Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
1.
Viruses ; 16(9)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39339831

ABSTRACT

High-consequence pathogens such as the Ebola, Marburg, and Lassa viruses are handled in maximum-containment biosafety level 4 (BSL-4) laboratories. Genetic material is often isolated from such viruses and subsequently removed from BSL-4 laboratories for a multitude of downstream analyses using readily accessible technologies and equipment available at lower-biosafety level laboratories. However, it is essential to ensure that these materials are free of viable viruses before removal from BSL-4 laboratories to guarantee sample safety. This study details the in-house procedure used for validating the inactivation of Ebola, Marburg, and Lassa virus cultures after incubation with AVL lysis buffer (Qiagen) and ethanol. This study's findings show that no viable virus was detectable when high-titer cultures of Ebola, Marburg, and Lassa viruses were incubated with AVL lysis buffer for 10 min, followed by an equal volume of 95% ethanol for 3 min, using a method with a sensitivity of ≤0.8 log10 TCID50 as the limit of detection.


Subject(s)
Ebolavirus , Ethanol , Lassa virus , Marburgvirus , Virus Inactivation , Lassa virus/drug effects , Marburgvirus/drug effects , Ebolavirus/drug effects , Ebolavirus/physiology , Ethanol/pharmacology , Virus Inactivation/drug effects , Animals , Humans , Containment of Biohazards/methods , Lassa Fever/virology , Virus Cultivation/methods , Chlorocebus aethiops , Vero Cells
2.
Immunity ; 57(9): 2061-2076.e11, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39013466

ABSTRACT

Lassa virus is estimated to cause thousands of human deaths per year, primarily due to spillovers from its natural host, Mastomys rodents. Efforts to create vaccines and antibody therapeutics must account for the evolutionary variability of the Lassa virus's glycoprotein complex (GPC), which mediates viral entry into cells and is the target of neutralizing antibodies. To map the evolutionary space accessible to GPC, we used pseudovirus deep mutational scanning to measure how nearly all GPC amino-acid mutations affected cell entry and antibody neutralization. Our experiments defined functional constraints throughout GPC. We quantified how GPC mutations affected neutralization with a panel of monoclonal antibodies. All antibodies tested were escaped by mutations that existed among natural Lassa virus lineages. Overall, our work describes a biosafety-level-2 method to elucidate the mutational space accessible to GPC and shows how prospective characterization of antigenic variation could aid the design of therapeutics and vaccines.


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Lassa Fever , Lassa virus , Mutation , Lassa virus/immunology , Lassa virus/genetics , Humans , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Animals , Antibodies, Monoclonal/immunology , Lassa Fever/immunology , Lassa Fever/virology , Virus Internalization , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Glycoproteins/immunology , Glycoproteins/genetics , Immune Evasion/immunology , Immune Evasion/genetics , HEK293 Cells
3.
J R Soc Interface ; 21(216): 20240106, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39045680

ABSTRACT

Lassa fever is a West African rodent-borne viral haemorrhagic fever that kills thousands of people a year, with 100 000 to 300 000 people a year probably infected by Lassa virus (LASV). The main reservoir of LASV is the Natal multimammate mouse, Mastomys natalensis. There is reported asynchrony between peak infection in the rodent population and peak Lassa fever risk among people, probably owing to differing seasonal contact rates. Here, we developed a susceptible-infected-recovered ([Formula: see text])-based model of LASV dynamics in its rodent host, M. natalensis, with a persistently infected class and seasonal birthing to test the impact of changes to seasonal birthing in the future owing to climate and land use change. Our simulations suggest shifting rodent birthing timing and synchrony will alter the peak of viral prevalence, changing risk to people, with viral dynamics mainly stable in adults and varying in the young, but with more infected individuals. We calculate the time-average basic reproductive number, [Formula: see text], for this infectious disease system with periodic changes to population sizes owing to birthing using a time-average method and with a sensitivity analysis show four key parameters: carrying capacity, adult mortality, the transmission parameter among adults and additional disease-induced mortality impact the maintenance of LASV in M. natalensis most, with carrying capacity and adult mortality potentially changeable owing to human activities and interventions.


Subject(s)
Lassa Fever , Lassa virus , Murinae , Animals , Lassa Fever/epidemiology , Lassa Fever/transmission , Lassa Fever/virology , Lassa virus/physiology , Murinae/virology , Humans , Models, Biological , Disease Reservoirs/virology , Africa, Western/epidemiology , Seasons , Female
4.
Antiviral Res ; 228: 105923, 2024 08.
Article in English | MEDLINE | ID: mdl-38844175

ABSTRACT

There are no approved vaccines or therapeutics for Lassa virus (LASV) infections. To identify compounds with anti-LASV activity, we conducted a cell-based screening campaign at biosafety level 4 and tested almost 60,000 compounds for activity against an infectious reporter LASV. Hits from this screen included several structurally related macrocycles. The most potent, Mac128, had a sub-micromolar EC50 against the reporter virus, inhibited wild-type clade IV LASV, and reduced viral titers by 4 orders of magnitude. Mechanistic studies suggested that Mac128 inhibited viral replication at the level of the polymerase.


Subject(s)
Antiviral Agents , Lassa virus , Macrocyclic Compounds , Virus Replication , Lassa virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Virus Replication/drug effects , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemistry , Humans , Animals , Chlorocebus aethiops , Vero Cells , Lassa Fever/virology , Lassa Fever/drug therapy , Cell Line , Drug Evaluation, Preclinical , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Viral Proteins/genetics
5.
Virol Sin ; 39(4): 600-608, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851430

ABSTRACT

Lassa virus (LASV) is an enveloped, negative-sense RNA virus that causes Lassa hemorrhagic fever. Successful entry of LASV requires the viral glycoprotein 1 (GP1) to undergo a receptor switch from its primary receptor alpha-dystroglycan (α-DG) to its endosomal receptor lysosome-associated membrane protein 1 (LAMP1). A conserved histidine triad in LASV GP1 has been reported to be responsible for receptor switch. To test the hypothesis that other non-conserved residues also contribute to receptor switch, we constructed a series of mutant LASV GP1 proteins and tested them for binding to LAMP1. Four residues, L84, K88, L107, and H170, were identified as critical for receptor switch. Substituting any of the four residues with the corresponding lymphocytic choriomeningitis virus (LCMV) residue (L84 â€‹N, K88E, L10F, and H170S) reduced the binding affinity of LASV GP1 for LAMP1. Moreover, all mutations caused decreases in glycoprotein precursor (GPC)-mediated membrane fusion at both pH 4.5 and 5.2. The infectivity of pseudotyped viruses bearing either GPCL84N or GPCK88E decreased sharply in multiple cell types, while L107F and H170S had only mild effects on infectivity. Using biolayer light interferometry assay, we found that all four mutants had decreased binding affinity to LAMP1, in the order of binding affinity being L84 â€‹N â€‹> â€‹L107F â€‹> â€‹K88E â€‹> â€‹H170S. The four amino acid loci identified for the first time in this study have important reference significance for the in-depth investigation of the mechanism of receptor switching and immune escape of LASV occurrence and the development of reserve anti-LASV infection drugs.


Subject(s)
Lassa virus , Receptors, Virus , Viral Envelope Proteins , Virus Internalization , Lassa virus/genetics , Humans , Receptors, Virus/metabolism , Receptors, Virus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/chemistry , Dystroglycans/metabolism , Dystroglycans/genetics , Protein Binding , Lysosomal-Associated Membrane Protein 1/metabolism , Lysosomal-Associated Membrane Protein 1/genetics , Animals , Lassa Fever/virology , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Cell Line , Amino Acid Substitution
6.
J Virol ; 98(7): e0071424, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38809021

ABSTRACT

Lassa virus (LASV) is the causative agent of human Lassa fever which in severe cases manifests as hemorrhagic fever leading to thousands of deaths annually. However, no approved vaccines or antiviral drugs are currently available. Recently, we screened approximately 2,500 compounds using a recombinant vesicular stomatitis virus (VSV) expressing LASV glycoprotein GP (VSV-LASVGP) and identified a P-glycoprotein inhibitor as a potential LASV entry inhibitor. Here, we show that another identified candidate, hexestrol (HES), an estrogen receptor agonist, is also a LASV entry inhibitor. HES inhibited VSV-LASVGP replication with a 50% inhibitory concentration (IC50) of 0.63 µM. Importantly, HES also inhibited authentic LASV replication with IC50 values of 0.31 µM-0.61 µM. Time-of-addition and cell-based membrane fusion assays suggested that HES inhibits the membrane fusion step during virus entry. Alternative estrogen receptor agonists did not inhibit VSV-LASVGP replication, suggesting that the estrogen receptor itself is unlikely to be involved in the antiviral activity of HES. Generation of a HES-resistant mutant revealed that the phenylalanine at amino acid position 446 (F446) of LASVGP, which is located in the transmembrane region, conferred resistance to HES. Although mutation of F446 enhanced the membrane fusion activity of LASVGP, it exhibited reduced VSV-LASVGP replication, most likely due to the instability of the pre-fusion state of LASVGP. Collectively, our results demonstrated that HES is a promising anti-LASV drug that acts by inhibiting the membrane fusion step of LASV entry. This study also highlights the importance of the LASVGP transmembrane region as a target for anti-LASV drugs.IMPORTANCELassa virus (LASV), the causative agent of Lassa fever, is the most devastating mammarenavirus with respect to its impact on public health in West Africa. However, no approved antiviral drugs or vaccines are currently available. Here, we identified hexestrol (HES), an estrogen receptor agonist, as the potential antiviral candidate drug. We showed that the estrogen receptor itself is not involved in the antiviral activity. HES directly bound to LASVGP and blocked membrane fusion, thereby inhibiting LASV infection. Through the generation of a HES-resistant virus, we found that phenylalanine at position 446 (F446) within the LASVGP transmembrane region plays a crucial role in the antiviral activity of HES. The mutation at F446 caused reduced virus replication, likely due to the instability of the pre-fusion state of LASVGP. These findings highlight the potential of HES as a promising candidate for the development of antiviral compounds targeting LASV.


Subject(s)
Antiviral Agents , Lassa Fever , Lassa virus , Virus Internalization , Virus Replication , Lassa virus/drug effects , Virus Internalization/drug effects , Humans , Antiviral Agents/pharmacology , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Lassa Fever/virology , Lassa Fever/drug therapy , Vero Cells , Receptors, Estrogen/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Cell Line , Phenylalanine/pharmacology , Phenylalanine/analogs & derivatives
7.
Emerg Microbes Infect ; 13(1): 2356149, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38747061

ABSTRACT

Lassa virus (LASV), a risk-group 4 pathogen, must be handled in biosafety level-4 (BSL-4) conditions, thereby limiting its research and antiviral development. Here, we developed a novel LASV reverse genetics system which, to our knowledge, is the first to study the complete LASV life cycle under BSL-2 conditions. Viral particles can be produced efficiently when LASV minigenomic RNA harbouring minimal viral cis-elements and reporter genes is transfected into a helper cell line stably expressing viral NP, GP, Z and L proteins. The resulting defective virions, named LASVmg, can propagate only in the helper cell line, providing a BSL-2 model to study the complete LASV life cycle. Using this model, we found that a previously reported cellular receptor α-dystroglycan is dispensable for LASVmg infection. Furthermore, we showed that ribavirin can inhibit LASVmg infection by inducing viral mutations. This new BSL-2 system should facilitate studying the LASV life cycle and screening antivirals.


Subject(s)
Lassa virus , Reverse Genetics , Lassa virus/genetics , Lassa virus/physiology , Reverse Genetics/methods , Humans , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Cell Line , Virus Replication , Lassa Fever/virology , Ribavirin/pharmacology , Vero Cells , Containment of Biohazards , Genome, Viral , Virion/genetics , Virion/metabolism
8.
Nat Commun ; 15(1): 3589, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678025

ABSTRACT

The black rat (Rattus rattus) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa, R. rattus may compete with the native rodent Mastomys natalensis, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that R. rattus presence reduces M. natalensis density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from M. natalensis to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with R. rattus. While non-native species can have numerous negative effects on ecosystems, our results suggest that R. rattus invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.


Subject(s)
Disease Reservoirs , Introduced Species , Lassa Fever , Lassa virus , Murinae , Zoonoses , Animals , Lassa virus/pathogenicity , Lassa virus/physiology , Lassa Fever/transmission , Lassa Fever/epidemiology , Lassa Fever/virology , Lassa Fever/veterinary , Disease Reservoirs/virology , Humans , Rats , Murinae/virology , Zoonoses/virology , Zoonoses/transmission , Zoonoses/epidemiology , Sierra Leone/epidemiology , Guinea/epidemiology , Ecosystem , Rodent Diseases/virology , Rodent Diseases/epidemiology , Rodent Diseases/transmission
9.
J Virol ; 96(16): e0075422, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35913216

ABSTRACT

Lassa virus (LASV) is a mammarenavirus that can cause lethal Lassa fever disease with no FDA-approved vaccine and limited treatment options. Fatal LASV infections are associated with innate immune suppression. We have previously shown that the small matrix Z protein of LASV, but not of a nonpathogenic arenavirus Pichinde virus (PICV), can inhibit the cellular RIG-I-like receptors (RLRs), but its biological significance has not been evaluated in an infectious virus due to the multiple essential functions of the Z protein required for the viral life cycle. In this study, we developed a stable HeLa cell line (HeLa-iRIGN) that could be rapidly and robustly induced by doxycycline (Dox) treatment to express RIG-I N-terminal effector, with concomitant production of type I interferons (IFN-Is). We also generated recombinant tri-segmented PICVs, rP18tri-LZ, and rP18tri-PZ, which encode LASV Z and PICV Z, respectively, as an extra mScarlet fusion protein that is nonessential for the viral life cycle. Upon infection, rP18tri-LZ consistently expressed viral genes at a higher level than rP18tri-PZ. rP18tri-LZ also showed a higher level of a viral infection than rP18tri-PZ did in HeLa-iRIGN cells, especially upon Dox induction. The heterologous Z gene did not alter viral growth in Vero and A549 cells by growth curve analysis, while LASV Z strongly increased and prolonged viral gene expression, especially in IFN-competent A549 cells. Our study provides important insights into the biological role of LASV Z-mediated RIG-I inhibition and implicates LASV Z as a potential virulence factor. IMPORTANCE Lassa virus (LASV) can cause lethal hemorrhagic fever disease in humans but other arenaviruses, such as Pichinde virus (PICV), do not cause obvious disease. We have previously shown that the Z protein of LASV but not of PICV can inhibit RIG-I, a cytosolic innate immune receptor. In this study, we developed a stable HeLa cell line that can be induced to express the RIG-I N-terminal effector domain, which allows for timely control of RIG-I activation. We also generated recombinant PICVs encoding LASV Z or PICV Z as an extra gene that is nonessential for the viral life cycle. Compared to PICV Z, LASV Z could increase viral gene expression and viral infection in an infectious arenavirus system, especially when RIG-I signaling is activated. Our study presented a convenient cell system to characterize RIG-I signaling and its antagonists and revealed LASV Z as a possible virulence factor and a potential antiviral target.


Subject(s)
Lassa virus , Viral Proteins/metabolism , HeLa Cells , Humans , Lassa Fever/virology , Lassa virus/pathogenicity , Lassa virus/physiology , Pichinde virus/genetics , Virulence Factors
10.
Nature ; 603(7899): 174-179, 2022 03.
Article in English | MEDLINE | ID: mdl-35173332

ABSTRACT

Lassa virus (LASV) is a human pathogen, causing substantial morbidity and mortality1,2. Similar to other Arenaviridae, it presents a class-I spike complex on its surface that facilitates cell entry. The virus's cellular receptor is matriglycan, a linear carbohydrate that is present on α-dystroglycan3,4, but the molecular mechanism that LASV uses to recognize this glycan is unknown. In addition, LASV and other arenaviruses have a unique signal peptide that forms an integral and functionally important part of the mature spike5-8; yet the structure, function and topology of the signal peptide in the membrane remain uncertain9-11. Here we solve the structure of a complete native LASV spike complex, finding that the signal peptide crosses the membrane once and that its amino terminus is located in the extracellular region. Together with a double-sided domain-switching mechanism, the signal peptide helps to stabilize the spike complex in its native conformation. This structure reveals that the LASV spike complex is preloaded with matriglycan, suggesting the mechanism of binding and rationalizing receptor recognition by α-dystroglycan-tropic arenaviruses. This discovery further informs us about the mechanism of viral egress and may facilitate the rational design of novel therapeutics that exploit this binding site.


Subject(s)
Dystroglycans , Lassa virus , Receptors, Virus , Viral Envelope Proteins , Dystroglycans/chemistry , Dystroglycans/metabolism , Humans , Lassa Fever/virology , Lassa virus/chemistry , Lassa virus/metabolism , Protein Conformation , Protein Sorting Signals , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Virus Internalization
11.
Emerg Microbes Infect ; 10(1): 2313-2325, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34792436

ABSTRACT

Lassa virus (LASV), a Risk Group-4 zoonotic haemorrhagic fever virus, affects sub-Saharan African countries. Lassa fever, caused by LASV, results in thousands of annual deaths. Although decades have elapsed since the identification of the Natal multimammate mouse (Mastomys natalensis) as a natural reservoir of LASV, little effort has been made to characterize LASV infection in its reservoir. The natural route of infection and transmission of LASV within M. natalensis remains unknown, and the clinical impact of LASV in M. natalensis is mostly undescribed. Herein, using an outbred colony of M. natalensis, we investigate the replication and dissemination dynamics of LASV in this reservoir following various inoculation routes. Inoculation with LASV, regardless of route, resulted in a systemic infection and accumulation of abundant LASV-RNA in many tissues. LASV infection in the Natal multimammate mice was subclinical, however, clinical chemistry values were transiently altered and immune infiltrates were observed histologically in lungs, spleens and livers, indicating a minor disease with coordinated immune responses are elicited, controlling infection. Intranasal infection resulted in unique virus tissue dissemination dynamics and heightened LASV shedding, compared to subcutaneous inoculation. Our study provides important insights into LASV infection in its natural reservoir using a contemporary infection system, demonstrating that specific inoculation routes result in disparate dissemination outcomes, suggesting intranasal inoculation is important in the maintenance of LASV in the natural reservoir, and emphasizes that selection of the appropriate inoculation route is necessary to examine aspects of viral replication, transmission and responses to zoonotic viruses in their natural reservoirs.


Subject(s)
Disease Reservoirs/veterinary , Lassa Fever/veterinary , Lassa virus/physiology , Murinae/virology , Rodent Diseases/virology , Viral Zoonoses/virology , Virus Shedding , Animals , Disease Reservoirs/virology , Female , Humans , Lassa Fever/transmission , Lassa Fever/virology , Lassa virus/genetics , Male , Murinae/physiology , Rodent Diseases/transmission , Viral Zoonoses/transmission
12.
Nat Commun ; 12(1): 5759, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599162

ABSTRACT

Lassa fever is a longstanding public health concern in West Africa. Recent molecular studies have confirmed the fundamental role of the rodent host (Mastomys natalensis) in driving human infections, but control and prevention efforts remain hampered by a limited baseline understanding of the disease's true incidence, geographical distribution and underlying drivers. Here, we show that Lassa fever occurrence and incidence is influenced by climate, poverty, agriculture and urbanisation factors. However, heterogeneous reporting processes and diagnostic laboratory access also appear to be important drivers of the patchy distribution of observed disease incidence. Using spatiotemporal predictive models we show that including climatic variability added retrospective predictive value over a baseline model (11% decrease in out-of-sample predictive error). However, predictions for 2020 show that a climate-driven model performs similarly overall to the baseline model. Overall, with ongoing improvements in surveillance there may be potential for forecasting Lassa fever incidence to inform health planning.


Subject(s)
Disease Reservoirs/virology , Epidemiological Monitoring , Lassa Fever/epidemiology , Lassa virus/pathogenicity , Murinae/virology , Animals , Climate , Geography , Humans , Incidence , Lassa Fever/transmission , Lassa Fever/virology , Nigeria/epidemiology , Poverty , Retrospective Studies , Spatio-Temporal Analysis , Urbanization
13.
Sci Rep ; 11(1): 20698, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667210

ABSTRACT

Lassa fever (LF) is a viral haemorrhagic fever endemic in West Africa and spread primarily by the multimammate rat, Mastomys natalensis. As there is no vaccine, reduction of rodent-human transmission is essential for disease control. As the household is thought to be a key site of transmission, understanding domestic risk factors for M. natalensis abundance is crucial. Rodent captures in conjunction with domestic surveys were carried out in 6 villages in an area of rural Upper Guinea with high LF endemicity. 120 rodent traps were set in rooms along a transect in each village for three nights, and the survey was administered in each household on the transects. This study was able to detect several domestic risk factors for increased rodent abundance in rural Upper Guinea. Regression analysis demonstrated that having > 8 holes (RR = 1.8 [1.0004-3.2, p = 0.048), the presence of rodent burrows (RR = 2.3 [1.6-3.23, p = 0.000003), and being in a multi-room square building (RR = 2.0 [1.3-2.9], p = 0.001) were associated with increased rodent abundance. The most addressable of these may be rodent burrows, as burrow patching is a relatively simple process that may reduce rodent entry. Further study is warranted to explicitly link domestic rodent abundance to LF risk, to better characterize domestic risk factors, and to evaluate how household rodent-proofing interventions could contribute to LF control.


Subject(s)
Lassa Fever/epidemiology , Lassa Fever/transmission , Rodentia/virology , Adult , Animals , Disease Reservoirs/virology , Female , Guinea/epidemiology , Humans , Lassa Fever/virology , Lassa virus/pathogenicity , Male , Middle Aged , Rats , Risk Factors , Rural Population
14.
Viruses ; 13(9)2021 08 25.
Article in English | MEDLINE | ID: mdl-34578260

ABSTRACT

Lassa fever virus (LASV) can cause life-threatening hemorrhagic fevers for which there are currently no vaccines or targeted treatments. The late Prof. Stefan Kunz, along with others, showed that the high-affinity host receptor for LASV, and other Old World and clade-C New World mammarenaviruses, is matriglycan-a linear repeating disaccharide of alternating xylose and glucuronic acid that is polymerized uniquely on α-dystroglycan by like-acetylglucosaminyltransferase-1 (LARGE1). Although α-dystroglycan is ubiquitously expressed, LASV preferentially infects vascular endothelia and professional phagocytic cells, which suggests that viral entry requires additional cell-specific factors. In this review, we highlight the work of Stefan Kunz detailing the molecular mechanism of LASV binding and discuss the requirements of receptors, such as tyrosine kinases, for internalization through apoptotic mimicry.


Subject(s)
Dystroglycans/metabolism , Glucuronic Acid/chemistry , Lassa virus/metabolism , Polymers/metabolism , Virus Attachment , Xylose/chemistry , Animals , Dystroglycans/chemistry , Glucuronic Acid/metabolism , Humans , Lassa Fever/virology , Lassa virus/genetics , Mice , Polymers/chemistry , Receptors, Virus , Virus Internalization , Xylose/metabolism
15.
Viruses ; 13(9)2021 09 03.
Article in English | MEDLINE | ID: mdl-34578344

ABSTRACT

Lassa virus (LASV)-a member of the family Arenaviridae-causes Lassa fever in humans and is endemic in West Africa. Currently, no approved drugs are available. We screened 2480 small compounds for their potential antiviral activity using pseudotyped vesicular stomatitis virus harboring the LASV glycoprotein (VSV-LASVGP) and a related prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV). Follow-up studies confirmed that CP100356 hydrochloride (CP100356), a specific P-glycoprotein (P-gp) inhibitor, suppressed VSV-LASVGP, LCMV, and LASV infection with half maximal inhibitory concentrations of 0.52, 0.54, and 0.062 µM, respectively, without significant cytotoxicity. Although CP100356 did not block receptor binding at the cell surface, it inhibited low-pH-dependent membrane fusion mediated by arenavirus glycoproteins. P-gp downregulation did not cause a significant reduction in either VSV-LASVGP or LCMV infection, suggesting that P-gp itself is unlikely to be involved in arenavirus entry. Finally, our data also indicate that CP100356 inhibits the infection by other mammarenaviruses. Thus, our findings suggest that CP100356 can be considered as an effective virus entry inhibitor for LASV and other highly pathogenic mammarenaviruses.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects , Arenaviridae/metabolism , Isoquinolines/pharmacology , Lassa virus/drug effects , Quinazolines/pharmacology , Virus Internalization/drug effects , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Humans , Lassa Fever/drug therapy , Lassa Fever/virology , Lymphocytic choriomeningitis virus , Receptors, Virus , Vero Cells , Vesicular Stomatitis/virology , Viral Fusion Protein Inhibitors/pharmacology
16.
Viruses ; 13(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-34452470

ABSTRACT

While investigating a signal of adaptive evolution in humans at the gene LARGE, we encountered an intriguing finding by Dr. Stefan Kunz that the gene plays a critical role in Lassa virus binding and entry. This led us to pursue field work to test our hypothesis that natural selection acting on LARGE-detected in the Yoruba population of Nigeria-conferred resistance to Lassa Fever in some West African populations. As we delved further, we conjectured that the "emerging" nature of recently discovered diseases like Lassa fever is related to a newfound capacity for detection, rather than a novel viral presence, and that humans have in fact been exposed to the viruses that cause such diseases for much longer than previously suspected. Dr. Stefan Kunz's critical efforts not only laid the groundwork for this discovery, but also inspired and catalyzed a series of events that birthed Sentinel, an ambitious and large-scale pandemic prevention effort in West Africa. Sentinel aims to detect and characterize deadly pathogens before they spread across the globe, through implementation of its three fundamental pillars: Detect, Connect, and Empower. More specifically, Sentinel is designed to detect known and novel infections rapidly, connect and share information in real time to identify emerging threats, and empower the public health community to improve pandemic preparedness and response anywhere in the world. We are proud to dedicate this work to Stefan Kunz, and eagerly invite new collaborators, experts, and others to join us in our efforts.


Subject(s)
Disaster Planning , Lassa Fever/epidemiology , Lassa virus/physiology , Africa, Western/epidemiology , Disaster Planning/methods , Humans , Lassa Fever/genetics , Lassa Fever/prevention & control , Lassa Fever/virology , Lassa virus/genetics , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/immunology , Nigeria/epidemiology , Pandemics , Polymorphism, Genetic , Receptors, Virus/genetics , Receptors, Virus/immunology
17.
PLoS Negl Trop Dis ; 15(7): e0009522, 2021 07.
Article in English | MEDLINE | ID: mdl-34237063

ABSTRACT

Ribavirin is the only available Lassa fever treatment. The rationale for using ribavirin is based on one clinical study conducted in the early 1980s. However, reanalysis of previous unpublished data reveals that ribavirin may actually be harmful in some Lassa fever patients. An urgent reevaluation of ribavirin is therefore needed.


Subject(s)
Antiviral Agents/administration & dosage , Lassa Fever/drug therapy , Ribavirin/administration & dosage , Humans , Lassa Fever/virology
18.
Ann Clin Microbiol Antimicrob ; 20(1): 29, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33894784

ABSTRACT

Lassa fever (LF), a zoonotic illness, represents a public health burden in West African countries where the Lassa virus (LASV) circulates among rodents. Human exposure hinges significantly on LASV ecology, which is in turn shaped by various parameters such as weather seasonality and even virus and rodent-host genetics. Furthermore, human behaviour, despite playing a key role in the zoonotic nature of the disease, critically affects either the spread or control of human-to-human transmission. Previous estimations on LF burden date from the 80s and it is unclear how the population expansion and the improvement on diagnostics and surveillance methods have affected such predictions. Although recent data have contributed to the awareness of epidemics, the real impact of LF in West African communities will only be possible with the intensification of interdisciplinary efforts in research and public health approaches. This review discusses the causes and consequences of LF from a One Health perspective, and how the application of this concept can improve the surveillance and control of this disease in West Africa.


Subject(s)
Disease Reservoirs/virology , Lassa Fever/epidemiology , Lassa Fever/transmission , Lassa Fever/virology , Lassa virus , One Health , Rodentia/virology , Africa, Western/epidemiology , Animals , Humans , Lassa Fever/prevention & control , Public Health
19.
PLoS Comput Biol ; 17(3): e1008811, 2021 03.
Article in English | MEDLINE | ID: mdl-33657095

ABSTRACT

Forecasting the risk of pathogen spillover from reservoir populations of wild or domestic animals is essential for the effective deployment of interventions such as wildlife vaccination or culling. Due to the sporadic nature of spillover events and limited availability of data, developing and validating robust, spatially explicit, predictions is challenging. Recent efforts have begun to make progress in this direction by capitalizing on machine learning methodologies. An important weakness of existing approaches, however, is that they generally rely on combining human and reservoir infection data during the training process and thus conflate risk attributable to the prevalence of the pathogen in the reservoir population with the risk attributed to the realized rate of spillover into the human population. Because effective planning of interventions requires that these components of risk be disentangled, we developed a multi-layer machine learning framework that separates these processes. Our approach begins by training models to predict the geographic range of the primary reservoir and the subset of this range in which the pathogen occurs. The spillover risk predicted by the product of these reservoir specific models is then fit to data on realized patterns of historical spillover into the human population. The result is a geographically specific spillover risk forecast that can be easily decomposed and used to guide effective intervention. Applying our method to Lassa virus, a zoonotic pathogen that regularly spills over into the human population across West Africa, results in a model that explains a modest but statistically significant portion of geographic variation in historical patterns of spillover. When combined with a mechanistic mathematical model of infection dynamics, our spillover risk model predicts that 897,700 humans are infected by Lassa virus each year across West Africa, with Nigeria accounting for more than half of these human infections.


Subject(s)
Disease Reservoirs/virology , Lassa Fever , Lassa virus , Models, Biological , Africa, Western , Animals , Animals, Wild/virology , Computational Biology , Ecology , Humans , Lassa Fever/epidemiology , Lassa Fever/transmission , Lassa Fever/veterinary , Lassa Fever/virology , Machine Learning , Models, Statistical , Risk , Rodentia/virology
20.
Immunobiology ; 226(3): 152076, 2021 05.
Article in English | MEDLINE | ID: mdl-33689957

ABSTRACT

BACKGROUND: The increasing trends of morbidity and mortality of Lassa fever is becoming more alarming in Nigeria. Information about immune response to the virus is limited. At exposure, the level of immunity plays a vital role in the vulnerability of individuals infected. OBJECTIVE: Investigating the immune status of health workers, infected cases and contacts of infected cases of Lassa fever in Ondo State. STUDY DESIGN: Blood samples were collected from 233 individuals comprising 102 health workers, 22 infected cases and 109 contacts of infected cases from Owo and Ose Local Government Areas and transported in triple level packaging. Plasma samples were analyzed for IgG and IgM markers using ReLASV® Pan-Lassa NP IgG/IgM ELISA Kit (Zalgen Labs, LLC, USA) while RNAs extracted from IgM positive samples were analyzed for LASV RNA according to manufacturers' instructions. RESULT: Among the health workers, 20/102 (19.6%) and 2/102 (2.0%) were IgG and IgM positive respectively. While 16/22 (72.7%) and 14/22 (63.6%) were IgG and IgM positive respectively among the infected cases. Of the contacts of infected cases screened, 64/109 (58.7%) were IgG positive while 4/109 (3.7%) were positive for IgM. There was no detectable LASV RNA in the samples analyzed. CONCLUSION: These findings suggest that majority of the health workers are naïve to the virus and hence may be prone to the viral infection. It could also be suggestive that a good personal protective procedure is been practiced by the health workers, hence the low exposure. However, most of the contacts of infected cases show exposure to the virus.


Subject(s)
Contact Tracing , Health Personnel , Lassa Fever/epidemiology , Lassa Fever/virology , Lassa virus , Antibodies, Viral/blood , Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Lassa Fever/diagnosis , Lassa Fever/transmission , Lassa virus/immunology , Mass Screening , Nigeria/epidemiology , Public Health Surveillance
SELECTION OF CITATIONS
SEARCH DETAIL