Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 361, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837050

ABSTRACT

Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: • Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress • Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only • Activation energy revealed chemically limited reactions ruled the activity loss in storage.


Subject(s)
Freeze Drying , Freeze Drying/methods , Spectroscopy, Fourier Transform Infrared , Spray Drying , Microbial Viability , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/physiology , Lactobacillus delbrueckii/metabolism , Lactobacillus delbrueckii/physiology , Lactobacillales/metabolism , Lactobacillales/physiology , Desiccation
2.
Curr Microbiol ; 80(7): 220, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37204589

ABSTRACT

Tejuino is a popular and traditional beverage consumed in north and western of Mexico, due to its biological properties, it is considered a natural source of probiotics. Nevertheless, few studies have been performed on Tejuino microbiota. In this work, the probiotic potential of the tejuino isolated Lactiplantibacillus plantarum BI-59.1 strain was investigated. Its effectiveness was compared with a commercial Lactobacillus spp and identified by 16S rDNA sequence homology. Lactiplantibacillus plantarum BI-59.1 strain showed probiotic properties, i.e., production of antimicrobial compounds (lactic acid and presence of plantaricin A gene), inhibition of entero-pathogens by planktonic cells and metabolites (Salmonella enterica serovar Typhimurium inhibition to HT29-MTX adhesion), biofilm formation, bacterial adhesion (HT29-MTX, 3.96 CFU/cell), and tolerance to stimulated gastrointestinal conditions (tolerance to pH 3 and bile salts). The strain was gamma hemolytic, susceptible to most antibiotics and negative for gelatinase production; thus, the Lactiplantibacillus. plantarum BI-59.1 strain is suitable for its use as a probiotic for nutraceutical or pharmaceutical formulations.


Subject(s)
Lactobacillus plantarum , Probiotics , Lactobacillus plantarum/physiology , Lactobacillus , Biofilms , Anti-Bacterial Agents/pharmacology , Salmonella typhimurium/physiology , Probiotics/pharmacology
3.
BMC Microbiol ; 21(1): 198, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34187371

ABSTRACT

BACKGROUND: Probiotics are important tools in therapies against vaginal infections and can assist traditional antibiotic therapies in restoring healthy microbiota. Recent research has shown that microorganisms belonging to the genus Lactobacillus have probiotic potential. Thus, this study evaluated the potential in vitro probiotic properties of three strains of Lactiplantibacillus plantarum, isolated during the fermentation of high-quality cocoa, against Gardnerella vaginalis and Neisseria gonorrhoeae. Strains were evaluated for their physiological, safety, and antimicrobial characteristics. RESULTS: The hydrophobicity of L. plantarum strains varied from 26.67 to 91.67%, and their autoaggregation varied from 18.10 to 30.64%. The co-aggregation of L. plantarum strains with G. vaginalis ranged from 14.73 to 16.31%, and from 29.14 to 45.76% with N. gonorrhoeae. All L. plantarum strains could moderately or strongly produce biofilms. L. plantarum strains did not show haemolytic activity and were generally sensitive to the tested antimicrobials. All lactobacillus strains were tolerant to heat and pH resistance tests. All three strains of L. plantarum showed antimicrobial activity against the tested pathogens. The coincubation of L. plantarum strains with pathogens showed that the culture pH remained below 4.5 after 24 h. All cell-free culture supernatants (CFCS) demonstrated activity against the two pathogens tested, and all L. plantarum strains produced hydrogen peroxide. CFCS characterisation in conjunction with gas chromatography revealed that organic acids, especially lactic acid, were responsible for the antimicrobial activity against the pathogens evaluated. CONCLUSION: The three strains of L. plantarum presented significant probiotic characteristics against the two pathogens of clinical importance. In vitro screening identified strong probiotic candidates for in vivo studies for the treatment of vaginal infections.


Subject(s)
Antibiosis/physiology , Cacao/microbiology , Fermented Foods/microbiology , Gardnerella vaginalis/physiology , Lactobacillus plantarum/physiology , Neisseria gonorrhoeae/physiology , Probiotics , Fermentation , Humans , Lactobacillus plantarum/isolation & purification
4.
Arch Microbiol ; 203(7): 4161-4171, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34061232

ABSTRACT

The objective of this work was to determine the antibacterial effect of Lactobacillus plantarum strains of pork origin against Campylobacter coli strains, and to conduct experimental colonization pilot models in mice for both microorganisms. Inhibition assays allowed evaluation and selection of L. plantarum LP5 as the strain with the highest antagonistic activity against C. coli and with the best potential to be used in in vivo study. Adult 6-week-old female Balb/cCmedc mice were lodged in two groups. The treated group was administered with 9.4 log10CFU/2 times/wk of L. plantarum LP5. L. plantarum LP5 was recovered from the feces and cecum of the inoculated mice. However, when bacteria stopped being administered, probiotic counts decreased. Experimental colonization with C. coli was carried out in five groups of mice. All animals were treated with antibiotics in their drinking water to weaken the indigenous microbiota and to allow colonization of C. coli. Four groups were administered once with different C. coli strains (DSPV458: 8.49 log10CFU; DSPV567: 8.09 log10CFU; DSPV570: 8.46 log10CFU; DSPV541: 8.86 log10CFU, respectively). After 8 h, mice inoculated with different C. coli strains were colonized because the pathogen was detected in their feces. L. plantarum LP5 tolerated the gastrointestinal conditions of murine model without generating adverse effects on the animals. C. coli DSPV458 colonized the mice without causing infection by lodging in their digestive tract, thus generating a reproducible colonization model. Both models combined could be used as protection murine models against pathogens to test alternative control tools to antibiotics.


Subject(s)
Antibiosis , Campylobacter coli , Lactobacillus plantarum , Probiotics , Animals , Campylobacter coli/physiology , Feces/microbiology , Female , Gastrointestinal Tract/microbiology , Lactobacillus plantarum/physiology , Mice , Mice, Inbred BALB C , Models, Animal , Probiotics/metabolism
5.
Benef Microbes ; 12(2): 163-174, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33769229

ABSTRACT

Anti-inflammatory effect of soluble secreted compounds of probiotic bacteria was widely demonstrated as therapy for different inflammatory diseases, but was not investigated in inflammatory eye disorders. The aim of this study was to determine whether Lactiplantibacillus plantarum CRL759 cell-free supernatant reduced inflammatory parameters and clinical signs in ocular inflammations. First, we evaluated the effect of L. plantarum CRL759 supernatant in vitro on human retinal cell line, ARPE-19 cells, stimulated with lipopolysaccharide (LPS). Then, we investigated in vivo its capacity to decrease inflammation by local administration on the eyes of mice with endotoxin induced inflammation. In vitro assays demonstrated that L. plantarum CRL759 supernatant reduced the production of interleukin (IL)-6, IL-8, nitric oxide and thiobarbituric acid reactive substances in LPS-stimulated ARPE-19 cells. Our in vivo data proved that L. plantarum supernatant significantly reduced the clinical score of endotoxin treated mice and diminished levels of tumour necrosis factor alpha, interferon gamma and protein concentration in aqueous humour. Histological examination showed reduction of infiltrating inflammatory cells in the posterior segment of the eyes. As far as we know, this is the first report showing that Lactobacillus spp. supernatant administered as drops reduces some parameters of ocular inflammation. This promising strategy is safe and could alleviate symptoms and signs of ocular inflammation in people that are refractories to the conventional therapies.


Subject(s)
Eye Diseases/drug therapy , Eye Diseases/immunology , Probiotics/administration & dosage , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Eye Diseases/etiology , Eye Diseases/genetics , Female , Humans , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-8/genetics , Interleukin-8/immunology , Lactobacillus plantarum/physiology , Lipopolysaccharides/adverse effects , Male , Mice , Mice, Inbred C57BL , Ophthalmic Solutions/administration & dosage , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
6.
Mediators Inflamm ; 2021: 6615960, 2021.
Article in English | MEDLINE | ID: mdl-33505214

ABSTRACT

BACKGROUND: To evaluate the biological response of the sows and their offspring with oral administration of Lactobacillus plantarum CAM6 in breeding sows, a total of 20 Pietrain breeding sows with three farrowings and their descendants were used, randomly divided into two groups of 10 sows each. Treatments included a basal diet (T0) and basal diet +10 mL biological agent containing 109 CFU/mL L. plantarum CAM6 (T1). No antibiotics were used throughout the entire experimental process of this study. RESULTS: The L. Plantarum CAM6 supplementation in sows' feeding did not affect (P > 0.05) the reproductive performance of the sows; however, the number of deaths for their offspring before weaning (P ≤ 0.05) decreased. In addition, the oral administration of Lactobacillus plantarum CAM6 in sows increased (P ≤ 0.05) the content of lactose, nonfat solids, mineral salts, and the density of sows' milk, with a decrease in milk fat. Moreover, the probiotic feed orally to the sows improved the body weight (P ≤ 0.05) and reduced the diarrhea incidence of their offspring (P ≤ 0.05). Also, the probiotic administration of sows changed (P ≤ 0.05) the serum concentration of Na+, pCO2, and D-ß-hydroxybutyrate and increased (P ≤ 0.05) the leukocytes, lymphocytes, and platelets in their piglets. CONCLUSION: Oral administration of Lactobacillus plantarum CAM6 in breeding sows improved body weight, physiological status, and the health of their offspring. And preparing the neonatal piglets physiologically is of great importance to the pig farming industry which could decrease the operational cost and medication (especially antibiotics) consumption of the pig producers.


Subject(s)
Lactobacillus plantarum/physiology , Animals , Female , Hydroxybutyrates/blood , Lactation/physiology , Reproduction/physiology , Swine , Weaning
7.
Nutr Hosp ; 38(1): 152-160, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33319576

ABSTRACT

INTRODUCTION: Introduction: breast milk (MH) contains nutrients and bioactive compounds for child development, including probiotic bacteria, which contribute to intestinal maturation. This benefit accompanies the individual until adulthood. There are new methods such as spray drying that give this compound a good conservation without loss of microbiota. Objective: the aim of this study was to analyze the viability of lactic acid bacteria isolated from human milk with probiotic potential after the spray drying process, as well as to evaluate the possible adhesion in the colon of mice of the Balb/C strain after feeding them powdered human milk and a commercial formula milk. Method: we isolated and identified the presence of lactic acid bacteria with possible probiotic potential in powdered human milk using the MALDI-TOF MS technique. Powdered human milk and a commercial formula milk were fed to mice of the Bald/C strain for 14 weeks. Glucose level and weight were measured in the mice. The feces were collected to verify the presence of lactic bacteria. The mice were sacrificed and their intestines were weighed, isolating the lactic acid bacteria both from the intestines and from the feces. The strains isolated from mice fed human milk were evaluated for their probiotic potential, analyzing their ability to inhibit pathogens, resistance to pH, temperature, adhesion, and hydrophobicity. Results: the presence of Lactobacillus fermentum LH01, Lactobacillus rhamnosus LH02, Lactobacullis reuteri LH03, and Lactobacillus plantarum LH05 in powdered human milk was identified. All strains showed a possible probiotic profile due to the ability of bacteria to resist low pH, bile salts, and exposure to gastric enzymes, as well as their hydrophobicity and self-aggregation capacity, and their failure to show hemagglutination or hemolysis activity in a culture medium rich in erythrocytes. We observed that the consumption of powdered human milk prevented weight gain and constipation in mice. Conclusions: after spray drying, strains with possible probiotic potential may be preserved in human milk. The consumption of powdered human milk with probiotic bacteria prevents constipation and weight gain in mice, when compared to those fed a commercial formula milk.


INTRODUCCIÓN: Introducción: la leche materna (HM) contiene los nutrientes y compuestos bioactivos necesarios para el desarrollo infantil, incluidas bacterias probióticas, que contribuyen a la maduración intestinal. Objetivo: el objetivo de este estudio fue analizar la viabilidad de las bacterias acidolácticas aisladas de la leche humana con potencial probiótico, después del proceso de secado, así como evaluar su posible adhesión en el colón de ratones (BAlb/C) alimentados con leche humana en polvo y leche de una fórmula comercial. Método: se aislaron e identificaron mediante la técnica de Maldi-Tof-MS las bacterias acidolácticas con posible potencial probiótico en la leche humana en polvo. Se alimentó con leche humana en polvo y leche de una fórmula comercial a ratones de la cepa Bald/C durante 14 semanas. Se midieron el nivel de glucosa y el peso. Las heces se recolectaron para verificar la presencia de bacterias lácticas. Los ratones se sacrificaron y se pesaron los intestinos, aislando las bacterias lácticas tanto de los intestinos como de las heces. En las cepas aisladas de la leche humana se evaluó el potencial probiótico analizando su capacidad para inhibir patógenos, resistir distintos pH y temperaturas, adherirse y mostrar hidrofobicidad. Resultados: se identificó la presencia de Lactobacillus fermentum LH01, Lactobacillus rhamnosus LH02, Lactobacullis reuteri LH03 y L. plantarum LH05 en la leche humana en polvo. Todas las cepas mostraron resistencia a los pH bajos, a las sales biliares y a la exposición a enzimas gástricas, así como una buena hidrofobicidad y capacidad de autoagregación. Además, no presentaron actividad de hemaglutinación o hemólisis en un medio de cultivo rico en eritrocitos. Observamos que el consumo de leche humana en polvo evita en los ratones el aumento de peso y el estreñimiento. Conclusiones: después del secado por aspersión, las cepas con posible potencial probiótico pueden conservarse en la leche materna. El consumo de leche humana en polvo con bacterias probióticas evita el estreñimiento y el aumento de peso en los ratones, en comparación con los alimentados con leche de una formula comercial.


Subject(s)
Lactobacillales/physiology , Milk, Human/microbiology , Probiotics , Spray Drying , Animals , Bacterial Physiological Phenomena , Blood Glucose/analysis , Body Weight , Feces/microbiology , Humans , Intestines/microbiology , Lactobacillales/isolation & purification , Limosilactobacillus fermentum/isolation & purification , Limosilactobacillus fermentum/physiology , Lactobacillus plantarum/isolation & purification , Lactobacillus plantarum/physiology , Limosilactobacillus reuteri/isolation & purification , Limosilactobacillus reuteri/physiology , Lacticaseibacillus rhamnosus/isolation & purification , Lacticaseibacillus rhamnosus/physiology , Male , Mexico , Mice , Mice, Inbred BALB C , Powders
8.
Toxins (Basel) ; 13(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374495

ABSTRACT

This study evaluated the efficacy of potentially probiotic fruit-derived Lactobacillus isolates, namely, L. paracasei 108, L. plantarum 49, and L. fermentum 111, to remove aflatoxin M1 (AFM1) from a phosphate buffer solution (PBS; spiked with 0.15 µg/mL AFM1). The efficacy of examined isolates (approximately 109 cfu/mL) as viable and non-viable cells (heat-killed; 100 °C, 1 h) to remove AFM1 was measured after 1 and 24 h at 37 °C. The recovery of AFM1 bound to bacterial cells after washing with PBS was also evaluated. Levels of AFM1 in PBS were measured with high-performance liquid chromatography. Viable and non-viable cells of all examined isolates were capable of removing AFM1 in PBS with removal percentage values in the range of 73.9-80.0% and 72.9-78.7%, respectively. Viable and non-viable cells of all examined Lactobacillus isolates had similar abilities to remove AFM1. Only L. paracasei 108 showed higher values of AFM1 removal after 24 h for both viable and non-viable cells. Percentage values of recovered AFM1 from viable and non-viable cells after washing were in the range of 13.4-60.6% and 10.9-47.9%, respectively. L. plantarum 49 showed the highest AFM1 retention capacity after washing. L. paracasei 108, L. plantarum 49, and L. fermentum 111 could have potential application to reduce AFM1 to safe levels in foods and feeds. The cell viability of examined isolates was not a pre-requisite for their capacity to remove and retain AFM1.


Subject(s)
Aflatoxin M1/chemistry , Lacticaseibacillus paracasei/physiology , Lactobacillus plantarum/physiology , Limosilactobacillus fermentum/physiology , Food Contamination , Fruit/microbiology , Microbial Viability , Probiotics
9.
PLoS One ; 15(6): e0234037, 2020.
Article in English | MEDLINE | ID: mdl-32559185

ABSTRACT

Psychobiotics correspond to a class of probiotics, mainly of the genus Lactobacillus and Bifidobacterium, capable of producing neuroactive substances, such as γ-aminobutyric acid (GABA) and serotonin, which exert effects on the brain-gut axis. Evidence suggests that psychobiotics can have a beneficial effect on mood, anxiety and cognition. The present study evaluated the effects of chronic administration of two new strains of Lactobacillus plantarum, L. plantarum 286 (Lp 286) and L. plantarum 81 (Lp 81) isolated from the fermentation of cocoa (Theobroma cacao L.) and cupuaçu (Theobroma grandiflorum), respectively, on cognitive, anxiety- and depressive-like behaviors in male Swiss mice. Different groups of animals were administered (oral gavage) solutions of vehicle (0.85% saline plus 15% skim milk), Lp 286 (109/0.1 ml CFU) or Lp 81 (109/0.1 ml CFU) for 30 days, and animals were tested for general locomotor activity, depressive-like behavior in the forced swim test, and learning/memory and anxiety-like behavior in the plus-maze discriminative avoidance task. Treatment with the strains Lp 286 and Lp 81 did not interfere with locomotor activity or learning and memory. The Lp 286 strain exerted anti-depressant- and anxiolytic-like effects under our experimental conditions. Our findings add to the current body of evidence suggesting that probiotics from the genus Lactobacillus may exert psychobiotic potential and introduce a new strain, Lp 286, as a potential candidate in the prevention or as therapeutic adjuvant in the treatment of mental disorders.


Subject(s)
Anxiety/microbiology , Behavior, Animal , Cognition , Depression/microbiology , Lactobacillus plantarum/physiology , Animals , Locomotion , Male , Maze Learning , Mice
10.
Food Res Int ; 124: 109-117, 2019 10.
Article in English | MEDLINE | ID: mdl-31466629

ABSTRACT

Tropical fruit and their industrial processing byproducts have been considered sources of probiotic Lactobacillus. Sixteen tropical fruit-derived Lactobacillus strains were assessed for growth-promoting effects using a host-commensal nutrient scarcity model with Drosophila melanogaster (Dm). Two Lactobacillus strains (L. plantarum 49 and L. plantarum 201) presenting the most significant effects (p ≤ .005) on Dm growth were selected and evaluated for their safety and beneficial effects in adult male Wistar rats during 28 days of administration of 9 log CFU/day, followed by 14 days of wash-out. Daily administration of L. plantarum 49 and L. plantarum 201 did not affect (p > .05) food intake or morphometric parameters. Both strains were associated with reduction (p ≤ .05) in blood glucose levels after 28 days of administration and after wash-out period; glucose levels remained reduced only in the group that received L. plantarum 49. Both strains were able to reduce (p ≤ .05) total cholesterol levels after 14 days of administration; after the wash-out period these levels remained reduced only in the group that received L. plantarum 201. L. plantarum 49 and L. plantarum 201 were detected in the intestine and did not cause alteration or translocate to spleen, kidneys or liver during the experimental or wash-out period. These results indicate that L. plantarum 49 and L. plantarum 201 present potential for use as probiotics with intrinsic abilities to modulate biochemical parameters of interest for the management of metabolic diseases.


Subject(s)
Blood Glucose/drug effects , Cholesterol/blood , Fruit/microbiology , Lactobacillus plantarum/physiology , Probiotics/pharmacology , Animals , Drosophila melanogaster , Feces/microbiology , Lactobacillus plantarum/isolation & purification , Liver/microbiology , Male , Rats , Rats, Wistar , Spleen/microbiology
11.
Rev Argent Microbiol ; 51(2): 164-169, 2019.
Article in English | MEDLINE | ID: mdl-30144992

ABSTRACT

Ochratoxin A (OTA) is a mycotoxin produced by filamentous fungi with high impact in food safety due to its toxicity. In the last decade, the presence of OTA was widely reported in different foods. In this study, the ability of Lactobacillus (L.) plantarum CRL 778 to control growth and OTA production by Aspergillus (A.) niger 13D strain, at different water activity (aw) values (0.955, 0.964, 0.971, 0.982, and 0.995) was determined in vitro. Both parameters were significantly (p<0.05) reduced by the lactobacilli and the effect depended on aw. Greatest growth rate inhibition (46.9%) was obtained at aw=0.995, which is the most suitable value for growth and production of antifungal metabolites (lactic acid, acetic acid, phenyllactic and hydroxyl-phenyllactic acids) by L. plantarum CRL 778. Besides, morphological changes and inhibition of melanin synthesis were observed in colonies of A. niger 13D in presence of L. plantarum CRL 778 at aw ranged between 0.971 and 0.995. In addition, maximum reduction (90%) of OTA production took place at aw=0.971, while inhibition of fungi growth was more evident at aw=0.995. These findings suggest that L. plantarum CRL 778 could be used for control of ochratoxigenic fungal growth and OTA contamination in different fermented foods with aw values between 0.971 and 0.995.


Subject(s)
Aspergillus niger/growth & development , Aspergillus niger/metabolism , Lactobacillus plantarum/physiology , Ochratoxins/biosynthesis , Lactobacillus plantarum/classification , Ochratoxins/antagonists & inhibitors , Water
12.
Food Res Int ; 113: 167-174, 2018 11.
Article in English | MEDLINE | ID: mdl-30195509

ABSTRACT

The stabilizing capacity of crystalline inulin during spray-drying and storage of Lactobacillus plantarum CIDCA 83114 was assessed. In a first step, the physical properties of the matrices were investigated, using amorphous inulin as control. Melting and glass transition temperatures, water sorption isotherms, water activity, and infrared spectra were determined. Microorganisms were spray-dried at a pilot scale in both amorphous and crystalline matrices. After that, scanning electronic and confocal microsopies provided a full landscape about the interactions between microorganisms and crystals, and also the bacterial location within the amorphous matrices. The technological properties of the dehydrated microorganisms (culturability and acidification capacity) during storage at different water activities were also evaluated. Both amorphous and crystalline inulins were adequate matrices to stabilize microorganisms. However, crystalline inulin was more stable than amorphous one, especially when the storage temperature was close to the glass transition temperature, resulting in a better matrix to protect microorganisms during pilot spray-drying and storage. Furthermore, no accumulation of insoluble inulin was observed after resuspending the dehydrated microorganisms in crystalline inulin matrices, which appears as a clear technological advantage with regard to the amorphous one. Considering the prebiotic character of inulin and the probiotic properties of L. plantarum CIDCA 83114, this work developed an integrated approach, both from a fundamental and from an applied viewpoint, supporting the incorporation of such ingredients in the formulation of food products.


Subject(s)
Desiccation/methods , Inulin/administration & dosage , Inulin/chemistry , Lactobacillus plantarum/physiology , Prebiotics , Probiotics , Chemical Phenomena , Crystallization , Drug Stability , Food Preservation/methods , Microscopy, Electron, Scanning , Molecular Structure
13.
Food Res Int ; 113: 65-73, 2018 11.
Article in English | MEDLINE | ID: mdl-30195547

ABSTRACT

In this study, lactic acid bacteria with probiotic potential, including Lactobacillus plantarum ATCC8014, L. paracasei ML33 and L. pentosus ML82, were encapsulated with whey-alginate-pectin (WAP) or whey permeate-alginate-pectin (PAP) by an extrusion process using vibrational technology, with the resulting microparticles assessed for their resistance to adverse conditions. The aim was to assess the effect of the encapsulation wall materials on the viability of microorganisms, the encapsulation, refrigerated storage and simulated gastrointestinal tract conditions, the kinetic parameters of acidification, and the morphology of microparticles. The bacteria encapsulated with the WAP wall material were adequately protected. Furthermore, after three months of storage at 4 °C, the encapsulated bacteria exhibited a cell viability of >6 log CFU mL-1. In addition, the encapsulated L. plantarum ATCC8014 and L. pentosus ML82 isolates exhibited the highest viability at the end of the storage period among the assayed isolates. Encapsulated bacteria showed greater resistance to acidic conditions than unencapsulated bacteria when exposed to simulated gastrointestinal tract conditions. The maximum rate of milk acidification by encapsulated Lactobacillus spp. was approximately three-fold lower than that observed for unencapsulated bacteria. The resulting size of the microparticles generated using both combinations of wall materials used was approximately 150 µm. The cheese whey and whey permeate combined with alginate and pectin to adequately encapsulate and protect Lactobacillus spp. from the adverse conditions of the simulated gastrointestinal tract and from refrigeration storage temperatures. Furthermore, the sizes of the obtained microparticles indicated that the encapsulated materials are suitable for being incorporated into foods without changing their sensory properties.


Subject(s)
Alginates/chemistry , Lactobacillus plantarum/physiology , Pectins/chemistry , Probiotics/administration & dosage , Whey/chemistry , Capsules/chemistry , Fermentation , Gastrointestinal Tract/metabolism , Hydrogen-Ion Concentration , Microbial Viability , Microscopy, Electron, Scanning , Pepsin A/metabolism , Vibration
14.
Nutrients ; 10(9)2018 Sep 02.
Article in English | MEDLINE | ID: mdl-30200532

ABSTRACT

The use of agro-industrial wastes in combination with indigenous lactic acid bacteria is an interesting option to confer functional potential to food products. The microbial viability, chemical composition, antioxidant capacity, texture and sensory acceptability of a fermented dairy dessert containing the indigenous culture Lactobacillus plantarum CNPC003, whey and ingredients obtained from the jabuticaba (Myrciaria cauliflora) peel were compared with formulations without lactobacilli (control) or containing a commercial probiotic culture (Lactobacillus rhamnosus LR32). L. plantarum presented viability higher than 7 log CFU g-1 in the dessert, as did the commercial probiotic, for 21 days at 4 ± 1 °C. Total phenolic contents (45⁻60 mg gallic acid equivalents, GAE, 100 g-1) were comparable to those of other studies evaluating dairy products containing plant sources. The formulations were low in fat, presenting as acceptable for overall consumption, with attractive color and appreciable texture. Considering the total antioxidant capacity, 200⁻250 g of dessert would be necessary to capture 1 g of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The dessert with Lactobacillus plantarum CNPC003 is seen as a viable alternative for the use of whey and jabuticaba peel, as well as a potential functional food due to the concentration of lactobacilli reached, besides the presence of antioxidant phenolic compounds.


Subject(s)
Cultured Milk Products/analysis , Fruit/chemistry , Functional Food/analysis , Lactobacillus plantarum/physiology , Myrtaceae , Whey/physiology , Antioxidants , Cultured Milk Products/microbiology , Food Microbiology , Functional Food/microbiology , Humans , Microbial Viability , Phenols/analysis , Whey/microbiology
15.
Nutrition ; 54: 165-172, 2018 10.
Article in English | MEDLINE | ID: mdl-29982144

ABSTRACT

OBJECTIVES: Intestinal mucositis (IM) is a local inflammatory response that causes alterations of the intestinal structure that in turn affect nutrient absorption and a side effect that is commonly associated with cancer treatments. Lactobacillus plantarum CRL2130 is a riboflavin-overproducing strain that has previously been shown to provide antiinflammatory properties. The objective of this study was to evaluate the effects of this riboflavin-producing strain in a chemically induced murine mucositis model. METHODS: Mucositis was induced by daily injections of 5-fluororacil (5-FU) after which mice were either given L. plantarum CRL2130, CRL725 (strain from which CRL2130 was derived that does not overproduce riboflavin), or commercial riboflavin twice daily during 6 d of chemotherapy agent injections. The effect of the strains and riboflavin was also evaluated in vitro using Caco-2 intestinal cancer cell cultures to determine if they interfere with 5-FU's anticancer activity. RESULTS: The administration of L. plantarum CRL2130 significantly attenuated the pathologic changes induced by 5-FU in mice such as body weight loss, diarrhea, shortening of villus height, increases in proinflammatory cytokine concentrations, and elevated production of interleukin 10. In vitro assays using Caco-2 cells showed that the effectiveness of 5-FU was not affected by L. plantarum CRL2130 and that this strain exerted an inhibitory mechanism against oxidative stress. CONCLUSIONS: These results indicate that the riboflavin-overproducing strain L. plantarum CRL2130 could be useful to prevent mucositis during cancer treatments and would not affect the primary treatment.


Subject(s)
Lactobacillus plantarum/physiology , Mucositis/prevention & control , Probiotics/pharmacology , Protective Agents/pharmacology , Riboflavin/biosynthesis , Animals , Antineoplastic Agents/adverse effects , Caco-2 Cells/microbiology , Cell Culture Techniques , Disease Models, Animal , Female , Fluorouracil/adverse effects , Humans , Intestinal Mucosa/microbiology , Mice , Mice, Inbred BALB C , Mucositis/chemically induced , Riboflavin/administration & dosage
16.
Microbiology (Reading) ; 164(3): 349-358, 2018 03.
Article in English | MEDLINE | ID: mdl-29458690

ABSTRACT

Lactobacilli are the dominant bacteria of the vaginal tract of healthy women and they play a major role in the maintenance of mucosal homeostasis, preventing genital infections, such as bacterial vaginosis (BV) and vulvovaginal candidiasis (VVC). It is now known that one mechanism of this protection is the influence that lactobacilli can exert on host immune responses. In this context, we evaluated two Lactobacillus strains (L. plantarum 59 and L. fermentum 137) for their immunomodulatory properties in response to Gardnerella vaginalis (BV) or Candida albicans (VVC) infections in a HeLa cell infection model. G. vaginalis and C. albicans triggered the secretion of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6 and IL-8) and the activation of NF-κB in HeLa cells, in contrast to L. plantarum 59 and L. fermentum 137. Treatments with the Lactobacillus strains or their cell-free supernatants before (pre-treatment) or after (post-treatment) the challenge with the pathogens resulted in decreased secretion of pro-inflammatory cytokines and decreased activation of NF-κB. The treatments with Lactobacillus strains not only decreased the secretion of IL-8, but also its expression, as confirmed by gene reporter luciferase assay, suggesting transcription-level control by lactobacilli. In conclusion, L. plantarum 59 and L. fermentum 137 were confirmed to have an anti-inflammatory effect against G. vaginalis and C. albicans and they were able to influence signalling in NF-κB pathway, making them interesting candidates as probiotics for the prevention or treatment of BV and VVC.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Candida albicans/drug effects , Gardnerella vaginalis/drug effects , Lactobacillus plantarum/physiology , Limosilactobacillus fermentum/physiology , Probiotics/pharmacology , Candida albicans/growth & development , Coculture Techniques , Culture Media, Conditioned , Cytokines/genetics , Cytokines/metabolism , Female , Gardnerella vaginalis/growth & development , HeLa Cells , Humans , Transcription Factor RelA/metabolism , Transcription, Genetic/drug effects
17.
Fish Shellfish Immunol ; 66: 564-574, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28546025

ABSTRACT

Lectins play crucial roles for innate immune responses in invertebrates by recognizing and eliminating pathogens. In this study, a lectin from the mussel Mytilus californianus (MCL) was identified and characterized. The lectin was purified by affinity chromatography in α-lactose-agarose resin showing an experimental molecular mass of 18000 Da as determined by SDS-PAGE and MALDI-TOF mass spectrometry. It was specific for binding d-galactose and N-Acetyl-d-galactosamine that contained carbohydrate moieties that were also inhibited by melibiose and raffinose. It had the ability to agglutinate all types of human erythrocytes, as well as rabbit red blood cells. Circular dichroism analyzes have indicated that this lectin possessed an α/ß fold with a predominance of ß structures. This was consistent with the structure of the protein that was determined by the X-ray diffraction techniques. MCL was crystallized in the space group C21 and it diffracted to 1.79 Å resolution. Two monomers were found in the asymmetric unit and they formed dimers in solution. The protein has shown to be a member of the ß-trefoil family, with three sugar binding sites per monomer. In accord with fluorescence-based thermal shift assays, we observed that the MCL Tm increased about 10 °C in the presence of galactose. Furthermore, we have determined the complete amino acid sequence by cDNA sequencing. The gene had two ORF2 proteins, one resulting in a 180 residue protein with a theoretical molecular mass of 20227 Da, and another resulting in a 150 residue protein with a theoretical molecular mass of 16911 Da. The difference between the theoretical and experimental values was due to the presence of a glycosylation that was observed by the glycosylation assay. A positive microbial agglutination and a growth inhibition activity were observed against Gram-negative and Gram-positive bacteria. The M. californianus lectin is the fourth member of the recently proposed new family of lectins that have been reported to date, occurring only in mollusks belonging to the family Mytilidae. It is the first member to be glycosylated and with a strong tendency to form large oligomers.


Subject(s)
Galectins/genetics , Galectins/immunology , Mytilus/genetics , Mytilus/immunology , Amino Acid Sequence , Animals , Base Sequence , Escherichia coli/physiology , Galectins/chemistry , Lactobacillus plantarum/physiology , Mytilus/classification , Mytilus/microbiology , Phylogeny
18.
Benef Microbes ; 8(1): 65-72, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-27873546

ABSTRACT

Inflammatory bowel diseases (IBD) are idiopathic diseases of the gastrointestinal tract characterised by recurrent inflammation that require lifelong treatments. It has been shown that certain strains of lactic acid bacteria (LAB) can produce specific health-promoting compounds in foods or in the gastrointestinal tract that can in turn prevent and/or treat IBD. This study was designed to evaluate the possible therapeutic potential of soymilk fermented by the riboflavin-producing strain Lactobacillus plantarum CRL 2130 in a trinitrobenzene sulfonic induced colitis mouse model. Mice that received soymilk fermented by L. plantarum CRL 2130 showed a decrease in weight loss, lower damage scores in their large intestines, lower microbial translocation to liver and decreased cytokines levels in their intestinal fluids compared to animals that received unfermented soymilk or soymilk fermented by a non-riboflavin-producing L. plantarum strain. This is the first report that demonstrates that a riboflavin-producing LAB was able to prevent experimental colitis in a murine model.


Subject(s)
Colitis/therapy , Inflammatory Bowel Diseases/therapy , Lactobacillus plantarum/physiology , Probiotics/therapeutic use , Soy Milk/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Feces , Female , Fermentation , Inflammation/therapy , Mice , Mice, Inbred BALB C , Riboflavin/metabolism
19.
J Dairy Sci ; 100(1): 65-75, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27865495

ABSTRACT

Milk-derived bioactive peptides with a single activity (e.g., antioxidant, immunomodulatory, or antimicrobial) have been previously well documented; however, few studies describe multifunctional bioactive peptides, which may be preferred over single-activity peptides, as they can simultaneously trigger, modulate, or inhibit multiple physiological pathways. Hence, the aim of this study was to assess the anti-inflammatory, antihemolytic, antioxidant, antimutagenic, and antimicrobial activities of crude extracts (CE) and peptide fractions (<3 and 3-10 kDa) obtained from fermented milks with specific Lactobacillus plantarum strains. Overall, CE showed higher activity than both peptide fractions (<3 and 3-10 kDa) in most of the activities assessed. Furthermore, activity of <3 kDa was generally higher, or at least equal, to the 3 to 10 kDa peptide fractions. In particular, L. plantarum 55 crude extract or their fractions showed the higher anti-inflammatory (723.68-1,759.43µg/mL of diclofenac sodium equivalents), antihemolytic (36.65-74.45% of inhibition), and antioxidant activity [282.8-362.3µmol of Trolox (Sigma-Aldrich, St. Louis, MO) equivalents]. These results provide valuable evidence of multifunctional role of peptides derived of fermented milk by the action of specific L. plantarum strains. Thus, they may be considered for the development of biotechnological products to be used to reduce the risk of disease or to enhance a certain physiological function.


Subject(s)
Cultured Milk Products/analysis , Lactobacillus plantarum/physiology , Peptides/analysis , Animals , Anti-Infective Agents/analysis , Anti-Inflammatory Agents/analysis , Antimutagenic Agents/analysis , Antioxidants/analysis , Fermentation , Lactobacillus plantarum/genetics , Milk/chemistry , Milk Proteins/analysis
20.
BMC Microbiol ; 16(1): 250, 2016 10 28.
Article in English | MEDLINE | ID: mdl-27793096

ABSTRACT

BACKGROUND: Biofilm production represents an important virulence and pathogenesis factor for Staphylococcus aureus. The formation of biofilms on medical devices is a major concern in hospital environments, as they can become a constant source of infection. Probiotic bacteria, such as Lactobacillus fermentum and L. plantarum, have been found to inhibit biofilm formation; however little is known about the underlying mechanism. In this study, we tested the activity of supernatants produced by L. fermentum TCUESC01 and L. plantarum TCUESC02, isolated during the fermentation of fine cocoa, against S. aureus CCMB262 biofilm production. We measured inhibition of biofilm formation in vitro and analyzed biofilm structure by confocal and electronic microscopy. Additionally, we quantified the expression of S. aureus genes icaA and icaR involved in the synthesis of the biofilm matrix by real-time PCR. RESULTS: Both Lactobacillus supernatants inhibited S. aureus growth. However, only L. fermentum TCUESC01 significantly reduced the thickness of the biofilm, from 14 µm to 2.83 µm (at 18 mg∙mL-1, 90 % of the minimum inhibitory concentration, MIC), 3.12 µm (at 14 mg∙mL-1, 70 % of the MIC), and 5.21 µm (at 10 mg∙mL-1, 50 % of the MIC). Additionally, L. fermentum TCUESC01 supernatant modulated the expression of icaA and icaR. CONCLUSIONS: L. fermentum TCUESC01 reduces the formation of S. aureus biofilm under subinhibitory conditions. Inhibition of biofilm production probably depends on modulation of the ica operon.


Subject(s)
Biofilms/growth & development , Chocolate/microbiology , Lactobacillus/physiology , Staphylococcus aureus/physiology , Antibiosis , Culture Media , Fermentation , Lactobacillus/isolation & purification , Limosilactobacillus fermentum/physiology , Lactobacillus plantarum/physiology , Microbial Sensitivity Tests , Microscopy, Confocal , Microscopy, Electron, Scanning , Phenotype , Polystyrenes , Probiotics
SELECTION OF CITATIONS
SEARCH DETAIL