Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.659
1.
Front Endocrinol (Lausanne) ; 15: 1386309, 2024.
Article En | MEDLINE | ID: mdl-38846494

Introduction: Leptin and its receptors are expressed by the human placenta throughout gestation, yet the role of leptin in early human placental development is not well characterized. Leptin is overexpressed in the placentas from preeclamptic (PE) pregnancies. PE can result from the impaired invasion of fetal placental cells, cytotrophoblasts (CTBs), into the maternal decidua. We hypothesized that elevated leptin levels would impair human CTB invasion. Methods: The effects of leptin on the invasion of human CTBs were evaluated in three cell models, HTR-8/SVneo cells, primary CTBs, and placental villous explants using invasion assays. Further, leptin receptor expression was characterized in all three cell models using RT-PCR. Further phosphokinase assays were performed in HTR-8/SVneo cells to determine signaling pathways involved in CTB invasion in response to differential leptin doses. Results: We found that, prior to 8 weeks gestation, leptin promoted CTB invasion in the explant model. After 11 weeks gestation in explants, primary CTBs and in HTR-8/SVneo cells, leptin promoted invasion at moderate but not at high concentrations. Further, leptin receptor characterization revealed that leptin receptor expression did not vary over gestation, however, STAT, PI3K and MAPK pathways showed different signaling in response to varied leptin doses. Discussion: These data suggest that the excess placental leptin observed in PE may cause impaired CTB invasion as a second-trimester defect. Leptin's differential effect on trophoblast invasion may explain the role of hyperleptinemia in preeclampsia pathogenesis.


Gestational Age , Leptin , Receptors, Leptin , Trophoblasts , Humans , Trophoblasts/metabolism , Trophoblasts/drug effects , Trophoblasts/pathology , Leptin/metabolism , Leptin/pharmacology , Female , Pregnancy , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Placenta/metabolism , Placenta/drug effects , Placenta/pathology , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Dose-Response Relationship, Drug , Signal Transduction , Placentation/drug effects , Cell Movement/drug effects
2.
PLoS One ; 19(5): e0292997, 2024.
Article En | MEDLINE | ID: mdl-38728264

BACKGROUND: Current research suggests that energy transfer through human milk influences infant nutritional development and initiates metabolic programming, influencing eating patterns into adulthood. To date, this research has predominantly been conducted among women in high income settings and/or among undernourished women. We will investigate the relationship between maternal body composition, metabolic hormones in human milk, and infant satiety to explore mechanisms of developmental satiety programming and implications for early infant growth and body composition in Samoans; a population at high risk and prevalence for overweight and obesity. Our aims are (1) to examine how maternal body composition influences metabolic hormone transfer from mother to infant through human milk, and (2) to examine the influences of maternal metabolic hormone transfer and infant feeding patterns on early infant growth and satiety. METHODS: We will examine temporal changes in hormone transfers to infants through human milk in a prospective longitudinal cohort of n = 80 Samoan mother-infant dyads. Data will be collected at three time points (1, 3, & 4 months postpartum). At each study visit we will collect human milk and fingerpick blood samples from breastfeeding mother-infant dyads to measure the hormones leptin, ghrelin, and adiponectin. Additionally, we will obtain body composition measurements from the dyad, observe breastfeeding behavior, conduct semi-structured interviews, and use questionnaires to document infant hunger and feeding cues and satiety responsiveness. Descriptive statistics, univariate and multivariate analyses will be conducted to address each aim. DISCUSSION: This research is designed to advance our understanding of variation in the developmental programming of satiety and implications for early infant growth and body composition. The use of a prospective longitudinal cohort alongside data collection that utilizes a mixed methods approach will allow us to capture a more accurate representation on both biological and cultural variables at play in a population at high risk of overweight and obesity.


Body Composition , Milk, Human , Humans , Milk, Human/metabolism , Milk, Human/chemistry , Female , Infant , Prospective Studies , Longitudinal Studies , Leptin/blood , Leptin/metabolism , Adiponectin/blood , Adiponectin/metabolism , Adult , Ghrelin/blood , Ghrelin/metabolism , Child Development/physiology , Male , Breast Feeding , Infant Nutritional Physiological Phenomena , Satiation/physiology , Mothers
3.
Neoplasma ; 71(2): 164-179, 2024 Apr.
Article En | MEDLINE | ID: mdl-38766857

Obesity is a major public health concern because it increases the risk of several diseases, including cancer. Crosstalk between obesity and cancer seems to be very complex, and the interaction between adipocytes and cancer cells leads to changes in adipocytes' function and their paracrine signaling, promoting a microenvironment that supports tumor growth. Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme that not only participates in pH regulation but also facilitates metabolic reprogramming and supports the migration, invasion, and metastasis of cancer cells. In addition, CA IX expression, predominantly regulated via hypoxia-inducible factor (HIF-1), serves as a surrogate marker of hypoxia. In this study, we investigated the impact of adipocytes and adipocyte-derived factors on the expression of CA IX in colon and breast cancer cells. We observed increased expression of CA9 mRNA as well as CA IX protein in the presence of adipocytes and adipocyte-derived conditioned medium. Moreover, we confirmed that adipocytes affect the hypoxia signaling pathway and that the increased CA IX expression results from adipocyte-mediated induction of HIF-1α. Furthermore, we demonstrated that adipocyte-mediated upregulation of CA IX leads to increased migration and decreased adhesion of colon cancer cells. Finally, we brought experimental evidence that adipocytes, and more specifically leptin, upregulate CA IX expression in cancer cells and consequently promote tumor progression.


Adipocytes , Antigens, Neoplasm , Breast Neoplasms , Carbonic Anhydrase IX , Cell Movement , Colonic Neoplasms , Hypoxia-Inducible Factor 1, alpha Subunit , Leptin , Paracrine Communication , Humans , Carbonic Anhydrase IX/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Antigens, Neoplasm/metabolism , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Leptin/metabolism , Cell Line, Tumor , Animals , Obesity/metabolism , Culture Media, Conditioned/pharmacology , Tumor Microenvironment , Gene Expression Regulation, Neoplastic , Mice
4.
Arq Gastroenterol ; 61: e24016, 2024.
Article En | MEDLINE | ID: mdl-38775586

BACKGROUND: Colorectal carcinoma (CRC) is one of the common carcinomas with a rising incidence of metastasis due to its advanced stage of presentation. The existing biomarkers such as CEA (Carcinoembryonic antigen) etc., for prognosis, have low sensitivity and specificity. Hence a need for a newer definitive biomarker. Obesity is the leading cause of CRC. Leptin and adiponectin secreted by adipose tissue have been studied as potential biomarkers in the field of CRC. The present study helps to understand the association of leptin and adiponectin receptors with clinicopathological parameters. OBJECTIVE: To correlate the various clinicopathological parameters with the tissue expression of leptin and adiponectin receptors in CRC. METHODS: It is a cross-sectional prospective study conducted at a tertiary care hospital. Formalin fixed paraffin blocks of all radical resection CRC cases were collected and immunohistochemistry (IHC)was carried out on tumor tissue for leptin and adiponectin receptor. Tumor characteristics and clinical parameters were collected from the hospital medical records. Pearson's correlation coefficient test was used. RESULTS: Immunohistochemistry was performed on 60 cases of CRC. Significant positive correlation of leptin was observed with size, lymph node metastasis, advanced stage, and grade of tumor (P<0.05). A significant correlation between adiponectin receptor and CRC was observed concerning age, stage, lymph node metastasis, distant metastasis and grade of tumor. CONCLUSION: Positive expression of leptin and negative expression of adiponectin receptors in CRC helps to predict the risk of metastasis.


Biomarkers, Tumor , Colorectal Neoplasms , Immunohistochemistry , Leptin , Neoplasm Staging , Receptors, Adiponectin , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cross-Sectional Studies , Prospective Studies , Male , Female , Middle Aged , Leptin/metabolism , Leptin/analysis , Receptors, Adiponectin/analysis , Receptors, Adiponectin/metabolism , Aged , Biomarkers, Tumor/metabolism , Adult , Receptors, Leptin/metabolism , Receptors, Leptin/analysis , Neoplasm Grading , Lymphatic Metastasis
6.
Int J Mol Sci ; 25(10)2024 May 07.
Article En | MEDLINE | ID: mdl-38791099

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by progressive loss of motor neurons. Emerging evidence suggests a potential link between metabolic dysregulation and ALS pathogenesis. This study aimed to investigate the relationship between metabolic hormones and disease progression in ALS patients. A cross-sectional study was conducted involving 44 ALS patients recruited from a tertiary care center. Serum levels of insulin, total amylin, C-peptide, active ghrelin, GIP (gastric inhibitory peptide), GLP-1 active (glucagon-like peptide-1), glucagon, PYY (peptide YY), PP (pancreatic polypeptide), leptin, interleukin-6, MCP-1 (monocyte chemoattractant protein-1), and TNFα (tumor necrosis factor alpha) were measured, and correlations with ALSFRS-R, evolution scores, and biomarkers were analyzed using Spearman correlation coefficients. Subgroup analyses based on ALS subtypes, progression pattern of disease, and disease progression rate patterns were performed. Significant correlations were observed between metabolic hormones and ALS evolution scores. Insulin and amylin exhibited strong correlations with disease progression and clinical functional outcomes, with insulin showing particularly robust associations. Other hormones such as C-peptide, leptin, and GLP-1 also showed correlations with ALS progression and functional status. Subgroup analyses revealed differences in hormone levels based on sex and disease evolution patterns, with male patients showing higher amylin and glucagon levels. ALS patients with slower disease progression exhibited elevated levels of amylin and insulin. Our findings suggest a potential role for metabolic hormones in modulating ALS progression and functional outcomes. Further research is needed to elucidate the underlying mechanisms and explore the therapeutic implications of targeting metabolic pathways in ALS management.


Amyotrophic Lateral Sclerosis , Biomarkers , Insulin , Islet Amyloid Polypeptide , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/blood , Male , Female , Middle Aged , Aged , Islet Amyloid Polypeptide/metabolism , Islet Amyloid Polypeptide/blood , Cross-Sectional Studies , Biomarkers/blood , Insulin/metabolism , Insulin/blood , Disease Progression , Leptin/blood , Leptin/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/blood , C-Peptide/blood , C-Peptide/metabolism , Ghrelin/metabolism , Ghrelin/blood , Glucagon/blood , Glucagon/metabolism , Adult , Hormones/metabolism , Hormones/blood
7.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791252

Leptin is an obesity-related hormone that plays an important role in breast cancer progression. Vasculogenic mimicry (VM) refers to the formation of vascular channels lined by tumor cells. This study aimed to investigate the relationship between leptin and VM in human breast cancer cells. VM was measured by a 3D culture assay. Signal transducers and activators of transcription 3 (STAT3) signaling, aquaporin-1 (AQP1), and the expression of VM-related proteins, including vascular endothelial cadherin (VE-cadherin), twist, matrix metalloproteinase-2 (MMP-2), and laminin subunit 5 gamma-2 (LAMC2), were examined by Western blot. AQP1 mRNA was analyzed by a reverse transcriptase-polymerase chain reaction (RT-PCR). Leptin increased VM and upregulated phospho-STAT3, VE-cadherin, twist, MMP-2, and LAMC2. These effects were inhibited by the leptin receptor-blocking peptide, Ob-R BP, and the STAT3 inhibitor, AG490. A positive correlation between leptin and AQP1 mRNA was observed and was confirmed by RT-PCR. Leptin upregulated AQP1 expression, which was blocked by Ob-R BP and AG490. AQP1 overexpression increased VM and the expression of VM-related proteins. AQP1 silencing inhibited leptin-induced VM and the expression of VM-related proteins. Thus, these results showed that leptin facilitates VM in breast cancer cells via the Ob-R/STAT3 pathway and that AQP1 is a key mediator in leptin-induced VM.


Aquaporin 1 , Breast Neoplasms , Leptin , Neovascularization, Pathologic , STAT3 Transcription Factor , Humans , Leptin/metabolism , Leptin/pharmacology , Leptin/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Aquaporin 1/metabolism , Aquaporin 1/genetics , Female , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Signal Transduction , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Cadherins/metabolism , Cadherins/genetics , MCF-7 Cells , Laminin/metabolism , Antigens, CD
8.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732183

The impact of microplastics (MPs) on the metabolic functions of the liver is currently unclear and not completely understood. To investigate the effects of the administration of MPs on the hepatic metabolism of normal and obese mice, alterations in the lipid, glucose (Glu), and amino acid regulation pathways were analyzed in the liver and adipose tissues of C57BL/6Korl (wild type, WT) or C57BL/6-Lepem1hwl/Korl mice (leptin knockout, Lep KO) orally administered polystyrene (PS) MPs for 9 weeks. Significant alterations in the lipid accumulation, adipogenesis, lipogenesis, and lipolysis pathways were detected in the liver tissue of MP-treated WT and Lep KO mice compared to the vehicle-treated group. These alterations in their liver tissues were accompanied by an upregulation of the serum lipid profile, as well as alterations in the adipogenesis, lipogenesis, and lipolysis pathways in the adipose tissues of MP-treated WT and Lep KO mice. Specifically, the level of leptin was increased in the adipose tissues of MP-treated WT mice without any change in their food intake. Also, MP-induced disruptions in the glycogenolysis, Glu transporter type 4 (GLUT4)-5' AMP-activated protein kinase (AMPK) signaling pathway, levels of lipid intermediates, and the insulin resistance of the liver tissues of WT and Lep KO mice were observed. Furthermore, the levels of seven endogenous metabolites were remarkably changed in the serum of WT and Lep KO mice after MP administrations. Finally, the impact of the MP administration observed in both types of mice was further verified in differentiated 3T3-L1 adipocytes and HepG2 cells. Thus, these results suggest that the oral administration of MPs for 9 weeks may be associated with the disruption of lipid, Glu, and amino acid metabolism in the liver tissue of obese WT and Lep KO mice.


Amino Acids , Glucose , Lipid Metabolism , Liver , Mice, Inbred C57BL , Mice, Knockout , Microplastics , Polystyrenes , Animals , Liver/metabolism , Liver/drug effects , Mice , Glucose/metabolism , Lipid Metabolism/drug effects , Amino Acids/metabolism , Administration, Oral , Leptin/metabolism , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Adipogenesis/drug effects , Male , Lipogenesis/drug effects , Obesity/metabolism , Obesity/etiology , Obesity/genetics , Humans , Lipolysis/drug effects
9.
Sci Rep ; 14(1): 10206, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702334

Cardiovascular function and adipose metabolism were markedly influenced under high altitudes. However, the interplay between adipokines and heart under hypoxia remains to be elucidated. We aim to explore alterations of adipokines and underlying mechanisms in regulating cardiac function under high altitudes. We investigated the cardiopulmonary function and five adipokines in Antarctic expeditioners at Kunlun Station (4,087 m) for 20 days and established rats exposed to hypobaric hypoxia (5,000 m), simulating Kunlun Station. Antarctic expeditioners exhibited elevated heart rate, blood pressure, systemic vascular resistance, and decreased cardiac pumping function. Plasma creatine phosphokinase-MB (CK-MB) and platelet-endothelial cell adhesion molecule-1 (sPecam-1) increased, and leptin, resistin, and lipocalin-2 decreased. Plasma leptin significantly correlated with altered cardiac function indicators. Additionally, hypoxic rats manifested impaired left ventricular systolic and diastolic function, elevated plasma CK-MB and sPecam-1, and decreased plasma leptin. Chronic hypoxia for 14 days led to increased myocyte hypertrophy, fibrosis, apoptosis, and mitochondrial dysfunction, coupled with reduced protein levels of leptin signaling pathways in myocardial tissues. Cardiac transcriptome analysis revealed leptin was associated with downregulated genes involved in rhythm, Na+/K+ transport, and cell skeleton. In conclusion, chronic hypoxia significantly reduced leptin signaling pathways in cardiac tissues along with significant pathological changes, thus highlighting the pivotal role of leptin in regulation of cardiac function under high altitudes.


Altitude , Hypoxia , Leptin , Signal Transduction , Leptin/metabolism , Leptin/blood , Animals , Rats , Male , Hypoxia/metabolism , Hypoxia/physiopathology , Humans , Altitude Sickness/metabolism , Altitude Sickness/physiopathology , Myocardium/metabolism , Myocardium/pathology , Adult , Heart/physiopathology
10.
Nat Commun ; 15(1): 3769, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704393

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Adipocytes , Bone Marrow , Leptin , Osteogenesis , Receptors, Estrogen , Animals , Osteogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Mice , Leptin/metabolism , Leptin/genetics , Bone Marrow/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Mesenchymal Stem Cells/metabolism , Obesity/metabolism , Obesity/pathology , Obesity/genetics , ERRalpha Estrogen-Related Receptor , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Female , Male , Mice, Inbred C57BL , Signal Transduction , Bone Marrow Cells/metabolism , Mice, Knockout
11.
Physiol Behav ; 281: 114580, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38714271

Environmental factors in early life have been demonstrated to increase the risk of neurodevelopmental disorders in offspring, especially the deficiency of the cognitive ability. Leptin has emerged as a key hormone that conveys information on energy stores, but there is growing appreciation that leptin signaling may also play an important role in neurodevelopment. The present study aimed to investigate whether maternal HFD exposure impairs the offspring learning and memory through the programming of central leptin system. We observed that hippocampus-dependent learning and memory were impaired in male but not female offspring from HFD-fed maternal ancestors (C57BL/6 mice), as assessed by novel object recognition and Morris water maze tests. Moreover, the chromatin immunoprecipitation results revealed the maternal HFD consumption led to the increasement in the binding of the histone marker H3K9me3 in male offspring, which mediates gene silencing in the leptin receptor promoter region. Furthermore, there was an increase in the expression of the histone methylase SUV39H1 in male but not female offspring, which regulates H3K9me3. Additionally, it has been observed that IL-6 and IL-1 also could lead to similar alternations when acting on cultured hippocampal neurons in vitro. Taken together, our data suggest that maternal HFD consumption influences male offspring hippocampal cognitive performance in a sex-specific manner, and central leptin signaling may serve as the cross-talk between maternal diet and cognitive impairment in offspring.


Diet, High-Fat , Hippocampus , Leptin , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Signal Transduction , Spatial Learning , Animals , Female , Male , Hippocampus/metabolism , Leptin/metabolism , Diet, High-Fat/adverse effects , Mice , Spatial Learning/physiology , Prenatal Exposure Delayed Effects/metabolism , Pregnancy , Signal Transduction/physiology , Sex Characteristics , Neurons/metabolism , Histones/metabolism , Receptors, Leptin/metabolism , Receptors, Leptin/genetics
12.
Dev Biol ; 512: 26-34, 2024 Aug.
Article En | MEDLINE | ID: mdl-38705558

The signals that regulate peripheral blood vessel formation during development are still under investigation. The hormone leptin promotes blood vessel formation, adipose tissue establishment and expansion, tumor growth, and wound healing, but the underlying mechanisms for these actions are currently unknown. We investigated whether leptin promotes angiogenesis in the developing tail fin using embryonic transgenic xflk-1:GFP Xenopus laevis, which express a green fluorescent protein on vascular endothelial cells to mark blood vessels. We found that leptin protein is expressed in endothelial cells of developing blood vessels and that leptin treatment via injection increased phosphorylated STAT3 signaling, which is indicative of leptin activation of its receptor, in blood vessels of the larval tail fin. Leptin administration via media increased vessel length, branching, and reconnection with the cardinal vein, while decreased leptin signaling via immunoneutralization had an opposing effect on vessel development. We also observed disorganization of major vessels and microvessels of the tail fin and muscle when leptin signaling was decreased. Reduced leptin signaling lowered mRNA expression of cenpk, gpx1, and mmp9, markers for cell proliferation, antioxidation, and extracellular matrix remodeling/cell migration, respectively, in the developing tail, providing insight into three possible mechanisms underlying leptin's promotion of angiogenesis. Together these results illustrate that leptin levels are correlated with embryonic angiogenesis and that leptin coordinates multiple aspects of blood vessel growth and development, showing that leptin is an important morphogen during embryonic development.


Larva , Leptin , Neovascularization, Physiologic , Signal Transduction , Tail , Xenopus laevis , Animals , Leptin/metabolism , Tail/blood supply , Tail/embryology , Xenopus laevis/embryology , Xenopus laevis/metabolism , Larva/metabolism , Blood Vessels/embryology , Blood Vessels/metabolism , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Animals, Genetically Modified , STAT3 Transcription Factor/metabolism , Embryo, Nonmammalian/metabolism , Green Fluorescent Proteins/metabolism , Gene Expression Regulation, Developmental
13.
Cell Rep Med ; 5(5): 101559, 2024 May 21.
Article En | MEDLINE | ID: mdl-38744275

Dysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However, their exact roles in triggering arrhythmia remain elusive. Here, using an in vitro coculture system with sympathetic neurons, cardiomyocytes, and adipocytes, we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY), which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R, NCX, or CaMKII. Moreover, increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia.


Adipocytes , Adipose Tissue , Arrhythmias, Cardiac , Leptin , Myocytes, Cardiac , Neuropeptide Y , Pericardium , Humans , Animals , Pericardium/metabolism , Pericardium/pathology , Adipose Tissue/metabolism , Adipose Tissue/pathology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Neuropeptide Y/metabolism , Leptin/metabolism , Adipocytes/metabolism , Male , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neurons/metabolism , Neurons/pathology , Sodium-Calcium Exchanger/metabolism , Female , Receptors, Neuropeptide Y/metabolism , Middle Aged , Atrial Fibrillation/metabolism , Atrial Fibrillation/physiopathology , Atrial Fibrillation/pathology , Sympathetic Nervous System/metabolism , Mice , Epicardial Adipose Tissue
14.
Nat Metab ; 6(5): 847-860, 2024 May.
Article En | MEDLINE | ID: mdl-38811804

Adipose tissues serve as an energy reservoir and endocrine organ, yet the mechanisms that coordinate these functions remain elusive. Here, we show that the transcriptional coregulators, YAP and TAZ, uncouple fat mass from leptin levels and regulate adipocyte plasticity to maintain metabolic homeostasis. Activating YAP/TAZ signalling in adipocytes by deletion of the upstream regulators Lats1 and Lats2 results in a profound reduction in fat mass by converting mature adipocytes into delipidated progenitor-like cells, but does not cause lipodystrophy-related metabolic dysfunction, due to a paradoxical increase in circulating leptin levels. Mechanistically, we demonstrate that YAP/TAZ-TEAD signalling upregulates leptin expression by directly binding to an upstream enhancer site of the leptin gene. We further show that YAP/TAZ activity is associated with, and functionally required for, leptin regulation during fasting and refeeding. These results suggest that adipocyte Hippo-YAP/TAZ signalling constitutes a nexus for coordinating adipose tissue lipid storage capacity and systemic energy balance through the regulation of adipocyte plasticity and leptin gene transcription.


Adaptor Proteins, Signal Transducing , Adipocytes , Adipose Tissue , Energy Metabolism , Hippo Signaling Pathway , Leptin , Protein Serine-Threonine Kinases , Signal Transduction , YAP-Signaling Proteins , Animals , Leptin/metabolism , Protein Serine-Threonine Kinases/metabolism , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , YAP-Signaling Proteins/metabolism , Adipose Tissue/metabolism , Adipocytes/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics
15.
Nat Commun ; 15(1): 4646, 2024 May 31.
Article En | MEDLINE | ID: mdl-38821928

AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.


Agouti-Related Protein , Arcuate Nucleus of Hypothalamus , Hunger , Interferon Regulatory Factor-3 , Leptin , Neurons , Animals , Male , Mice , Agouti-Related Protein/metabolism , Agouti-Related Protein/genetics , Arcuate Nucleus of Hypothalamus/metabolism , Fasting , Gene Expression Regulation , Hunger/physiology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/genetics , Leptin/metabolism , Mice, Inbred C57BL , Neurons/metabolism , Signal Transduction , Transcriptome , Chromatin , Epigenesis, Genetic
16.
Nature ; 629(8012): 652-659, 2024 May.
Article En | MEDLINE | ID: mdl-38693261

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.


Disease Susceptibility , Dysbiosis , Fathers , Gastrointestinal Microbiome , Placental Insufficiency , Prenatal Injuries , Spermatozoa , Animals , Female , Male , Mice , Pregnancy , Dysbiosis/complications , Dysbiosis/microbiology , Gastrointestinal Microbiome/physiology , Leptin/metabolism , Mice, Inbred C57BL , Placenta/metabolism , Placenta/physiopathology , Placental Insufficiency/etiology , Placental Insufficiency/metabolism , Placental Insufficiency/physiopathology , Pregnancy Outcome , Prenatal Injuries/etiology , Prenatal Injuries/metabolism , Prenatal Injuries/physiopathology , Signal Transduction , Spermatozoa/metabolism , Testis/metabolism , Testis/physiopathology , Disease Susceptibility/etiology
17.
Sci Rep ; 14(1): 11366, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762543

Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.


Amniotic Fluid , Choline , Dietary Supplements , Leptin , Animals , Female , Leptin/blood , Leptin/metabolism , Pregnancy , Choline/administration & dosage , Amniotic Fluid/metabolism , Rats , Male , Placenta/metabolism , Placenta/drug effects , Fetal Development/drug effects , Obesity/metabolism , Obesity/etiology , Fetal Weight/drug effects , Rats, Sprague-Dawley , Diet, Western/adverse effects
18.
Nutrients ; 16(10)2024 May 20.
Article En | MEDLINE | ID: mdl-38794776

BACKGROUND: Functional Gastrointestinal Disorders (FGIDs) present a higher prevalence in individuals with Neurodevelopmental Disorders (NDDs). The Stress System and the Gut-Brain axis (GBA) may mediate these relations. We aimed to assess the prevalence and profile of FGIDs in a clinical sample of children with Autism Spectrum Disorder (ASD) and Attention Deficit/Hyperactivity Disorder (ADHD) compared to typically developing children (TD) as well as to investigate possible relations between stress-related biomarkers and internalizing/externalizing problems in children with NDDS. METHODS: In total, 120 children, aged between 4 and 12 years old, formed three groups (N = 40, each): ADHD, ASD and TD. Salivary cortisol, hair cortisol and serum leptin were measured. RESULTS: The ASD group had more FGID problems than the TD group (p = 0.001). The ADHD and ASD groups had higher total internalizing/externalizing problems than the TD group (p < 0.0001, p < 0.0001, p = 0.005, respectively). Children with FGIDs showed more total, internalizing and externalizing problems compared to children without FGIDs (p < 0.0001, p < 0.0001, p = 0.041, respectively). The ADHD group showed lower AUCg values (p < 0.0001), while the hair cortisol was higher for the TD group (p < 0.0001). CONCLUSION: In conclusion, children with NDDs had more FGID symptoms and present higher internalizing and externalizing problems. Children with ADHD and FGIDs had more internalizing problems compared to those without FGIDs. No differences in stress-related biomarkers were shown to differentiate children with NDDs with and without FGIDs. Future prospective studies including a greater number of children may elucidate the biological pathways linking these comorbidities.


Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Gastrointestinal Diseases , Hair , Hydrocortisone , Leptin , Saliva , Humans , Child , Hydrocortisone/blood , Hydrocortisone/analysis , Hydrocortisone/metabolism , Hair/chemistry , Attention Deficit Disorder with Hyperactivity/blood , Leptin/blood , Leptin/analysis , Leptin/metabolism , Female , Male , Saliva/chemistry , Child, Preschool , Gastrointestinal Diseases/blood , Gastrointestinal Diseases/psychology , Gastrointestinal Diseases/epidemiology , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/psychology , Autism Spectrum Disorder/metabolism , Biomarkers/blood , Prevalence
19.
Aging (Albany NY) ; 16(9): 7870-7888, 2024 May 03.
Article En | MEDLINE | ID: mdl-38709288

BMP9 has demonstrated significant osteogenic potential. In this study, we investigated the effect of Leptin on BMP9-induced osteogenic differentiation. Firstly, we found Leptin was decreased during BMP9-induced osteogenic differentiation and serum Leptin concentrations were increased in the ovariectomized (OVX) rats. Both in vitro and in vivo, exogenous expression of Leptin inhibited the process of osteogenic differentiation, whereas silencing Leptin enhanced. Exogenous Leptin could increase the malonylation of ß-catenin. However, BMP9 could increase the level of Sirt5 and subsequently decrease the malonylation of ß-catenin; the BMP9-induced osteogenic differentiation was inhibited by silencing Sirt5. These data suggested that Leptin can inhibit the BMP9-induced osteogenic differentiation, which may be mediated through reducing the activity of Wnt/ß-catenin signalling via down-regulating Sirt5 to increase the malonylation level of ß-catenin partly.


Down-Regulation , Growth Differentiation Factor 2 , Leptin , Osteogenesis , Sirtuins , Wnt Signaling Pathway , beta Catenin , Animals , beta Catenin/metabolism , beta Catenin/genetics , Sirtuins/metabolism , Sirtuins/genetics , Female , Rats , Osteogenesis/drug effects , Leptin/metabolism , Leptin/pharmacology , Growth Differentiation Factor 2/metabolism , Wnt Signaling Pathway/drug effects , Ovariectomy , Cell Differentiation/drug effects , Rats, Sprague-Dawley
20.
Nat Commun ; 15(1): 3377, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38643150

Zinc-alpha2-glycoprotein (AZGP1) has been implicated in peripheral metabolism; however, its role in regulating energy metabolism in the brain, particularly in POMC neurons, remains unknown. Here, we show that AZGP1 in POMC neurons plays a crucial role in controlling whole-body metabolism. POMC neuron-specific overexpression of Azgp1 under high-fat diet conditions reduces energy intake, raises energy expenditure, elevates peripheral tissue leptin and insulin sensitivity, alleviates liver steatosis, and promotes adipose tissue browning. Conversely, mice with inducible deletion of Azgp1 in POMC neurons exhibit the opposite metabolic phenotypes, showing increased susceptibility to diet-induced obesity. Notably, an increase in AZGP1 signaling in the hypothalamus elevates STAT3 phosphorylation and increases POMC neuron excitability. Mechanistically, AZGP1 enhances leptin-JAK2-STAT3 signaling by interacting with acylglycerol kinase (AGK) to block its ubiquitination degradation. Collectively, these results suggest that AZGP1 plays a crucial role in regulating energy homeostasis and glucose/lipid metabolism by acting on hypothalamic POMC neurons.


Leptin , Pro-Opiomelanocortin , Mice , Animals , Leptin/metabolism , Phosphorylation , Pro-Opiomelanocortin/metabolism , Hypothalamus/metabolism , Homeostasis/physiology , Energy Metabolism/physiology , Neurons/metabolism
...