Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.942
Filter
1.
Transl Vis Sci Technol ; 13(7): 11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39007834

ABSTRACT

Purpose: Microphthalmia is a rare developmental eye disease that affects 1 in 7000 births. Currently, there is no cure for this condition. This study aimed to construct a stable mouse model of microphthalmia, thus providing a new tool for the study of the etiology of microphthalmia. Methods: The Hedgehog signaling pathway plays a crucial role in eye development. One of the key mechanisms of the Sonic Hedgehog signaling is the strong transcriptional activation ability of GLI3, a major mediator of this pathway. This study used CRISPR/Cas9 system to construct a novel TgGli3Ki/Ki lens-specific over-expression mouse line. To identify the ocular characteristics of this line, quantitative PCR, Western blot, hematoxylin and eosin staining, immunofluorescent staining, and RNA-seq were performed on the ocular tissues of this line and normal mice. Results: The TgGli3Ki/Ki lens-specific over-expression mouse model exhibits the ocular phenotype of microphthalmia. In the TgGli3Ki/Ki mouse, Gli3 is over-expressed in the lens, and the size of the eyeball and lens is significantly smaller than the normal one. RNA-seq analysis using the lens and the retina samples from TgGli3Ki/Ki and normal mice indicates that the phototransduction pathway is ectopically activated in the lens. Immunofluorescent staining of the lens samples confirmed this activation. Conclusions: The TgGli3Ki/Ki mouse model consistently manifests the stereotypical microphthalmia phenotype across generations, making it an excellent tool for studying this severe eye disease. Translational Relevance: This study developed a novel animal model to facilitate clinical research on microphthalmia.


Subject(s)
Disease Models, Animal , Microphthalmos , Zinc Finger Protein Gli3 , Animals , Microphthalmos/genetics , Microphthalmos/pathology , Microphthalmos/metabolism , Mice , Zinc Finger Protein Gli3/genetics , Zinc Finger Protein Gli3/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Signal Transduction , CRISPR-Cas Systems , Mice, Inbred C57BL , Nerve Tissue Proteins
2.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(4): 553-561, 2024 Apr 28.
Article in English, Chinese | MEDLINE | ID: mdl-39019784

ABSTRACT

OBJECTIVES: Age-related cataract is the most common type of adult cataract and a leading cause of blindness. Currently, there are few reports on the establishment of animal models for age-related cataract. During the experimental breeding of Microtus fortis (M. fortis), we first observed that M. fortis aged 12 to 15 months could naturally develop cataracts. This study aims to explore the possibility of developing them as an animal model for age-related cataract via identifing and analyzing spontaneous cataract in M. fortis. METHODS: The 12-month-old healthy M. fortis were served as a control group and 12-month-old cataractous M. fortis were served as an experimental group. The lens transparency was observed using the slit-lamp biomicroscope. Hematoxylin and eosin staining was used to detect pathological changes in the lens. Biochemical detection methods were applied to detect blood routine, blood glucose levels, the serum activities of superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) in both groups. Finally, real-time RT-PCR was used to detect the transcription levels of cataract-related genes in the lens of 2 groups. RESULTS: Compared with the control group, the lens of cataract M. fortis showed severely visible opacity, the structure of lens was destroyed seriously, and some pathological damage, such as swelling, degeneration/necrosis, calcification, hyperplasia, and fiber liquefaction were found in lens epithelial cells (LECs). The fibrous structure was disorganized and irregularly distributed with morgagnian globules (MGs) aggregated in the degenerated lens fibers. There was no statistically significant difference in blood glucose levels between the experimental and control groups (P>0.05). However, white blood cell (WBC) count (P<0.05), lymphocyte count (P<0.01), and lymphocyte ratio (P<0.05) were significantly decreased, while neutrophil percentage (P<0.05) and monocyte ratio (P<0.01) were significantly increased. The serum activities of SOD and GSH-Px (both P<0.05) were both reduced. The mRNAs of cataract-related genes, including CRYAA, CRYBA1, CRYBB3, Bsfp1, GJA3, CRYBA2, MIP, HspB1, DNase2B, and GJA8, were significantly downregultaed in the lenses of the experimental group (all P<0.05). CONCLUSIONS: There are significant differences in lens pathological changes, peroxidase levels, and cataract-related gene expression between cataract and healthy M. fortis. The developed cataract spontaneously in M. fortis is closely related to age, the cataract M. fortis might be an ideal animal model for the research of age-related cataract.


Subject(s)
Arvicolinae , Cataract , Glutathione Peroxidase , Lens, Crystalline , Superoxide Dismutase , Animals , Cataract/genetics , Cataract/pathology , Cataract/etiology , Lens, Crystalline/pathology , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/blood , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Aging , Disease Models, Animal
3.
Transl Vis Sci Technol ; 13(7): 2, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949633

ABSTRACT

Purpose: We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor ß2 (TGFß2)-induced lens opacity. Methods: To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFß2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFß2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results: In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFß2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFß2. Conclusions: Our results indicate that GDF-15 could alleviate TGFß2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance: Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.


Subject(s)
Cataract , Epithelial-Mesenchymal Transition , Growth Differentiation Factor 15 , Lens, Crystalline , Transforming Growth Factor beta2 , Animals , Epithelial-Mesenchymal Transition/drug effects , Transforming Growth Factor beta2/metabolism , Transforming Growth Factor beta2/pharmacology , Growth Differentiation Factor 15/metabolism , Growth Differentiation Factor 15/genetics , Cataract/pathology , Cataract/metabolism , Cataract/prevention & control , Mice , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Lens, Crystalline/drug effects , Mice, Inbred C57BL , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Blotting, Western , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism
4.
Genes (Basel) ; 15(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927721

ABSTRACT

Clouding of the transparent eye lens, or cataract(s), is a leading cause of visual impairment that requires surgical replacement with a synthetic intraocular lens to effectively restore clear vision. Most frequently, cataract is acquired with aging as a multifactorial or complex trait. Cataract may also be inherited as a classic Mendelian trait-often with an early or pediatric onset-with or without other ocular and/or systemic features. Since the early 1990s, over 85 genes and loci have been genetically associated with inherited and/or age-related forms of cataract. While many of these underlying genes-including those for lens crystallins, connexins, and transcription factors-recapitulate signature features of lens development and differentiation, an increasing cohort of unpredicted genes, including those involved in cell-signaling, membrane remodeling, and autophagy, has emerged-providing new insights regarding lens homeostasis and aging. This review provides a brief history of gene discovery for inherited and age-related forms of cataract compiled in the Cat-Map database and highlights potential gene-based therapeutic approaches to delay, reverse, or even prevent cataract formation that may help to reduce the increasing demand for cataract surgery.


Subject(s)
Cataract , Cataract/genetics , Humans , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Animals , Crystallins/genetics , Crystallins/metabolism , Aging/genetics
5.
Mol Biol Rep ; 51(1): 755, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874707

ABSTRACT

BACKGROUND: Cataract contributes to visual impairment worldwide, and diabetes mellitus accelerates the formation and progression of cataract. Here we found that the expression level of miR-204-5p was diminished in the lens epithelium with anterior lens capsule of cataract patients compared to normal donors, and decreased more obviously in those of diabetic cataract (DC) patients. However, the contribution and mechanism of miR-204-5p during DC development remain elusive. METHODS AND RESULT: The mitochondrial membrane potential (MMP) was reduced in the lens epithelium with anterior lens capsule of DC patients and the H2O2-induced human lens epithelial cell (HLEC) cataract model, suggesting impaired mitochondrial functional capacity. Consistently, miR-204-5p knockdown by the specific inhibitor also attenuated the MMP in HLECs. Using bioinformatics and a luciferase assay, further by immunofluorescence staining and Western blot, we identified IGFBP5, an insulin-like growth factor binding protein, as a direct target of miR-204-5p in HLECs. IGFBP5 expression was upregulated in the lens epithelium with anterior lens capsule of DC patients and in the HLEC cataract model, and IGFBP5 knockdown could reverse the mitochondrial dysfunction in the HLEC cataract model. CONCLUSIONS: Our results demonstrate that miR-204-5p maintains mitochondrial functional integrity through repressing IGFBP5, and reveal IGFBP5 may be a new therapeutic target and prognostic factor for DC.


Subject(s)
Cataract , Diabetes Complications , Epithelial Cells , Insulin-Like Growth Factor Binding Protein 5 , MicroRNAs , Mitochondria , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Cataract/genetics , Cataract/metabolism , Cataract/pathology , Mitochondria/metabolism , Insulin-Like Growth Factor Binding Protein 5/genetics , Insulin-Like Growth Factor Binding Protein 5/metabolism , Epithelial Cells/metabolism , Diabetes Complications/genetics , Diabetes Complications/metabolism , Membrane Potential, Mitochondrial , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Male , Female , Middle Aged
6.
Int Ophthalmol ; 44(1): 266, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913255

ABSTRACT

PURPOSE: Subluxation of the crystalline lens (Ectopia Lentis, EL) can lead to significant visual impairment and serves as a diagnostic criterion for genetic disorders such as the Marfan syndrome. There is no established criterion to diagnose and quantify EL. We prospectively investigated the distance between the zonular fibre insertion and the limbus (ZLD) in healthy subjects as a parameter to assess the position of the lens, quantify EL and provide normative data. METHODS: This prospective, observational, cross-sectional study includes one-hundred-fifty eyes of 150 healthy participants (mean age 28 years, range 4-68). Pupils were dilated with tropicamide 0.5% and phenylephrine 2.5% eyedrops. ZLD was measured in mydriasis at the slit lamp as the distance between the most central visible insertions of the zonular fibres on the lens surface and the corneoscleral limbus. Vertical pupil diameter (PD) and refractive error were recorded. If zonular fibre insertions were not visible, the distance between limbus and the pupillary margin was recorded as ZLD. RESULTS: 145 right and 5 left eyes were examined. 93% of study subjects were Caucasian, 7% were Asian. In eyes with visible zonular fibre insertions (n = 76 eyes), ZLD was 1.30 ± 0.28 mm (mean ± SD, range 0.7-2.1) and PD was 8.79 ± 0.57 mm (7.5-9.8). In the remaining 74 eyes, ZLD was 1.38 ± 0.28 mm (0.7-2.1), and PD was 8.13 ± 0.58 mm (6.7-9.4). For all eyes, ZLD was 1.34 ± 0.29 mm (0.7-2.1), and PD was 8.47 ± 0.66 mm (6.7-9.8). Refractive error and sex did not significantly affect ZLD. Smaller PD and older age were associated with larger ZLD (P < 0.001 and P = 0.036, respectively). CONCLUSION: Average ZLD was 1.34 mm in eyes of healthy subjects. Older age correlated with larger ZLD. These normative data will aid in diagnosing and quantifying EL.


Subject(s)
Ectopia Lentis , Lens, Crystalline , Humans , Ectopia Lentis/diagnosis , Male , Female , Prospective Studies , Cross-Sectional Studies , Adult , Child , Adolescent , Middle Aged , Young Adult , Aged , Child, Preschool , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/pathology , Limbus Corneae/pathology , Pupil/drug effects
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167265, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810918

ABSTRACT

Cataract is the leading cause of blindness across the world. Age-related cataract (ARC) is the most common type of cataract, but its pathogenesis is not fully understood. Using three-dimensional finite element modeling combining experimental biotechnology, our study demonstrates that external forces during accommodation cause mechanical stress predominantly in lens cortex, basically matching the localization of opacities in cortical ARCs. We identified the cellular senescence and upregulation of PIEZO1 mRNA in HLECs under mechanical stretch. This mechano-induced senescence in HLECs might be mediated by PIEZO1-related pathways, portraying a potential biomechanical cause of cortical ARCs. Our study updates the fundamental insight towards cataractogenesis, paving the way for further exploration of ARCs pathogenesis and nonsurgical treatment.


Subject(s)
Cataract , Finite Element Analysis , Lens, Crystalline , Stress, Mechanical , Humans , Cataract/genetics , Cataract/pathology , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Ion Channels/genetics , Ion Channels/metabolism , RNA-Seq , Aging/genetics , Aging/pathology , Cellular Senescence/genetics
8.
Int Immunopharmacol ; 136: 112334, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38815350

ABSTRACT

PURPOSE: Organ fibrosis is a huge challenge in clinic. There are no drugs for fibrotic cataracts treatments in clinic. Nintedanib is approved by the FDA for pulmonary fibrosis treatments. This study aims to investigate the efficacy and mechanism of nintedanib on fibrotic cataracts. METHODS: Drug efficacy was validated through TGFß2-induced cell models and injury-induced anterior subcapsular cataract (ASC) mice. A slit lamp and the eosin staining technique were applied to access the degree of capsular fibrosis. The CCK-8 assay was used to evaluate the toxicity and anti-proliferation ability of the drug. The cell migration was determined by wound healing assay and transwell assay. The anti-epithelial mesenchymal transition (EMT) and anti-fibrosis efficacy were evaluated by qRT-PCR, immunoblot, and immunofluorescence. The inhibition of nintedanib to signaling pathways was certified by immunoblot. RESULTS: Nintedanib inhibited the migration and proliferation of TGFß2-induced cell models. Nintedanib can also repress the EMT and fibrosis of the lens epithelial cells. The intracameral injection of nintedanib can also allay the anterior subcapsular opacification in ASC mice. The TGFß2/ Smad and non-Smad signaling pathways can be blocked by nintedanib in vitro and in vivo. CONCLUSION: Nintedanib alleviates fibrotic cataracts by suppressing the TGFß2/ Smad and non-Smad signaling pathways. Nintedanib is a potential drug for lens fibrosis.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Fibrosis , Indoles , Lens, Crystalline , Transforming Growth Factor beta2 , Animals , Indoles/pharmacology , Indoles/therapeutic use , Lens, Crystalline/drug effects , Lens, Crystalline/pathology , Transforming Growth Factor beta2/metabolism , Epithelial-Mesenchymal Transition/drug effects , Mice , Cell Movement/drug effects , Fibrosis/drug therapy , Humans , Cell Proliferation/drug effects , Cell Line , Signal Transduction/drug effects , Cataract/drug therapy , Mice, Inbred C57BL , Epithelial Cells/drug effects , Disease Models, Animal , Antifibrotic Agents/pharmacology , Antifibrotic Agents/therapeutic use , Male
9.
BMC Ophthalmol ; 24(1): 206, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711059

ABSTRACT

PURPOSE: The main objective is to quantify the lens nuclear opacity using spectral-domain optical coherence tomography (SD-OCT) and to evaluate its association with Lens Opacities Classification System III (LOCS-III) system, lens thickness (LT), and surgical parameters. The secondary objective is to assess the diagnostic model performance for hard nuclear cataract. METHODS: This study included 70 eyes of 57 adults with cataract, with 49 (70%) and 21 (30%) in training and validation cohort, respectively. Correlations of the average nuclear density (AND) /maximum nuclear density (MND) with LOCS-III scores, LT, and surgical parameters were analyzed. Univariate and multivariate logistic regression analysis, receiver operating characteristic curves and calibration curves were performed for the diagnostic of hard nuclear cataract. RESULTS: The pre-operative uncorrected distance visual acuity (UDVA), intraocular pressure (IOP), mean axial length (AL), and LT were 1.20 ± 0.47 log MAR, 15.50 ± 2.87 mmHg, 27.34 ± 3.77 mm and 4.32 ± 0.45 mm, respectively. The average nuclear opalescence (NO) and nuclear colour (NC) scores were 3.61 ± 0.94 and 3.50 ± 0.91 (ranging from 1.00 to 6.90), respectively. The average AND and MND were 137.94 ± 17.01 and 230.01 ± 8.91, respectively. NC and NO scores both significantly correlated with the AND (rNC = 0.733, p = 0.000; rNO = 0.755, p = 0.000) and MND (rNC = 0.643, p = 0.000; rNO = 0.634, p = 0.000). In the training cohort, the area under the curve (AUC) of the model was 0.769 (P < 0.001, 95%CI 0.620-0.919), which had a good degree of differentiation (Fig. 2a). The calibration curve showed good agreement between predicted and actual probability. CONCLUSION: The nuclear density measurement on SD-OCT images can serve as an objective and reliable indicator for quantifying nuclear density.


Subject(s)
Cataract , Lens Nucleus, Crystalline , Tomography, Optical Coherence , Visual Acuity , Humans , Female , Male , Tomography, Optical Coherence/methods , Cataract/diagnosis , Aged , Middle Aged , Lens Nucleus, Crystalline/pathology , Lens Nucleus, Crystalline/diagnostic imaging , Visual Acuity/physiology , ROC Curve , Retrospective Studies , Phacoemulsification , Aged, 80 and over , Adult , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/pathology
10.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669339

ABSTRACT

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Subject(s)
Aging , Catalytic Domain , Cataract , Glutamate-Cysteine Ligase , Glutathione , Lens, Crystalline , Cataract/pathology , Cataract/genetics , Cataract/metabolism , Animals , Glutamate-Cysteine Ligase/metabolism , Glutamate-Cysteine Ligase/genetics , Mice , Glutathione/metabolism , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Aging/metabolism , Humans , Disease Models, Animal , Mutation , Gene Knock-In Techniques
11.
BMC Ophthalmol ; 24(1): 203, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38684941

ABSTRACT

BACKGROUND: This study aims to investigate the morphologic features of the crystalline lens in Primary Angle Closure Disease (PACD) patients with zonular instability during cataract surgery using the swept-source CASIA 2 Anterior Segment-Optical Coherence Tomography (AS-OCT) system. METHODS: A total of 398 eyes (125 PACD eyes with zonular instability, 133 PACD eyes with zonular stability, and 140 cataract patient controls) of 398 patients who underwent cataract surgery combined or not glaucoma surgery between January 2021 and January 2023 were enrolled. The crystalline lens parameters were measured by CASIA2 AS-OCT. Then, logistic regression was performed to evaluate the risk factors associated with zonular instability. RESULTS: The results revealed that PACD eyes had a more anterior lens equator position, a steeper anterior curvature of lens, shorter Axial Length (AL), shallower Anterior Chamber Distance (ACD), higher Lens Vault (LV) and thicker Lens Thickness (LT), when compared to eyes in the cataract control group. Furthermore, PACD eyes in the zonular instability group had steeper front R, front Rs and Front Rf, flatter back Rf, thicker lens anterior part thickness, higher lens anterior-to-posterior part thickness ratios, shallower ACD, and greater LV, when compared to PACD eyes with zonular stability. The logistic regression analysis, which was adjusted for age and gender, revealed that zonular instability was positively correlated with anterior part thickness, lens anterior-to-posterior part thickness ratio, and LV, but was negatively correlated with lens anterior radius and ACD. CONCLUSION: Steeper anterior curvature, increased lens anterior part thickness, higher anterior-to-posterior part thickness ratio, shallower ACD, and greater LV are the anatomic features of PACD eyes associated with zonular instability.


Subject(s)
Anterior Eye Segment , Glaucoma, Angle-Closure , Lens, Crystalline , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Glaucoma, Angle-Closure/physiopathology , Glaucoma, Angle-Closure/diagnosis , Female , Male , Aged , Middle Aged , Anterior Eye Segment/diagnostic imaging , Anterior Eye Segment/pathology , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/pathology , Retrospective Studies , Intraocular Pressure/physiology , Visual Acuity/physiology
12.
Exp Eye Res ; 243: 109908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657787

ABSTRACT

Zebrafish are an outstanding model for assessing the involvement of genes in paediatric cataracts. Gene discovery for cataracts is enhanced by manipulation of the genome of zebrafish embryos and comparing the phenotypes of mutant progeny with the wildtype embryos. However, wildtype laboratory fish can also develop cataracts, potentially confounding the results. In this study, we compared the baseline cataract rate between two commonly used wildtype laboratory strains, AB and TL, and also an outbred transgenic line with mCherry reporter. We assessed a total of 805 lens images of fish at 4 days post-fertilisation for cataracts and scored each cataract observed as mild, moderate or severe. We found that the AB strain had a cataract rate of 16.2%, TL had 8.9%, and mCherry had 0.7% and these rates were significantly different. We found that TL strain had a lower rate of mild cataracts than AB fish, however, the rate of moderate and severe phenotypes in the AB and the TL strain was similar. Overall, we showed that the baseline cataract rate varies significantly between the strains housed in a single facility and conclude that baseline rates of cataracts should be assessed when planning experiments to assess the genetic causes of cataracts.


Subject(s)
Animals, Genetically Modified , Cataract , Disease Models, Animal , Lens, Crystalline , Phenotype , Zebrafish , Animals , Zebrafish/genetics , Cataract/genetics , Lens, Crystalline/pathology
13.
Invest Ophthalmol Vis Sci ; 65(4): 42, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38683565

ABSTRACT

Purpose: Despite strong evidence demonstrating that normal lens development requires regulation governed by microRNAs (miRNAs), the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods: A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance, was conducted by miRNA sequencing. Mouse lenses lacking each of three abundantly expressed lens miRNAs (miR-184, miR-26, and miR-1) were analyzed to explore the role of these miRNAs in lens development. Results: Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4 to 6 weeks of age. RNA sequencing analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens enriched and linked to cataract (e.g., Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes) and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusions: miR-1, miR-184, and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.


Subject(s)
Cataract , Lens, Crystalline , MicroRNAs , Transcriptome , Animals , MicroRNAs/genetics , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Cataract/genetics , Cataract/metabolism , Mice , Mice, Knockout , Animals, Newborn , Disease Models, Animal , Mice, Inbred C57BL
14.
BMJ Open Ophthalmol ; 9(1)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684375

ABSTRACT

BACKGROUND: Retinal imaging, including fundus autofluorescence (FAF), strongly depends on the clearness of the optical media. Lens status is crucial since the ageing lens has both light-blocking and autofluorescence (AF) properties that distort image analysis. Here, we report both lens opacification and AF metrics and the effect on automated image quality assessment. METHODS: 227 subjects (range: 19-89 years old) received quantitative AF of the lens (LQAF), Scheimpflug, anterior chamber optical coherence tomography as well as blue/green FAF (BAF/GAF), and infrared (IR) imaging. LQAF values, the Pentacam Nucleus Staging score and the relative lens reflectivity were extracted to estimate lens opacification. Mean opinion scores of FAF and IR image quality were compiled by medical readers. A regression model for predicting image quality was developed using a convolutional neural network (CNN). Correlation analysis was conducted to assess the association of lens scores, with retinal image quality derived from human or CNN annotations. RESULTS: Retinal image quality was generally high across all imaging modalities (IR (8.25±1.99) >GAF >BAF (6.6±3.13)). CNN image quality prediction was excellent (average mean absolute error (MAE) 0.9). Predictions were comparable to human grading. Overall, LQAF showed the highest correlation with image quality grading criteria for all imaging modalities (eg, Pearson correlation±CI -0.35 (-0.50 to 0.18) for BAF/LQAF). BAF image quality was most vulnerable to an increase in lenticular metrics, while IR (-0.19 (-0.38 to 0.01)) demonstrated the highest resilience. CONCLUSION: The use of CNN-based retinal image quality assessment achieved excellent results. The study highlights the vulnerability of BAF to lenticular remodelling. These results can aid in the development of cut-off values for clinical studies, ensuring reliable data collection for the monitoring of retinal diseases.


Subject(s)
Cataract , Tomography, Optical Coherence , Humans , Aged , Middle Aged , Adult , Aged, 80 and over , Female , Male , Tomography, Optical Coherence/methods , Young Adult , Cataract/diagnostic imaging , Cataract/pathology , Retina/diagnostic imaging , Retina/pathology , Optical Imaging/methods , Lens, Crystalline/diagnostic imaging , Lens, Crystalline/pathology , Fluorescein Angiography/methods
15.
Curr Eye Res ; 49(6): 591-604, 2024 06.
Article in English | MEDLINE | ID: mdl-38450708

ABSTRACT

PURPOSE: Fibrotic cataracts, including anterior subcapsular cataract (ASC) as well as posterior capsule opacification (PCO), are a common vision-threatening cause worldwide. Still, little is known about the underlying mechanisms. Here, we demonstrate a miRNA-based pathway regulating the pathological fibrosis process of lens epithelium. METHODS: Gain- and loss-of-function approaches, as well as multiple fibrosis models of the lens, were applied to validate the crucial role of two miR-1225 family members in the TGF-ß2 induced PCO model of human LECs and injury-induced ASC model in mice. RESULTS: Both miR-1225-3p and miR-1225-5p prominently stimulate the migration and EMT process of lens epithelial cells (LECs) in vitro as well as lens fibrosis in vivo. Moreover, we demonstrated that the underlying mechanism for these effects of miR-1225-5p is via directly targeting Keap1 to regulate Keap1/Nrf2 signaling. In addition, evidence showed that Keap1/Nrf2 signaling is activated in the TGF-ß2 induced PCO model of human LECs and injury-induced ASC model in mice, and inhibition of the Nrf2 pathway can significantly reverse the process of LECs EMT as well as lens fibrosis. CONCLUSIONS: These results suggest that blockade of miR-1225-5p prevents lens fibrosis via targeting Keap1 thereby inhibiting Nrf2 activation. The 'miR-1225-Keap1-Nrf2' signaling axis presumably holds therapeutic promise in the treatment of fibrotic cataracts.


Subject(s)
Cataract , Disease Models, Animal , Fibrosis , Kelch-Like ECH-Associated Protein 1 , Mice, Inbred C57BL , MicroRNAs , NF-E2-Related Factor 2 , Signal Transduction , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , MicroRNAs/genetics , Mice , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Humans , Cataract/metabolism , Cataract/genetics , Cataract/pathology , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Gene Expression Regulation , Cells, Cultured , Epithelial Cells/metabolism , Blotting, Western , Cell Movement , Epithelial-Mesenchymal Transition
16.
J Cell Physiol ; 239(5): e31211, 2024 May.
Article in English | MEDLINE | ID: mdl-38304971

ABSTRACT

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Subject(s)
Calcinosis , Cataract , Core Binding Factor Alpha 1 Subunit , Glucose , Hyperglycemia , Hypoxia-Inducible Factor 1 , Lens, Crystalline , Humans , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/genetics , Calcinosis/etiology , Calcinosis/metabolism , Calcinosis/pathology , Cataract/etiology , Cataract/metabolism , Cataract/pathology , Cell Differentiation/drug effects , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Epithelial Cells/pathology , Glucose/metabolism , Hyperglycemia/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Osteocalcin/metabolism , Osteocalcin/genetics , Signal Transduction , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Hypoxia-Inducible Factor 1/genetics , Hypoxia-Inducible Factor 1/metabolism
17.
Curr Eye Res ; 49(6): 605-614, 2024 06.
Article in English | MEDLINE | ID: mdl-38363071

ABSTRACT

PURPOSE: To investigate the influence of lens thickness (LT) on accuracy of Kane, Hill-RBF 3.0 Barrett Universal II (BUII), Emmetropia Verifying Optical (EVO), and Pearl-DGS formulas in eyes with different axial lengths (AL). METHODS: The prospective cohort study was conducted at Eye and ENT Hospital of Fudan University. Patients who had uneventful cataract surgery between March 2021 and July 2023 were recruited. Manifest refraction was conducted two-month post-surgery. Eyes were divided into 4 groups based on AL: short (<22mm), medium (22-24.5 mm), medium long (24.5-26mm) and very long (≥26mm). In each AL group, eyes were then divided into 3 subgroups based on the LT measured with IOLmaster700: thin (<4.5 mm), medium (4.5-5.0 mm), and thick (≥ 5 mm). The influence of LT on accuracy of Kane, Hill-RBF 3.0, BUII, EVO, and Pearl-DGS formulas were investigated in each AL group. RESULTS: A total of 327 eyes from 327 patients were analyzed, with 64, 102, 73 and 88 eyes in each AL group, respectively. In eyes with AL < 24.5 mm, myopic PE was significantly associated with greater LT using all the 5 formulas (all p < 0.05). Backward stepwise multivariate regression analyses revealed that LT was an important influencing factor for PE in all 5 formulas, particularly in eyes with AL <24.5 mm. In eyes with AL <24.5 mm and LT > 5.0 mm, PE of all 5 formulas calculated with the optional parameter LT were more myopic than those calculated without LT. CONCLUSIONS: Thicker LT was associated with more myopic PE among eyes with AL <24.5 mm when using all 5 formulas. Further optimization of current formulas is necessary, especially for eyes with short AL and thick LT.


Subject(s)
Axial Length, Eye , Biometry , Emmetropia , Lens, Crystalline , Myopia, Degenerative , Refraction, Ocular , Humans , Prospective Studies , Male , Female , Refraction, Ocular/physiology , Axial Length, Eye/pathology , Emmetropia/physiology , Biometry/methods , Middle Aged , Lens, Crystalline/pathology , Lens, Crystalline/diagnostic imaging , Aged , Myopia, Degenerative/diagnosis , Myopia, Degenerative/physiopathology , Visual Acuity , Optics and Photonics , Lenses, Intraocular , Lens Implantation, Intraocular , Reproducibility of Results , Myopia/physiopathology , Myopia/diagnosis
18.
Am J Pathol ; 194(6): 1090-1105, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38403162

ABSTRACT

Changes in the anterior segment of the eye due to type 2 diabetes mellitus (T2DM) are not well-characterized, in part due to the lack of a reliable animal model. This study evaluated changes in the anterior segment, including crystalline lens health, corneal endothelial cell density, aqueous humor metabolites, and ciliary body vasculature, in a rat model of T2DM compared with human eyes. Male Sprague-Dawley rats were fed a high-fat diet (45% fat) or normal diet, and rats fed the high-fat diet were injected with streptozotocin intraperitoneally to generate a model of T2DM. Cataract formation and corneal endothelial cell density were assessed using microscopic analysis. Diabetes-related rat aqueous humor alterations were assessed using metabolomics screening. Transmission electron microscopy was used to assess qualitative ultrastructural changes ciliary process microvessels at the site of aqueous formation in the eyes of diabetic rats and humans. Eyes from the diabetic rats demonstrated cataracts, lower corneal endothelial cell densities, altered aqueous metabolites, and ciliary body ultrastructural changes, including vascular endothelial cell activation, pericyte degeneration, perivascular edema, and basement membrane reduplication. These findings recapitulated diabetic changes in human eyes. These results support the use of this model for studying ocular manifestations of T2DM and support a hypothesis postulating blood-aqueous barrier breakdown and vascular leakage at the ciliary body as a mechanism for diabetic anterior segment pathology.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Rats, Sprague-Dawley , Animals , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Male , Rats , Humans , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , Anterior Eye Segment/pathology , Aqueous Humor/metabolism , Cataract/pathology , Cataract/metabolism , Lens, Crystalline/pathology , Lens, Crystalline/metabolism , Lens, Crystalline/ultrastructure , Ciliary Body/pathology , Ciliary Body/metabolism , Diet, High-Fat/adverse effects
19.
Chem Biol Interact ; 392: 110905, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38373627

ABSTRACT

Aldose reductase is a member of the 1B1 subfamily of aldo-keto reductase gene superfamily. The action of aldose reductase (AR) has been implicated in the pathogenesis of a variety of disease states, most notably complications of diabetes mellitus including neuropathy, retinopathy, nephropathy, and cataracts. To explore for mechanistic roles for AR in disease pathogenesis, we established mutant strains produced using Crispr-Cas9 to inactivate the AKR1B3 gene in C57BL6 mice. Phenotyping AR-knock out (ARKO) strains confirmed previous reports of reduced accumulation of tissue sorbitol levels. Lens epithelial cells in ARKO mice showed markedly reduced epithelial-to-mesenchymal transition following lens extraction in a surgical model of cataract and posterior capsule opacification. A previously unreported phenotype of preputial sebaceous gland swelling was observed frequently in male ARKO mice homozygous for the mutant AKR1B3 allele. This condition, which was shown to be accompanied by infiltration of proinflammatory CD3+ lymphocytes, was not observed in WT mice or mice heterozygous for the mutant allele. Despite this condition, reproductive fitness of the ARKO strain was indistinguishable from WT mice housed under identical conditions. These studies establish the utility of a new strain of AKR1B3-null mice created to support mechanistic studies of cataract and diabetic eye disease.


Subject(s)
Capsule Opacification , Cataract , Lens, Crystalline , Animals , Male , Mice , Aldehyde Reductase/genetics , Capsule Opacification/pathology , Cataract/genetics , Cataract/pathology , Incidence , Inflammation/pathology , Lens, Crystalline/pathology , Mice, Inbred C57BL , Mice, Knockout , Sebaceous Glands
20.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338832

ABSTRACT

Nonspecific orbital inflammation (NSOI), colloquially known as orbital pseudotumor, sometimes presents a diagnostic and therapeutic challenge in ophthalmology. This review aims to dissect NSOI through a molecular lens, offering a comprehensive overview of its pathogenesis, clinical presentation, diagnostic methods, and management strategies. The article delves into the underpinnings of NSOI, examining immunological and environmental factors alongside intricate molecular mechanisms involving signaling pathways, cytokines, and mediators. Special emphasis is placed on emerging molecular discoveries and approaches, highlighting the significance of understanding molecular mechanisms in NSOI for the development of novel diagnostic and therapeutic tools. Various diagnostic modalities are scrutinized for their utility and limitations. Therapeutic interventions encompass medical treatments with corticosteroids and immunomodulatory agents, all discussed in light of current molecular understanding. More importantly, this review offers a novel molecular perspective on NSOI, dissecting its pathogenesis and management with an emphasis on the latest molecular discoveries. It introduces an integrated approach combining advanced molecular diagnostics with current clinical assessments and explores emerging targeted therapies. By synthesizing these facets, the review aims to inform clinicians and researchers alike, paving the way for molecularly informed, precision-based strategies for managing NSOI.


Subject(s)
Lens, Crystalline , Ophthalmology , Orbital Pseudotumor , Humans , Inflammation/diagnosis , Inflammation/therapy , Orbital Pseudotumor/diagnosis , Orbital Pseudotumor/pathology , Lens, Crystalline/pathology , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL