitochondrial function and cerebral bioenergetic failure after CPB. Methods: Twenty piglets (mean weight 4.4 ± 0.5 kg) underwent 3 h of CPB at 34 °C via cervical cannulation and were followed for 8, 12, 18, or 24 h (n = 5 per group). Markers of brain tissue damage (glycerol) and bioenergetic dysfunction (lactate to pyruvate ratio) were continuously measured in cerebral microdialysate samples. Control animals (n = 3, mean weight 4.1 ± 1.2 kg) did not undergo cannulation or CPB. Brain tissue was extracted immediately after euthanasia to obtain ex-vivo cortical mitochondrial respiration and frequency of cortical microglial nodules (indicative of cerebral microinfarctions) via neuropathology. Results: Both the lactate to pyruvate ratio (P < .0001) and glycerol levels (P = .01) increased in cerebral microdialysate within 8 h after CPB. At 24 h post-CPB, cortical mitochondrial respiration was significantly decreased compared with controls (P = .046). The presence of microglial nodules increased throughout the study period (24 h) (P = .01, R2 = 0.9). Conclusion: CPB results in impaired cerebral bioenergetics that persist for at least 24 h. During this period of bioenergetic impairment, there may be increased susceptibility to secondary injury related to alterations in metabolic delivery or demand, such as hypoglycemia, seizures, and decreased cerebral blood flow.


Subject(s)
Animals, Newborn , Cardiopulmonary Bypass , Energy Metabolism , Mitochondria , Animals , Cardiopulmonary Bypass/adverse effects , Swine , Energy Metabolism/physiology , Mitochondria/metabolism , Disease Models, Animal , Brain/metabolism , Lactic Acid/metabolism , Lactic Acid/blood , Lactic Acid/analysis , Pyruvic Acid/metabolism , Glycerol/metabolism
18.
Biotechnol Bioeng ; 121(7): 2193-2204, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38639160

ABSTRACT

This study presents a novel approach for developing generic metabolic Raman calibration models for in-line cell culture analysis using glucose and lactate stock solution titration in an aqueous phase and data augmentation techniques. First, a successful set-up of the titration method was achieved by adding glucose or lactate solution at several different constant rates into the aqueous phase of a bench-top bioreactor. Subsequently, the in-line glucose and lactate concentration were calculated and interpolated based on the rate of glucose and lactate addition, enabling data augmentation and enhancing the robustness of the metabolic calibration model. Nine different combinations of spectra pretreatment, wavenumber range selection, and number of latent variables were evaluated and optimized using aqueous titration data as training set and a historical cell culture data set as validation and prediction set. Finally, Raman spectroscopy data collected from 11 historical cell culture batches (spanning four culture modes and scales ranging from 3 to 200 L) were utilized to predict the corresponding glucose and lactate values. The results demonstrated a high prediction accuracy, with an average root mean square errors of prediction of 0.65 g/L for glucose, and 0.48 g/L for lactate. This innovative method establishes a generic metabolic calibration model, and its applicability can be extended to other metabolites, reducing the cost of deploying real-time cell culture monitoring using Raman spectroscopy in bioprocesses.


Subject(s)
Cell Culture Techniques , Glucose , Lactic Acid , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Glucose/metabolism , Lactic Acid/metabolism , Lactic Acid/analysis , Calibration , Cell Culture Techniques/methods , Bioreactors , Models, Biological , CHO Cells , Cricetulus , Culture Media/chemistry , Animals
19.
NMR Biomed ; 37(9): e5158, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38584133

ABSTRACT

PURPOSE: In vivo quantification of lactate has numerous applications in studying the pathology of both cerebral and musculoskeletal systems. Due to its low concentration (~0.5-1 mM), and overlap with lipid signals, traditional 1H MR spectra acquired in vivo using a small voxel and short echo time often result in an inadequate signal to detect and resolve the lactate peak, especially in healthy human volunteers. METHODS: In this study, using a semi-LASER acquisition with long echo time (TE = 288 ms) and large voxel size (80 × 70 × 20 mm3), we clearly visualize the combined signal of lactate and threonine. Therefore, we call the signal at 1.33 ppm Lac+ and quantify Lac+ concentration from water suppressed spectra in healthy human brains in vivo. Four participants (22-37 years old; mean age = 28 ± 5.4; three male, one female) were scanned on four separate days, and on each day four measurements were taken. Intra-day values are calculated for each participant by comparing the four measurements on a single day. Inter-day values were calculated using the mean intra-day measurements. RESULTS: The mean intra-participant Lac+ concentration, standard deviation (SD), and coefficient of variation (CV) ranged from 0.49 to 0.61 mM, 0.02 to 0.07 mM, and 4% to 13%, respectively, across four volunteers. The inter-participant Lac+ concentration, SD, and CV was 0.53 mM, ±0.06 mM, and 11%. CONCLUSION: Repeatability is shown in Lac+ measurement in healthy human brain using a long echo time semi-LASER sequence with a large voxel in about 3.5 min at 3 T.


Subject(s)
Brain , Lactic Acid , Humans , Male , Female , Adult , Young Adult , Brain/diagnostic imaging , Brain/metabolism , Reproducibility of Results , Lactic Acid/metabolism , Lactic Acid/analysis , Magnetic Resonance Spectroscopy/methods
20.
Acta Neurochir (Wien) ; 166(1): 190, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38653934

ABSTRACT

BACKGROUND: Cerebral perfusion pressure (CPP) management in the developing child with traumatic brain injury (TBI) is challenging. The pressure reactivity index (PRx) may serve as marker of cerebral pressure autoregulation (CPA) and optimal CPP (CPPopt) may be assessed by identifying the CPP level with best (lowest) PRx. To evaluate the potential of CPPopt guided management in children with severe TBI, cerebral microdialysis (CMD) monitoring levels of lactate and the lactate/pyruvate ratio (LPR) (indicators of ischemia) were related to actual CPP levels, autoregulatory state (PRx) and deviations from CPPopt (ΔCPPopt). METHODS: Retrospective study of 21 children ≤ 17 years with severe TBI who had both ICP and CMD monitoring were included. CPP, PRx, CPPopt and ΔCPPopt where calculated, dichotomized and compared with CMD lactate and lactate-pyruvate ratio. RESULTS: Median age was 16 years (range 8-17) and median Glasgow coma scale motor score 5 (range 2-5). Both lactate (p = 0.010) and LPR (p = < 0.001) were higher when CPP ≥ 70 mmHg than when CPP < 70. When PRx ≥ 0.1 both lactate and LPR were higher than when PRx < 0.1 (p = < 0.001). LPR was lower (p = 0.012) when CPPopt ≥ 70 mmHg than when CPPopt < 70, but there were no differences in lactate levels. When ΔCPPopt > 10 both lactate (p = 0.026) and LPR (p = 0.002) were higher than when ΔCPPopt < -10. CONCLUSIONS: Increased levels of CMD lactate and LPR in children with severe TBI appears to be related to disturbed CPA (PRx). Increased lactate and LPR also seems to be associated with actual CPP levels ≥ 70 mmHg. However, higher lactate and LPR values were also seen when actual CPP was above CPPopt. Higher CPP appears harmful when CPP is above the upper limit of pressure autoregulation. The findings indicate that CPPopt guided CPP management may have potential in pediatric TBI.


Subject(s)
Brain Injuries, Traumatic , Cerebrovascular Circulation , Homeostasis , Intracranial Pressure , Lactic Acid , Humans , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/metabolism , Child , Adolescent , Homeostasis/physiology , Female , Male , Retrospective Studies , Intracranial Pressure/physiology , Cerebrovascular Circulation/physiology , Lactic Acid/metabolism , Lactic Acid/analysis , Microdialysis/methods , Pyruvic Acid/metabolism , Pyruvic Acid/analysis , Brain/metabolism , Brain/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL