Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.876
Filter
1.
Sci Rep ; 14(1): 21755, 2024 09 18.
Article in English | MEDLINE | ID: mdl-39294306

ABSTRACT

Leukemia is a type of blood tumour that occurs because of abnormal enhancement in WBCs (white blood cells) in the bone marrow of the human body. Blood-forming tissue cancer influences the lymphatic and bone marrow system. The early diagnosis and detection of leukaemia, i.e., the accurate difference of malignant leukocytes with little expense at the beginning of the disease, is a primary challenge in the disease analysis field. Despite the higher occurrence of leukemia, there is a lack of flow cytometry tools, and the procedures accessible at medical diagnostics centres are time-consuming. Distinct researchers have implemented computer-aided diagnostic (CAD) and machine learning (ML) methods for laboratory image analysis, aiming to manage the restrictions of late leukemia analysis. This study proposes a new Falcon optimization algorithm with deep convolutional neural network for Leukemia detection and classification (FOADCNN-LDC) technique. The main objective of the FOADCNN-LDC technique is to classify and recognize leukemia. The FOADCNN-LDC technique utilizes a median filtering (MF) based noise removal process to eradicate the image noise. Besides, the FOADCNN-LDC technique employs the ShuffleNetv2 model for the feature extraction process. Moreover, the detection and classification of the leukemia process are performed by utilizing the convolutional denoising autoencoder (CDAE) model. The FOA is implemented to select the hyperparameter of the CDAE model. The simulation process of the FOADCNN-LDC approach is performed on a benchmark medical dataset. The investigational analysis of the FOADCNN-LDC approach highlighted a superior accuracy value of 99.62% over existing techniques.


Subject(s)
Algorithms , Deep Learning , Diagnosis, Computer-Assisted , Leukemia , Humans , Leukemia/diagnosis , Leukemia/classification , Leukemia/pathology , Diagnosis, Computer-Assisted/methods , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
2.
Mol Biol Rep ; 51(1): 997, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39297923

ABSTRACT

BACKGROUND: Thiazole derivatives are gaining prominence in cancer research due to their potent anti-cancer effects and multifaceted biological activities. In leukemia research, these compounds are particularly studied for their ability to induce apoptosis, disrupt mitochondrial membrane potential (MMP), and modulate cell signaling pathways. METHODS AND RESULTS: This study investigates the efficacy of 4-Methylthiazole in inducing apoptosis in HL-60 leukemia cells. Apoptosis was quantified via flow cytometry using FITC Annexin V and propidium iodide staining. Mitochondrial disruption was evaluated through alterations in mitochondrial membrane potential (MMP) as measured by the JC-1 assay. The compound significantly disrupted MMP, activated Caspase-3, and induced the release of Cytochrome C, all of which are critical markers of apoptosis (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05). Additionally, treatment with 4-Methylthiazole markedly reduced CD45 and CD123 surface markers, indicating significant phenotypic alterations in leukemia cells (****p < 0.0001). High-dose treatment with 4-Methylthiazole significantly increased ROS levels, suggesting elevated oxidative stress and the presence of intracellular free radicals, contributing to its cytotoxic effects (*p < 0.05). A significant rise in TNF-α levels was observed post-treatment, indicating a pro-inflammatory response that may further inhibit leukemia cell viability. While IL-6 levels remained unchanged, a dose-dependent decrease in IL-10 levels was noted, suggesting a reduction in immunosuppressive conditions within the tumor microenvironment (*p < 0.05). CONCLUSIONS: Overall, 4-Methylthiazole targets leukemia cells through multiple apoptotic mechanisms and modifies the immune landscape of the tumor microenvironment, enhancing its therapeutic potential. This study highlights the need for further clinical investigation to fully exploit the potential of thiazole derivatives in leukemia treatment.


Subject(s)
Apoptosis , Membrane Potential, Mitochondrial , Mitochondria , Thiazoles , Humans , Apoptosis/drug effects , HL-60 Cells , Thiazoles/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Antineoplastic Agents/pharmacology , Cytochromes c/metabolism , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Caspase 3/metabolism , Cell Survival/drug effects , Signal Transduction/drug effects
3.
4.
Biol Res ; 57(1): 59, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39223638

ABSTRACT

BACKGROUND: Tumour dormancy, a resistance mechanism employed by cancer cells, is a significant challenge in cancer treatment, contributing to minimal residual disease (MRD) and potential relapse. Despite its clinical importance, the mechanisms underlying tumour dormancy and MRD remain unclear. In this study, we employed two syngeneic murine models of myeloid leukemia and melanoma to investigate the genetic, epigenetic, transcriptomic and protein signatures associated with tumour dormancy. We used a multiomics approach to elucidate the molecular mechanisms driving MRD and identify potential therapeutic targets. RESULTS: We conducted an in-depth omics analysis encompassing whole-exome sequencing (WES), copy number variation (CNV) analysis, chromatin immunoprecipitation followed by sequencing (ChIP-seq), transcriptome and proteome investigations. WES analysis revealed a modest overlap of gene mutations between melanoma and leukemia dormancy models, with a significant number of mutated genes found exclusively in dormant cells. These exclusive genetic signatures suggest selective pressure during MRD, potentially conferring resistance to the microenvironment or therapies. CNV, histone marks and transcriptomic gene expression signatures combined with Gene Ontology (GO) enrichment analysis highlighted the potential functional roles of the mutated genes, providing insights into the pathways associated with MRD. In addition, we compared "murine MRD genes" profiles to the corresponding human disease through public datasets and highlighted common features according to disease progression. Proteomic analysis combined with multi-omics genetic investigations, revealed a dysregulated proteins signature in dormant cells with minimal genetic mechanism involvement. Pathway enrichment analysis revealed the metabolic, differentiation and cytoskeletal remodeling processes involved in MRD. Finally, we identified 11 common proteins differentially expressed in dormant cells from both pathologies. CONCLUSIONS: Our study underscores the complexity of tumour dormancy, implicating both genetic and nongenetic factors. By comparing genomic, transcriptomic, proteomic, and epigenomic datasets, our study provides a comprehensive understanding of the molecular landscape of minimal residual disease. These results provide a robust foundation for forthcoming investigations and offer potential avenues for the advancement of targeted MRD therapies in leukemia and melanoma patients, emphasizing the importance of considering both genetic and nongenetic factors in treatment strategies.


Subject(s)
Disease Models, Animal , Melanoma , Neoplasm, Residual , Animals , Melanoma/genetics , Melanoma/pathology , Mice , Leukemia/genetics , Leukemia/pathology , DNA Copy Number Variations , Exome Sequencing , Mice, Inbred C57BL , Proteomics , Transcriptome , Gene Expression Profiling , Multiomics
6.
Molecules ; 29(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274835

ABSTRACT

The cell signaling pathways involved in the antiproliferative activities of T. rosea inner bark remain unexplored. This study evaluated the apoptotic effects of two iridoids from the inner bark of T. rosea and apicidin on THP-1 cells. The cytotoxic effects of the extract and the pure compounds on THP-1 and Jurkat cells were also evaluated using the MTT assay. The apoptotic effect was determined by measuring the mitochondrial membrane potential. The expression of mRNA and MAPK kinase, Bax, and Bcl-2 proteins was detected by Western blotting and RT-qPCR, respectively. The extract and the compounds evaluated increased the percentage of apoptotic cells. Depolarization of the mitochondrial membrane was observed, and the number of cells in the G0/G1 phase increased. Catalposide and specioside significantly increased p38 protein expression, mostly in cells pretreated with apicidin. The p38 MAPK signaling pathway is at least one of the pathways by which the n-butanol extract obtained from Tabebuia rosea, catalposide, and specioside exerts its apoptotic effect on THP-1 cells, and this effect generates a response in the G0/G1 phase and subsequent cell death. In addition, there was depolarization of the mitochondrial membrane, an effect that was related to the participation of the proapoptotic protein Bax.


Subject(s)
Apoptosis , Membrane Potential, Mitochondrial , Plant Bark , Plant Extracts , Tabebuia , Humans , Apoptosis/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Bark/chemistry , Membrane Potential, Mitochondrial/drug effects , Tabebuia/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Jurkat Cells , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , 1-Butanol/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism , THP-1 Cells , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects
7.
STAR Protoc ; 5(3): 103244, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39106179

ABSTRACT

Here, we present a protocol for the direct isolation of small extracellular vesicles (sEVs) from the spleen of preclinical murine models of leukemia using ultracentrifugation. We describe steps for tissue collection, sample preparation, ultracentrifugation-based isolation, and sEV characterization. This protocol allows for efficient enrichment of both leukemia and its microenvironment-derived sEV (LME-sEV), providing a valuable tool for studying their composition and functional roles. Potential applications include investigating the role of sEV in leukemia progression and identifying biomarkers. For complete details on the use and execution of this protocol, please refer to Gargiulo et al.1.


Subject(s)
Extracellular Vesicles , Leukemia , Spleen , Ultracentrifugation , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Ultracentrifugation/methods , Animals , Mice , Spleen/cytology , Spleen/metabolism , Spleen/pathology , Leukemia/pathology , Disease Models, Animal , Humans
8.
J Pediatr Hematol Oncol ; 46(7): 373-374, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39141773

ABSTRACT

RMS is a malignant tumor of soft tissues affecting primarily children and adolescents. Around 6% to 23% RMS patients present bone marrow infiltration but leukemia-like involvement is very rare; in these patients cytomorphology on bone marrow smears can lead to misdiagnosis. Differential diagnosis with alveolar RMS should be kept in mind in every pediatric patient presenting with a marked bone marrow involvement in the absence of typical lymphoproliferative findings.


Subject(s)
Bone Marrow , Rhabdomyosarcoma, Alveolar , Humans , Rhabdomyosarcoma, Alveolar/diagnosis , Rhabdomyosarcoma, Alveolar/pathology , Diagnosis, Differential , Bone Marrow/pathology , Male , Child , Leukemia/diagnosis , Leukemia/pathology , Adolescent , Female , Acute Disease
9.
Sci Rep ; 14(1): 18439, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39117714

ABSTRACT

Accurate diagnosis of white blood cells from cytopathological images is a crucial step in evaluating leukaemia. In recent years, image classification methods based on fully convolutional networks have drawn extensive attention and achieved competitive performance in medical image classification. In this paper, we propose a white blood cell classification network called ResNeXt-CC for cytopathological images. First, we transform cytopathological images from the RGB color space to the HSV color space so as to precisely extract the texture features, color changes and other details of white blood cells. Second, since cell classification primarily relies on distinguishing local characteristics, we design a cross-layer deep-feature fusion module to enhance our ability to extract discriminative information. Third, the efficient attention mechanism based on the ECANet module is used to promote the feature extraction capability of cell details. Finally, we combine the modified softmax loss function and the central loss function to train the network, thereby effectively addressing the problem of class imbalance and improving the network performance. The experimental results on the C-NMC 2019 dataset show that our proposed method manifests obvious advantages over the existing classification methods, including ResNet-50, Inception-V3, Densenet121, VGG16, Cross ViT, Token-to-Token ViT, Deep ViT, and simple ViT about 5.5-20.43% accuracy, 3.6-23.56% F1-score, 3.5-25.71% AUROC and 8.1-36.98% specificity, respectively.


Subject(s)
Leukocytes , Humans , Leukocytes/cytology , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Leukemia/pathology , Leukemia/classification , Algorithms , Deep Learning
10.
J Med Chem ; 67(17): 15494-15508, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39196554

ABSTRACT

From previous studies, it is evident that metal-organic gold(I) complexes have antiproliferative activities. The aim of this study is not only to find new anticancer agents but also to overcome existing cytostatic resistance in cancer cells. The synthesis and medicinal evaluation of two cationic 1,3-disubstituted gold(I) bis-tetrazolylidene complexes 1 and 2 are reported. To determine apoptosis-inducing properties of the complexes, DNA fragmentation was measured using propidium iodide staining followed by flow cytometry. Gold(I) complex 1 targets explicitly malignant cells, effectively inhibiting their growth and selectively inducing apoptosis without signs of necrosis. Even in cells resistant to common treatments such as doxorubicin, it overcomes multidrug resistance and sensitizes existing drug-resistant cells to common cytostatic drugs. It is assumed that gold(I) complex 1 involves the mitochondrial pathway in apoptosis and targets members of the BCL-2 family, enhancing its potential as a therapeutic agent in cancer treatment.


Subject(s)
Antineoplastic Agents , Apoptosis , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Gold , Proto-Oncogene Proteins c-bcl-2 , Humans , Apoptosis/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Drug Resistance, Neoplasm/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Resistance, Multiple/drug effects , Gold/chemistry , Gold/pharmacology , Cell Line, Tumor , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/chemical synthesis , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Methane/analogs & derivatives , Methane/pharmacology , Methane/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Proliferation/drug effects
11.
Eur J Med Chem ; 277: 116734, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39094275

ABSTRACT

Proteolysis targeting chimeras (PROTAC) are bifunctional chimeric molecules capable of directly degrading binding proteins through the ubiquitin-proteasome pathway. PROTACs have demonstrated significant potential in overcoming drug resistance and targeting previously untreatable targets. However, several limitations still need to be addressed, including their high molecular weight resulting in poor membrane permeability and bioavailability. In this study, we proposed that cancer-targeted penetrating peptides could enhance the cell permeability of PROTACs. We developed 26 novel targeted penetrating peptides for leukemia and lymphoma cells, among which C9C-f(3Bta) and Cyclo-C9C-R exhibited superior membrane permeability, targetability, and stability. By combining C9C-f(3Bta) and Cyclo-C9C-R with IMA-PROTAC, we effectively enhanced the anti-proliferative activity of IMA-PROTAC, facilitated degradation of Bcr-Abl protein in K562 cells, and reduced downstream STAT5 phosphorylation. Furthermore, the combined application promoted cell apoptosis while blocking G1 phase progression. HPLC-MRM-MS revealed that the combination of C9C-f(3Bta) or Cyclo-C9C-R with IMA-PROTAC significantly enhanced intracellular IMA-PROTAC content. In summary, our proof-of-concept study validated the hypothesis that combining PROTACs with targeted penetrating peptides can improve protein degradation efficiency as well as anti-proliferative capabilities.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Leukemia , Lymphoma , Proteolysis , Humans , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Proteolysis/drug effects , Lymphoma/drug therapy , Lymphoma/pathology , Lymphoma/metabolism , Cell Proliferation/drug effects , Apoptosis/drug effects , Drug Discovery , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/chemical synthesis , Molecular Structure , K562 Cells , Dose-Response Relationship, Drug , Drug Delivery Systems
12.
Sci Adv ; 10(35): eado1432, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39196923

ABSTRACT

The histone acylation reader eleven-nineteen leukemia (ENL) plays a pivotal role in sustaining oncogenesis in acute leukemias, particularly in mixed-lineage leukemia-rearranged (MLL-r) leukemia. ENL relies on its reader domain to recognize histone lysine acylation promoting oncogenic gene expression and leukemia progression. Here, we report the development of MS41, a highly potent and selective von Hippel-Lindau-recruiting ENL degrader that effectively inhibits the growth of ENL-dependent leukemia cells. MS41-induced ENL degradation reduces the chromatin occupancy of ENL-associated transcription elongation machinery, resulting in the suppression of key oncogenic gene expression programs and the activation of differentiation genes. MS41 is well-tolerated in vivo and substantially suppresses leukemia progression in a xenograft mouse model of MLL-r leukemia. Notably, MS41 also induces the degradation of mutant ENL proteins identified in Wilms' tumors. Our findings emphasize the therapeutic potential of pharmacological ENL degradation for treating ENL-dependent cancers, making MS41 not only a valuable chemical probe but also potential anticancer therapeutic for further development.


Subject(s)
Disease Progression , Leukemia , Humans , Animals , Mice , Cell Line, Tumor , Leukemia/genetics , Leukemia/pathology , Leukemia/drug therapy , Leukemia/metabolism , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Xenograft Model Antitumor Assays , Gene Expression Regulation, Leukemic/drug effects , Proteolysis/drug effects , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Cell Proliferation/drug effects
13.
Blood Cancer Discov ; 5(5): 303-317, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39093124

ABSTRACT

Although the study of leukemogenesis has traditionally focused on protein-coding genes, the role of enhancer dysregulation is becoming increasingly recognized. The advent of high-throughput sequencing, together with a better understanding of enhancer biology, has revealed how various genetic and epigenetic lesions produce oncogenic enhancers that drive transformation. These aberrations include translocations that lead to enhancer hijacking, point mutations that modulate enhancer activity, and copy number alterations that modify enhancer dosage. In this review, we describe these mechanisms in the context of leukemia and discuss potential therapeutic avenues to target these regulatory elements. Significance: Large-scale sequencing projects have uncovered recurrent gene mutations in leukemia, but the picture remains incomplete: some patients harbor no such aberrations, whereas others carry only a few that are insufficient to bring about transformation on their own. One of the missing pieces is enhancer dysfunction, which only recently has emerged as a critical driver of leukemogenesis. Knowledge of the various mechanisms of enhancer dysregulation is thus key for a complete understanding of leukemia and its causes, as well as the development of targeted therapies in the era of precision medicine.


Subject(s)
Enhancer Elements, Genetic , Leukemia , Humans , Leukemia/genetics , Leukemia/pathology , Enhancer Elements, Genetic/genetics , Oncogenes/genetics , Mutation , Epigenesis, Genetic , Animals , Carcinogenesis/genetics
14.
Sensors (Basel) ; 24(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39001200

ABSTRACT

Acute lymphoblastic leukemia, commonly referred to as ALL, is a type of cancer that can affect both the blood and the bone marrow. The process of diagnosis is a difficult one since it often calls for specialist testing, such as blood tests, bone marrow aspiration, and biopsy, all of which are highly time-consuming and expensive. It is essential to obtain an early diagnosis of ALL in order to start therapy in a timely and suitable manner. In recent medical diagnostics, substantial progress has been achieved through the integration of artificial intelligence (AI) and Internet of Things (IoT) devices. Our proposal introduces a new AI-based Internet of Medical Things (IoMT) framework designed to automatically identify leukemia from peripheral blood smear (PBS) images. In this study, we present a novel deep learning-based fusion model to detect ALL types of leukemia. The system seamlessly delivers the diagnostic reports to the centralized database, inclusive of patient-specific devices. After collecting blood samples from the hospital, the PBS images are transmitted to the cloud server through a WiFi-enabled microscopic device. In the cloud server, a new fusion model that is capable of classifying ALL from PBS images is configured. The fusion model is trained using a dataset including 6512 original and segmented images from 89 individuals. Two input channels are used for the purpose of feature extraction in the fusion model. These channels include both the original and the segmented images. VGG16 is responsible for extracting features from the original images, whereas DenseNet-121 is responsible for extracting features from the segmented images. The two output features are merged together, and dense layers are used for the categorization of leukemia. The fusion model that has been suggested obtains an accuracy of 99.89%, a precision of 99.80%, and a recall of 99.72%, which places it in an excellent position for the categorization of leukemia. The proposed model outperformed several state-of-the-art Convolutional Neural Network (CNN) models in terms of performance. Consequently, this proposed model has the potential to save lives and effort. For a more comprehensive simulation of the entire methodology, a web application (Beta Version) has been developed in this study. This application is designed to determine the presence or absence of leukemia in individuals. The findings of this study hold significant potential for application in biomedical research, particularly in enhancing the accuracy of computer-aided leukemia detection.


Subject(s)
Deep Learning , Internet of Things , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Artificial Intelligence , Leukemia/diagnosis , Leukemia/classification , Leukemia/pathology , Algorithms , Image Processing, Computer-Assisted/methods , Neural Networks, Computer
15.
Nat Commun ; 15(1): 5689, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38971796

ABSTRACT

Leukemia is a kind of hematological malignancy originating from bone marrow, which provides essential signals for initiation, progression, and recurrence of leukemia. However, how to specifically deliver drugs to the bone marrow remains elusive. Here, we develop biomimetic vesicles by infusing hematopoietic stem and progenitor cell (HSPC) membrane with liposomes (HSPC liposomes), which migrate to the bone marrow of leukemic mice via hyaluronic acid-CD44 axis. Moreover, the biomimetic vesicles exhibit superior binding affinity to leukemia cells through intercellular cell adhesion molecule-1 (ICAM-1)/integrin ß2 (ITGB2) interaction. Further experiments validate that the vesicles carrying chemotherapy drug cytarabine (Ara-C@HSPC-Lipo) markedly inhibit proliferation, induce apoptosis and differentiation of leukemia cells, and decrease number of leukemia stem cells. Mechanically, RNA-seq reveals that Ara-C@HSPC-Lipo treatment induces apoptosis and differentiation and inhibits the oncogenic pathways. Finally, we verify that HSPC liposomes are safe in mice. This study provides a method for targeting bone marrow and treating leukemia.


Subject(s)
Apoptosis , Bone Marrow , Cytarabine , Drug Delivery Systems , Hematopoietic Stem Cells , Leukemia , Liposomes , Animals , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Mice , Cytarabine/pharmacology , Bone Marrow/drug effects , Bone Marrow/pathology , Bone Marrow/metabolism , Apoptosis/drug effects , Leukemia/drug therapy , Leukemia/pathology , Humans , Cell Differentiation/drug effects , Cell Membrane/metabolism , Cell Membrane/drug effects , Cell Line, Tumor , CD18 Antigens/metabolism , Cell Proliferation/drug effects , Hyaluronan Receptors/metabolism , Hyaluronic Acid/chemistry , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism
16.
Rom J Morphol Embryol ; 65(2): 203-208, 2024.
Article in English | MEDLINE | ID: mdl-39020534

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in childhood and rare in adults, while acute myeloid leukemia (AML) is less common in children and more common in older adults. The aim of the study was to present our experience for the diagnostic of leukemia by using the classic and molecular cytogenetic methods. The study was conducted between 2009 and 2019 within the Classic and Molecular Genetic Laboratory of the Oncohematology Department from the Louis Turcanu Emergency Hospital for Children, Timisoara, Romania. The study group included 337 children and adults, evaluated between 2009 and 2019. By using the conventional and molecular cytogenetic technique, the cytogenetic anomalies found were 35 numerical chromosomal abnormalities, 10 (9;22)(q34;q11) [four ALL, one AML, five chronic myeloid leukemia (CML)] translocations, nine (15;17)(q24;q21) translocations, three (14;14)(q11;q32) translocations, two (4;11)(q21;q23) translocations, one (1;14)(p32;q11) translocation, one (7;14)(qter;q11) translocation, one (8;21)(q22;q22) translocation, one (9;14)(p12;q32) translocation, seven rearrangements of the MLL gene and two rearrangements of the core-binding factor subunit beta∕myosin heavy chain 11 (CBFB∕MYH11) gene. The use of conventional and molecular cytogenetic analysis is one of the most important prognostic indicators in acute leukemia patients, allowing the identification of biologically distinct subtypes of disease and selection of appropriate treatment approaches.


Subject(s)
Leukemia , Humans , Romania , Female , Male , Adult , Child , Adolescent , Child, Preschool , Leukemia/genetics , Leukemia/pathology , Leukemia/diagnosis , Cytogenetic Analysis/methods , Middle Aged , Young Adult , Aged , Chromosome Aberrations , Infant
17.
Prostaglandins Other Lipid Mediat ; 174: 106871, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38992854

ABSTRACT

This mini-review addresses lipoxygenases and receptors for leukotrienes in hematological malignancies. Potential novel biomarkers and drug targets in leukemia and B-cell lymphoma are discussed.


Subject(s)
Leukemia , Lymphoma , Receptors, Leukotriene , Humans , Receptors, Leukotriene/metabolism , Receptors, Leukotriene/genetics , Leukemia/metabolism , Leukemia/genetics , Leukemia/pathology , Lymphoma/metabolism , Lymphoma/genetics , Lymphoma/pathology , Lipoxygenases/metabolism , Animals
18.
Biomolecules ; 14(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39062461

ABSTRACT

Leukemias are cancers of the blood-forming system, representing a significant challenge in medical science. The development of leukemia cells involves substantial disturbances within the cellular machinery, offering hope in the search for effective selective treatments that could improve the 5-year survival rate. Consequently, the pathophysiological processes within leukemia cells are the focus of critical research. Enzymes such as cystathionine beta-synthase and sulfurtransferases like thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine gamma-lyase play a vital role in cellular sulfur metabolism. These enzymes are essential to maintaining cellular homeostasis, providing robust antioxidant defenses, and supporting cell division. Numerous studies have demonstrated that cancerous processes can alter the expression and activity of these enzymes, uncovering potential vulnerabilities or molecular targets for cancer therapy. Recent laboratory research has indicated that certain leukemia cell lines may exhibit significant changes in the expression patterns of these enzymes. Analysis of the scientific literature and online datasets has confirmed variations in sulfur enzyme function in specific leukemic cell lines compared to normal leukocytes. This comprehensive review collects and analyzes available information on sulfur enzymes in normal and leukemic cell lines, providing valuable insights and identifying new research pathways in this field.


Subject(s)
Cysteine , Hydrogen Sulfide , Leukemia , Sulfur , Sulfurtransferases , Humans , Hydrogen Sulfide/metabolism , Leukemia/metabolism , Leukemia/pathology , Cysteine/metabolism , Sulfur/metabolism , Sulfurtransferases/metabolism , Animals
19.
Adv Exp Med Biol ; 1459: 359-378, 2024.
Article in English | MEDLINE | ID: mdl-39017852

ABSTRACT

ETS proto-oncogene 1 (ETS1) is a transcription factor (TF) critically involved in lymphoid cell development and function. ETS1 expression is tightly regulated throughout differentiation and activation in T-cells, natural killer (NK) cells, and B-cells. It has also been described as an oncogene in a range of solid and hematologic cancer types. Among hematologic malignancies, its role has been best studied in T-cell acute lymphoblastic leukemia (T-ALL), adult T-cell leukemia/lymphoma (ATLL), and diffuse large B-cell lymphoma (DLBCL). Aberrant expression of ETS1 in these malignancies is driven primarily by chromosomal amplification and enhancer-driven transcriptional regulation, promoting the ETS1 transcriptional program. ETS1 also facilitates aberrantly expressed or activated transcriptional complexes to drive oncogenic pathways. Collectively, ETS1 functions to regulate cell growth, differentiation, signaling, response to stimuli, and viral interactions in these malignancies. A tumor suppressor role has also been indicated for ETS1 in select lymphoma types, emphasizing the importance of cellular context in ETS1 function. Research is ongoing to further characterize the clinical implications of ETS1 dysregulation in hematologic malignancies, to further resolve binding complexes and transcriptional targets, and to identify effective therapeutic targeting approaches.


Subject(s)
Proto-Oncogene Mas , Proto-Oncogene Protein c-ets-1 , Humans , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Animals , Lymphoma/genetics , Lymphoma/metabolism , Lymphoma/pathology , Signal Transduction , Gene Expression Regulation, Leukemic , Gene Expression Regulation, Neoplastic , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology
20.
Adv Exp Med Biol ; 1459: 405-430, 2024.
Article in English | MEDLINE | ID: mdl-39017854

ABSTRACT

HOXA9, an important transcription factor (TF) in hematopoiesis, is aberrantly expressed in numerous cases of both acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and is a strong indicator of poor prognosis in patients. HOXA9 is a proto-oncogene which is both sufficient and necessary for leukemia transformation. HOXA9 expression in leukemia correlates with patient survival outcomes and response to therapy. Chromosomal transformations (such as NUP98-HOXA9), mutations, epigenetic dysregulation (e.g., MLL- MENIN -LEDGF complex or DOT1L/KMT4), transcription factors (such as USF1/USF2), and noncoding RNA (such as HOTTIP and HOTAIR) regulate HOXA9 mRNA and protein during leukemia. HOXA9 regulates survival, self-renewal, and progenitor cell cycle through several of its downstream target TFs including LMO2, antiapoptotic BCL2, SOX4, and receptor tyrosine kinase FLT3 and STAT5. This dynamic and multilayered HOXA9 regulome provides new therapeutic opportunities, including inhibitors targeting DOT1L/KMT4, MENIN, NPM1, and ENL proteins. Recent findings also suggest that HOXA9 maintains leukemia by actively repressing myeloid differentiation genes. This chapter summarizes the recent advances understanding biochemical mechanisms underlying HOXA9-mediated leukemogenesis, the clinical significance of its abnormal expression, and pharmacological approaches to treat HOXA9-driven leukemia.


Subject(s)
Gene Expression Regulation, Leukemic , Homeodomain Proteins , Nucleophosmin , Proto-Oncogene Mas , Humans , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Gene Expression Regulation, Leukemic/drug effects , Animals , Leukemia/genetics , Leukemia/metabolism , Leukemia/drug therapy , Leukemia/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL