Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.860
Filter
1.
Cell Rep Med ; 5(6): 101566, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38759649

ABSTRACT

Levodopa-induced dyskinesia (LID) is an intractable motor complication arising in Parkinson's disease with the progression of disease and chronic treatment of levodopa. However, the specific cell assemblies mediating dyskinesia have not been fully elucidated. Here, we utilize the activity-dependent tool to identify three brain regions (globus pallidus external segment [GPe], parafascicular thalamic nucleus, and subthalamic nucleus) that specifically contain dyskinesia-activated ensembles. An intensity-dependent hyperactivity in the dyskinesia-activated subpopulation in GPe (GPeTRAPed in LID) is observed during dyskinesia. Optogenetic inhibition of GPeTRAPed in LID significantly ameliorates LID, whereas reactivation of GPeTRAPed in LID evokes dyskinetic behavior in the levodopa-off state. Simultaneous chemogenetic reactivation of GPeTRAPed in LID and another previously reported ensemble in striatum fully reproduces the dyskinesia induced by high-dose levodopa. Finally, we characterize GPeTRAPed in LID as a subset of prototypic neurons in GPe. These findings provide theoretical foundations for precision medication and modulation of LID in the future.


Subject(s)
Dyskinesia, Drug-Induced , Globus Pallidus , Levodopa , Levodopa/adverse effects , Globus Pallidus/drug effects , Globus Pallidus/physiopathology , Dyskinesia, Drug-Induced/physiopathology , Dyskinesia, Drug-Induced/pathology , Animals , Neurons/drug effects , Male , Optogenetics , Mice , Parkinson Disease/drug therapy , Humans , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/physiopathology
2.
J Neurol Sci ; 461: 123051, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38788287

ABSTRACT

BACKGROUND: Safinamide is an effective adjunctive therapy for wearing-off in Parkinson's disease (PD); however, evidence is lacking in older patients and those in the early stages of wearing-off. This study evaluated the efficacy and safety of safinamide as adjunctive therapy in patients with PD treated with levodopa monotherapy in clinical practice. METHODS: This multicentre, open-label observational study was conducted at five sites in Japan. Patients diagnosed with PD and wearing-off initiated safinamide as adjunctive therapy with levodopa monotherapy. Efficacy endpoints were mean changes in Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part I, III, and IV scores; daily ON-time without dyskinesia using 24-h patient symptom diaries; and 39-item Parkinson's Disease Questionnaire (PDQ-39) scores at 18 weeks of treatment. RESULTS: In total, 24 patients initiated safinamide (66.7% were aged ≥75 years); the mean duration of wearing-off was 1.2 years. MDS-UPDRS Part III total score, Part IV total score, and PDQ-39 summary index decreased significantly from baseline (mean change -7.0 [p = 0.012], -2.4 [p = 0.007] and - 5.3 [p = 0.012], respectively). There was a non-statistically significant increase of 1.55 h in mean daily ON-time without dyskinesia. Numerical Rating Scale total score for pain (p = 0.015), and scores for OFF-period pain (p = 0.012) and nocturnal pain (p = 0.021) subdomains were significantly improved in the subgroup with pain. Most reported adverse events were classified as mild. CONCLUSION: Safinamide improved motor and non-motor symptoms and quality of life-related measures in older patients with PD in the early stages of wearing-off without new safety concerns. STUDY REGISTRATION: University Hospital Medical Information Network in Japan; study ID: UMIN000044341.


Subject(s)
Alanine , Antiparkinson Agents , Benzylamines , Levodopa , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Male , Benzylamines/therapeutic use , Benzylamines/adverse effects , Female , Aged , Levodopa/therapeutic use , Levodopa/adverse effects , Alanine/analogs & derivatives , Alanine/therapeutic use , Japan , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/adverse effects , Middle Aged , Treatment Outcome , Drug Therapy, Combination , Aged, 80 and over , Severity of Illness Index , East Asian People
3.
Exp Neurol ; 378: 114833, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782350

ABSTRACT

Gamma oscillations have been frequently observed in levodopa-induced dyskinesia (LID), manifest as broadband (60-120 Hz) and narrowband (80-110 Hz) gamma activity in cortico-striatal projection. We investigated the electrophysiological mechanisms and correlation of gamma oscillations with dyskinesia severity, while assessing the administration of fenobam, a selective metabotropic glutamate receptor 5 (mGluR5) antagonist, in regulating dyskinesia-associated gamma activity. We conducted simultaneous electrophysiological recordings in Striatum (Str) and primary motor cortex (M1), together with Abnormal Involuntary Movement Scale scoring (AIMs). Phase-amplitude coupling (PAC), power, coherence, and Granger causality analyses were conducted for electrophysiological data. The findings demonstrated increased beta oscillations with directionality from M1 to Str in parkinsonian state. During on-state dyskinesia, elevated broadband gamma activity was modulated by the phase of theta activity in Str, while M1 â†’ Str gamma causality mediated narrowband gamma oscillations in Str. Striatal gamma power (both periodic and aperiodic power), periodic power, peak frequency, and PAC at 80 min (corresponding to the peak dyskinesia) after repeated levodopa injections across recording days (day 30, 33, 36, 39, and 42) increased progressively, correlating with total AIMs. Additionally, a time-dependent parabolic trend of PAC, peak frequency and gamma power was observed after levodopa injection on day 42 from 20 to 120 min, which also correlated with corresponding AIMs. Fenobam effectively alleviates dyskinesia, suppresses enhanced gamma oscillations in the M1-Str directionality, and reduces PAC in Str. The temporal characteristics of gamma oscillations provide parameters for classifying LID severity. Antagonizing striatal mGluR5, a promising therapeutic target for dyskinesia, exerts its effects by modulating gamma activity.


Subject(s)
Corpus Striatum , Dyskinesia, Drug-Induced , Gamma Rhythm , Animals , Gamma Rhythm/drug effects , Gamma Rhythm/physiology , Rats , Male , Dyskinesia, Drug-Induced/physiopathology , Corpus Striatum/drug effects , Corpus Striatum/physiopathology , Rats, Sprague-Dawley , Levodopa/adverse effects , Levodopa/pharmacology , Motor Cortex/drug effects , Motor Cortex/physiopathology , Imidazoles
4.
Mov Disord Clin Pract ; 11(6): 698-703, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698586

ABSTRACT

BACKGROUND: Blood pressure control in Parkinson's disease (PD) under subthalamic deep brain stimulation (STN-DBS) is influenced by several intertwined aspects, including autonomic failure and levodopa treatment. OBJECTIVE: To evaluate the effect of chronic STN-DBS, levodopa, and their combination on cardiovascular autonomic functions in PD. METHODS: We performed cardiovascular reflex tests (CRTs) before and 6-months after STN-DBS surgery in 20 PD patients (pre-DBS vs. post-DBS). CRTs were executed without and with medication (med-OFF vs. med-ON). RESULTS: CRT results and occurrence of neurogenic orthostatic hypotension (OH) did not differ between pre- and post-DBS studies in med-OFF condition. After levodopa intake, the BP decrease during HUTT was significantly greater compared to med-OFF, both at pre-DBS and post-DBS evaluation. Levodopa-induced OH was documented in 25% and 5% of patients in pre-DBS/med-ON and post-DBS/med-ON study. CONCLUSION: Chronic stimulation did not influence cardiovascular responses, while levodopa exerts a relevant hypotensive effect. The proportion of patients presenting levodopa-induced OH decreases after STN-DBS surgery.


Subject(s)
Antiparkinson Agents , Autonomic Nervous System , Deep Brain Stimulation , Levodopa , Parkinson Disease , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Deep Brain Stimulation/methods , Male , Female , Middle Aged , Aged , Levodopa/therapeutic use , Levodopa/adverse effects , Levodopa/administration & dosage , Autonomic Nervous System/physiopathology , Autonomic Nervous System/drug effects , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/adverse effects , Blood Pressure/physiology , Blood Pressure/drug effects , Subthalamic Nucleus/physiopathology , Hypotension, Orthostatic/therapy , Hypotension, Orthostatic/etiology , Hypotension, Orthostatic/physiopathology
5.
Physiol Behav ; 281: 114563, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723388

ABSTRACT

Parkinson's Disease (PD) is a neurodegenerative movement disorder characterized by dopamine (DA) cell loss in the substantia nigra pars compacta (SNc). As PD progresses, patients display disruptions in gait such as changes in posture, bradykinesia, and shortened stride. DA replacement via L-DOPA alleviates many PD symptoms, though its effects on gait are not well demonstrated. This study aimed to assess the relationship between DA lesion, gait, and deficit-induced reversal with L-DOPA. To do so, Sprague-Dawley rats (N = 25, 14 males, 11 females) received unilateral medial forebrain bundle (MFB) DA lesions with 6-hydroxydopamine (6-OHDA). An automated gait analysis system assessed spatiotemporal gait parameters pre- and post-lesion, and after various doses of L-DOPA (0, 3, or 6 mg/kg; s.c.). The forepaw adjusting steps (FAS) test was implemented to evaluate lesion efficacy while the abnormal involuntary movements (AIMs) scale monitored the emergence of L-DOPA-induced dyskinesia (LID). High performance liquid chromatography (HPLC) assessed changes in brain monoamines on account of lesion and treatment. Results revealed lesion-induced impairments in gait, inclusive of max-contact area and step-sequence alterations that were not reversible with L-DOPA. However, the emergence of AIMs were observed at higher doses. Post-mortem, 6-OHDA lesions induced a loss of striatal DA and norepinephrine (NE), while prefrontal cortex (PFC) displayed noticeable reduction in NE but not DA. Our findings indicate that hemiparkinsonian rats display measurable gait disturbances similar to PD patients that are not rescued by DA replacement. Furthermore, non-DA mechanisms such as attention-related NE in PFC may contribute to altered gait and may constitute a novel target for its treatment.


Subject(s)
Gait Disorders, Neurologic , Levodopa , Oxidopamine , Rats, Sprague-Dawley , Animals , Levodopa/pharmacology , Levodopa/adverse effects , Male , Female , Rats , Gait Disorders, Neurologic/chemically induced , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Antiparkinson Agents/pharmacology , Disease Models, Animal , Medial Forebrain Bundle/drug effects , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/pathology , Dopamine/metabolism , Dose-Response Relationship, Drug , Functional Laterality/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Gait/drug effects , Dyskinesia, Drug-Induced
6.
Sci Rep ; 14(1): 12519, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822123

ABSTRACT

Voriconazole is a second-generation azole used to treat serious fungal infections. Visual hallucinations constitute a representative adverse event caused by voriconazole. However, its mechanism of action remains unclear. In patients with schizophrenia or Parkinson's disease, the frequency of visual hallucinations is associated with brain dopamine levels. This study investigated the frequency of visual hallucinations in patients treated with voriconazole alone or in combination with dopaminergic medicines or dopamine antagonists, using data collected from the Food and Drug Administration Adverse event Reporting System (FAERS). The frequency of visual hallucinations with voriconazole alone and in combination with a dopaminergic medicine (levodopa) or dopamine antagonists (risperidone and chlorpromazine) was compared using data from the FAERS between 2004 and 2023, using the reporting odds ratio (ROR) with relevant 95% confidence intervals (CI). The reference group comprised patients who had been administered voriconazole without dopaminergic medication or dopamine antagonists. Of the patients, 22,839, 90,810, 109,757, 6,435, 20, 83, and 26, respectively were treated with voriconazole, levodopa, risperidone, chlorpromazine, voriconazole plus levodopa, voriconazole plus risperidone, and voriconazole plus chlorpromazine. The occurrence of visual hallucinations increased when used in combination with levodopa (ROR = 12.302, 95% CI = 3.587-42.183). No increase in incidence was associated with the concomitant use of dopamine antagonists (risperidone, ROR = 1.721, 95% CI = 0.421-7.030; chlorpromazine, ROR = none, 95% CI = none). Dopaminergic medicine may increase the risk of visual hallucinations in patients treated with voriconazole. Whether voriconazole positively modulates dopamine production warrants further investigation using a translational research approach.


Subject(s)
Dopamine , Hallucinations , United States Food and Drug Administration , Voriconazole , Humans , Voriconazole/adverse effects , Hallucinations/chemically induced , United States/epidemiology , Male , Female , Aged , Middle Aged , Dopamine/metabolism , Levodopa/adverse effects , Adult , Antifungal Agents/adverse effects , Adverse Drug Reaction Reporting Systems , Chlorpromazine/adverse effects , Risperidone/adverse effects , Dopamine Antagonists/adverse effects , Parkinson Disease/drug therapy , Young Adult , Adolescent , Databases, Factual
7.
J Neurosci ; 44(26)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38664012

ABSTRACT

l-DOPA-induced dyskinesia (LID) is a debilitating motor side effect arising from chronic dopamine (DA) replacement therapy with l-DOPA for the treatment of Parkinson's disease. LID is associated with supersensitivity of striatal dopaminergic signaling and fluctuations in synaptic DA following each l-DOPA dose, shrinking the therapeutic window. The heterogeneous composition of the striatum, including subpopulations of medium spiny output neurons (MSNs), interneurons, and supporting cells, complicates the identification of cell(s) underlying LID. We used single-nucleus RNA sequencing (snRNA-seq) to establish a comprehensive striatal transcriptional profile during LID development. Male hemiparkinsonian mice were treated with vehicle or l-DOPA for 1, 5, or 10 d, and striatal nuclei were processed for snRNA-seq. Analyses indicated a limited population of DA D1 receptor-expressing MSNs (D1-MSNs) formed three subclusters in response to l-DOPA treatment and expressed cellular markers of activation. These activated D1-MSNs display similar transcriptional changes previously associated with LID; however, their prevalence and transcriptional behavior were differentially influenced by l-DOPA experience. Differentially expressed genes indicated acute upregulation of plasticity-related transcription factors and mitogen-activated protein kinase signaling, while repeated l-DOPA-induced synaptic remodeling, learning and memory, and transforming growth factor-ß (TGF-ß) signaling genes. Notably, repeated l-DOPA sensitized Inhba, an activin subunit of the TGF-ß superfamily, in activated D1-MSNs, and its pharmacological inhibition impaired LID development, suggesting that activin signaling may play an essential role in LID. These data suggest distinct subsets of D1-MSNs become differentially l-DOPA-responsive due to aberrant induction of molecular mechanisms necessary for neuronal entrainment, similar to processes underlying hippocampal learning and memory.


Subject(s)
Corpus Striatum , Dyskinesia, Drug-Induced , Levodopa , Mice, Inbred C57BL , Animals , Levodopa/adverse effects , Levodopa/toxicity , Dyskinesia, Drug-Induced/metabolism , Male , Mice , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/genetics , Antiparkinson Agents/adverse effects , Antiparkinson Agents/pharmacology , Neurons/drug effects , Neurons/metabolism
8.
Mov Disord ; 39(6): 975-982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38644623

ABSTRACT

BACKGROUND AND OBJECTIVE: The Levodopa in EArly Parkinson's disease study showed no effect of earlier versus later levodopa initiation on Parkinson's disease (PD) progression over 80 weeks. We now report the effects over 5 years. METHODS: The Levodopa in EArly Parkinson's disease study randomly assigned patients to levodopa/carbidopa 300/75 mg daily for 80 weeks (early start) or to placebo for 40 weeks followed by levodopa/carbidopa 300/75 mg daily for 40 weeks (delayed start). Follow-up visits were performed 3 and 5 years after baseline. We assessed the between-group differences in terms of square root transformed total Unified Parkinson's Disease Rating Scale score at 3 and 5 years with linear regression. We compared the prevalence of dyskinesia, prevalence of wearing off, and the levodopa equivalent daily dose. RESULTS: A total of 321 patients completed the 5-year visit. The adjusted square root transformed total Unified Parkinson's Disease Rating Scale did not differ between treatment groups at 3 (estimated difference, 0.17; standard error, 0.13; P = 0.18) and 5 years (estimated difference, 0.24; standard error, 0.13; P = 0.07). At 5 years, 46 of 160 patients in the early-start group and 62 of 161 patients in the delayed-start group experienced dyskinesia (P = 0.06). The prevalence of wearing off and the levodopa equivalent daily dose were not significantly different between groups. CONCLUSIONS: We did not find a difference in disease progression or in prevalence of motor complications between patients with early PD starting treatment with a low dose of levodopa 40 weeks earlier versus 40 weeks later over the subsequent 5 years. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Antiparkinson Agents , Carbidopa , Levodopa , Parkinson Disease , Humans , Levodopa/administration & dosage , Levodopa/adverse effects , Levodopa/therapeutic use , Parkinson Disease/drug therapy , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/adverse effects , Antiparkinson Agents/therapeutic use , Male , Female , Middle Aged , Aged , Carbidopa/administration & dosage , Carbidopa/adverse effects , Follow-Up Studies , Disease Progression , Treatment Outcome , Double-Blind Method , Drug Combinations , Severity of Illness Index , Time Factors
9.
J Neural Transm (Vienna) ; 131(7): 799-811, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38578434

ABSTRACT

OBJECTIVE: To assess amantadine use and associated factors in the patients with Parkinson's disease (PD). BACKGROUND: Immediate-release amantadine is approved for the treatment of PD and is largely used in clinical practice to treat "levodopa-induced dyskinesia (LIDs). Its use varies according to countries and PD stages. The prospective NS-Park cohort collects features of PD patients followed by 26 French PD Expert Centres. METHODS: Variables used for the analyses included demographics, motor and non-motor PD symptoms and motor complications [motor fluctuations (MFs), LIDs)], antiparkinsonian pharmacological classes and levodopa equivalent daily dose (LEDD). We evaluated: (i) prevalence of amantadine use and compared clinical features of amantadine users vs. non-users (cross-sectional analysis); (ii) factors associated with amantadine initiation (longitudinal analysis); (iii) amantadine effect on LIDs, MFs, apathy, impulse control disorders and freezing of gait (Fog) (longitudinal analysis). RESULTS: Amantadine use prevalence was 12.6% (1,585/12,542, median dose = 200 mg). Amantadine users were significantly younger, with longer and more severe PD symptoms, greater LEDD and more frequent use of device-aided/surgical treatment. Factors independently associated with amantadine initiation were younger age, longer PD duration, more frequent LIDs, MFs and FoG, higher LEDD and better cognitive function. 9 of the 658 patients on amantadine had stopped it at the following visit, after 12-18 months (1.3%). New users of amantadine presented a higher improvement in LIDs and MF compared to amantadine never users. CONCLUSIONS: About 12% of PD patients within the French NS-Park cohort used amantadine, mostly those with younger age and more severe PD. Amantadine initiation was associated with a subsequent reduction in LIDs and MFs.


Subject(s)
Amantadine , Antiparkinson Agents , Parkinson Disease , Amantadine/therapeutic use , Amantadine/adverse effects , Humans , Male , Female , France/epidemiology , Aged , Antiparkinson Agents/adverse effects , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/administration & dosage , Parkinson Disease/drug therapy , Parkinson Disease/epidemiology , Middle Aged , Prospective Studies , Dyskinesia, Drug-Induced/epidemiology , Dyskinesia, Drug-Induced/etiology , Cross-Sectional Studies , Levodopa/adverse effects , Levodopa/administration & dosage , Longitudinal Studies , Cohort Studies
10.
J Neurol Sci ; 459: 122983, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38574438

ABSTRACT

Acute midbrain injury may cause both hyperkinetic movement disorders and parkinsonism. The temporal interval between the insult and the emergence of hyperkinetic disorders can last years. A delayed appearance of parkinsonism, on the other hand, was rarely described. We present three cases of male patients (50-, 58- and 28-year-old) who developed levodopa-responsive parkinsonism 20, 8 and two years, respectively, after acute brain insult involving the midbrain. Insults included subcortical intracerebral hemorrhage dissecting into the midbrain, embolic basilar occlusion and trauma. A fluorodopa scan, performed in two cases, revealed reduced striatal uptake. All individuals improved on low doses of levodopa and developed motor fluctuations shortly after levodopa was introduced. We conclude that delayed, levodopa-responsive parkinsonism following midbrain injury should be recognized in the relevant clinical setup. Possible mechanisms include age-related loss of dopaminergic neurons superimposed on acute injury and secondary neurodegeneration.


Subject(s)
Levodopa , Parkinsonian Disorders , Humans , Male , Levodopa/adverse effects , Parkinsonian Disorders/complications , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/drug therapy , Brain , Mesencephalon/diagnostic imaging , Corpus Striatum
11.
Parkinsonism Relat Disord ; 123: 106951, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583360

ABSTRACT

INTRODUCTION: Levodopa-induced dyskinesia is a common complication of long-term treatment of Parkinson's disease (PD), but its impact on daily activities is somewhat controversial. This study investigated the prevalence and severity of dyskinesia, particularly non-troublesome dyskinesia, to provide insights into its significance for long-term PD management. METHODS: We reviewed electronic medical records of 2571 PD patients, who had been followed up at Seoul National University Hospital and were seen between January 2016 and June 2017. Dyskinesia severity had been assessed during follow-up and was recorded with the highest score by considering its impact on functioning (0 = no dyskinesia, 1 = minimal with patient unaware, 2 = mild disability, 3 = moderate disability, 4 = severe disability). RESULTS: The prevalence of dyskinesia increased progressively with longer PD duration; 8.2% in the group with disease duration of 0-5 years, 40.7% for 6-10 years, 66.0% for 11-15 years, 74.6% for 16-20 years, and 83.2% for 21 years or more. The prevalence of dyskinesia scores ≥2 also increased with disease duration, with rates of 6.3% for 0-5 years, 31.9% for 6-10 years, 54.8% for 11-15 years, 62.9% for 16-20 years and 73.7% for 21 or more years. CONCLUSION: Despite the increasing prevalence and severity of dyskinesia with longer PD duration, the study found that less than non-troublesome dyskinesia remained at approximately 26.3% even after more than 21 years of disease duration. These findings suggest that dyskinesia may not be troublesome for many PD patients even in long-term.


Subject(s)
Antiparkinson Agents , Dyskinesia, Drug-Induced , Levodopa , Parkinson Disease , Humans , Parkinson Disease/epidemiology , Parkinson Disease/drug therapy , Male , Female , Middle Aged , Prevalence , Dyskinesia, Drug-Induced/epidemiology , Dyskinesia, Drug-Induced/etiology , Aged , Levodopa/adverse effects , Antiparkinson Agents/adverse effects , Severity of Illness Index , Retrospective Studies , Adult , Republic of Korea/epidemiology , Time Factors
13.
Mol Med ; 30(1): 33, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429661

ABSTRACT

BACKGROUND: Loss of dopaminergic neurons underlies the motor symptoms of Parkinson's disease (PD). However stereotypical PD symptoms only manifest after approximately 80% of dopamine neurons have died making dopamine-related motor phenotypes unreliable markers of the earlier stages of the disease. There are other non-motor symptoms, such as depression, that may present decades before motor symptoms. METHODS: Because serotonin is implicated in depression, here we use niche, fast electrochemistry paired with mathematical modelling and machine learning to, for the first time, robustly evaluate serotonin neurochemistry in vivo in real time in a toxicological model of Parkinsonism, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). RESULTS: Mice treated with acute MPTP had lower concentrations of in vivo, evoked and ambient serotonin in the hippocampus, consistent with the clinical comorbidity of depression with PD. These mice did not chemically respond to SSRI, as strongly as control animals did, following the clinical literature showing that antidepressant success during PD is highly variable. Following L-DOPA administration, using a novel machine learning analysis tool, we observed a dynamic shift from evoked serotonin release in the hippocampus to dopamine release. We hypothesize that this finding shows, in real time, that serotonergic neurons uptake L-DOPA and produce dopamine at the expense of serotonin, supporting the significant clinical correlation between L-DOPA and depression. Finally, we found that this post L-DOPA dopamine release was less regulated, staying in the synapse for longer. This finding is perhaps due to lack of autoreceptor control and may provide a ground from which to study L-DOPA induced dyskinesia. CONCLUSIONS: These results validate key prior hypotheses about the roles of serotonin during PD and open an avenue to study to potentially improve therapeutics for levodopa-induced dyskinesia and depression.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Parkinsonian Disorders , Mice , Animals , Levodopa/adverse effects , Dopamine , Serotonin , Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/etiology , Parkinson Disease/etiology , Parkinson Disease/drug therapy , Biomarkers
14.
Am J Ther ; 31(3): e209-e218, 2024.
Article in English | MEDLINE | ID: mdl-38460175

ABSTRACT

BACKGROUND: For Parkinson disease (PD) patients who have been diagnosed with advanced disease that can no longer be effectively controlled with optimized oral or transdermal medications, a range of device-aided therapies (DAT) are available, comprising either deep brain stimulation or infusion therapies providing continuous dopaminergic stimulation. Levodopa-entacapone-carbidopa intestinal gel (LECIG) infusion is the latest DAT for advanced PD (APD) that was approved in Romania in 2021. STUDY QUESTION: What is the experience to date in real-world clinical practice in Romania regarding the efficacy and tolerability of LECIG in APD? STUDY DESIGN: A retrospective evaluation of 74 APD patients treated with LECIG at 12 specialized APD centers in Romania. MEASURES AND OUTCOMES: Demographic data and various clinical parameters were recorded, including Mini Mental State Evaluation score or Montreal Cognitive Assessment Test score. Levodopa-equivalent daily dose and the administered doses of levodopa and other PD medications were evaluated at baseline and after starting LECIG treatment. The efficacy of LECIG in reducing daily hours of off time, motor fluctuations, and dyskinesias were assessed. Any percutaneous endoscopic gastrojejunostomy system or device complications after starting LECIG treatment were noted. RESULTS: At baseline, patients were taking oral levodopa for a mean of 5.3 times per day, with a high proportion also taking concomitant add-on therapies (dopamine agonists, 86%, monoamine oxidase type-B inhibitors, 53%; catechol-O-methyltransferase inhibitors, 64%). LECIG treatment significantly reduced daily off time versus baseline from 5.7 h/d to 1.7 hours per day ( P < 0.01). Duration and severity of dyskinesias was also significantly reduced versus baseline, and improvements were observed in Hoehn and Yahr Scale scores. LECIG treatment also allowed a significant reduction in the use of concomitant oral medications. CONCLUSIONS: These findings suggest that LECIG treatment is an effective DAT option in APD that can simplify the treatment regimen.


Subject(s)
Antiparkinson Agents , Carbidopa , Catechols , Drug Combinations , Gels , Levodopa , Nitriles , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Levodopa/administration & dosage , Levodopa/therapeutic use , Levodopa/adverse effects , Carbidopa/administration & dosage , Carbidopa/therapeutic use , Carbidopa/adverse effects , Male , Female , Retrospective Studies , Aged , Catechols/administration & dosage , Catechols/therapeutic use , Catechols/adverse effects , Middle Aged , Antiparkinson Agents/administration & dosage , Antiparkinson Agents/therapeutic use , Antiparkinson Agents/adverse effects , Nitriles/administration & dosage , Nitriles/therapeutic use , Nitriles/adverse effects , Treatment Outcome , Romania
15.
J Neurosci Res ; 102(3): e25302, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38515319

ABSTRACT

Levodopa-induced dyskinesia (LID) is a common complication in patients with advanced Parkinson's disease (PD) undergoing treatment with levodopa. Glutamate receptor antagonists can suppress LID; however, the underlying mechanisms remain unclear. Here, we aimed to evaluate the effect of 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP), a metabotropic glutamate receptor 5 (mGluR5) antagonist, on dyskinesia. We recorded the neuronal activity of the entopeduncular nucleus and examined responses to cortical electric stimulation in the control group (n = 6) and three groups of rats (male PD model). Saline was intraperitoneally administered to dopamine lesioned (DL) rats (n = 6), levodopa/benserazide (L/B) was administered to LID rats (n = 8), and L/B combined with MTEP was administered to MTEP rats (n = 6) twice daily for 14 days. We administered L/B to LID and MTEP rats 48 h after the final administration of MTEP to examine the chronic effect of MTEP. The control and DL groups did not have LID. The MTEP group had less LID than the LID group (p < .01) on day 1 and day 18. The control group had a typical triphasic pattern consisting of early excitation (early-Ex), inhibition, and late excitation (late-Ex). However, the inhibition phase disappeared, was partially observed, and was fully suppressed in the DL, LID, and MTEP groups, respectively. The cortico-striato-entopeduncular pathway is important in the pathophysiology of LID. mGluR5 antagonism suppresses LID progression by preventing physiological changes in the cortico-striato-entopeduncular pathway. Future studies are required to validate these results.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Humans , Rats , Male , Animals , Levodopa/adverse effects , Parkinson Disease/drug therapy , Receptor, Metabotropic Glutamate 5 , Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/drug therapy , Dyskinesia, Drug-Induced/prevention & control , Dyskinesia, Drug-Induced/metabolism , Oxidopamine
16.
Clin Neurol Neurosurg ; 239: 108189, 2024 04.
Article in English | MEDLINE | ID: mdl-38437773

ABSTRACT

BACKGROUND: Levodopa treatment requires the addition of other drugs, such as catechol-O-methyl transferase (COMT) inhibitors, to alleviate motor fluctuations in advanced parkinson's disease (PD). However, the optimal strategy, including the type and dose of COMT inhibitors remains unknown. This systematic review and network meta-analysis aimed to assess the efficacy and safety of different COMT inhibitors and for treating PD patients. METHODS: PubMed, Embase, Cochrane Library and Web of Science were screened up to November 20, 2022. Randomized controlled trials (RCTs) of COMT inhibitors (entacapone, opicapone, tolcapone) for PD patients were included. Eligible outcomes were total ON-time, rate of ON-time >1 h, total daily dose of levodopa therapy, mean change from baseline to final follow up in Unified Parkinson's Disease Rating Scale (UPDRS) part III scores, adverse events and dyskinesia. Network meta-analyses integrated direct and indirect evidence with placebo as a common comparator. RESULTS: We identified 18 studies with 7564 patients. Opicapone, entacapone, and tolcapone could increase total ON-time when compared with placebo. However, opicapone (25 mg, MD 4.0, 95%CrI: 1.1-7.5) and opicapone (50 mg, MD 5.1, 95%CrI: 2.2-8.7) statistically significant increase the total ON-time. opicapone and entacapone could increase the rate of ON-time >1 h when compared with placebo. Only opicapone (5 mg) showed no statistically significant with placebo (OR 1.4, 95%CrI: 0.74-2.4). We found that opicapone (50 mg, SURCA, 0.796) is the best option compared with other treatments. TOL (200 mg) was ranked highest in the rank probability test for total daily dose of levodopa therapy, followed by OPI (50 mg), TOL (400 mg) and TOL (100 mg) in order. SUCRA rankings identified TOL (200 mg) as the most likely therapy for increasing adverse events (SUCRA 27.19%), followed by TOL (400 mg, SUCRA 27.20%) and OPI (5 mg, SUCRA 30.81%). The SUCRA probabilities were 91.6%, 75.2%, 67.9%, 59.3%, 45.6%, 41.1%, 35.1%, 24.6% and 9.4% for PLA, TOL (400 mg), ENT (100 mg), ENT (200 mg), OPI (5 mg), TOL (100 mg), OPI (25 mg), OPI (50 mg), and TOL (200 mg) respectively. CONCLUSION: In conclusion, opicapone (50 mg) may be a better choice for treatment PD when compared with other COMT inhibitors.


Subject(s)
Nitriles , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Levodopa/adverse effects , Antiparkinson Agents/adverse effects , Tolcapone/therapeutic use , Network Meta-Analysis , Catechol O-Methyltransferase Inhibitors/therapeutic use , Catechol O-Methyltransferase Inhibitors/pharmacology , Catechols/adverse effects , Transferases/therapeutic use , Randomized Controlled Trials as Topic
17.
Parkinsonism Relat Disord ; 123: 106560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518544

ABSTRACT

BACKGROUND: This study aimed to verify whether the combined use of Da Dingfengzhu and Western medicine in treating Parkinson's disease (PD) can lead to therapeutic efficacy and symptom alleviation, thereby achieving a complementary and synergistic effect. METHODS: In this study, 158 patients were initially enrolled, with 116 eligible patients randomly divided into a control and an observation group. The control group received levodopa/benserazide and pramipexole, while the observation group received Da Dingfengzhu combined with levodopa/benserazide and pramipexole for 12 weeks. Baseline patient characteristics, adverse reactions, and blood samples were collected at baseline and 12 weeks post-treatment. The Unified Parkinson's Disease Rating Scale (UPDRS) was used to assess symptom severity at baseline, four weeks into treatment, and 12 weeks post-treatment. RESULTS: Adverse reactions during treatment were similar in both groups, suggesting that the combined therapy in the observation group did not increase adverse effects. Both groups showed improvements in UPDRS scores, with the observation group displaying more significant symptom alleviation at 4 and 12 weeks. Moreover, the observation group exhibited more pronounced increases in serum neurotrophic factor-3 and dopamine levels and greater reductions in oxidative stress and inflammatory response markers. CONCLUSION: In conclusion, the combination of Da Dingfengzhu with levodopa/benserazide and pramipexole for treating PD shows significant clinical potential and is worthy of broader application.


Subject(s)
Antiparkinson Agents , Benserazide , Drugs, Chinese Herbal , Levodopa , Parkinson Disease , Pramipexole , Yin Deficiency , Humans , Parkinson Disease/drug therapy , Male , Female , Middle Aged , Aged , Benserazide/pharmacology , Benserazide/administration & dosage , Levodopa/administration & dosage , Levodopa/pharmacology , Levodopa/adverse effects , Pramipexole/pharmacology , Pramipexole/administration & dosage , Antiparkinson Agents/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Yin Deficiency/drug therapy , Drug Combinations , Drug Therapy, Combination , Outcome Assessment, Health Care
18.
CNS Neurosci Ther ; 30(3): e14575, 2024 03.
Article in English | MEDLINE | ID: mdl-38467597

ABSTRACT

BACKGROUND: Levodopa could induce orthostatic hypotension (OH) in Parkinson's disease (PD) patients. Accurate prediction of acute OH post levodopa (AOHPL) is important for rational drug use in PD patients. Here, we develop and validate a prediction model of AOHPL to facilitate physicians in identifying patients at higher probability of developing AOHPL. METHODS: The study involved 497 PD inpatients who underwent a levodopa challenge test (LCT) and the supine-to-standing test (STS) four times during LCT. Patients were divided into two groups based on whether OH occurred during levodopa effectiveness (AOHPL) or not (non-AOHPL). The dataset was randomly split into training (80%) and independent test data (20%). Several models were trained and compared for discrimination between AOHPL and non-AOHPL. Final model was evaluated on independent test data. Shapley additive explanations (SHAP) values were employed to reveal how variables explain specific predictions for given observations in the independent test data. RESULTS: We included 180 PD patients without AOHPL and 194 PD patients with AOHPL to develop and validate predictive models. Random Forest was selected as our final model as its leave-one-out cross validation performance [AUC_ROC 0.776, accuracy 73.6%, sensitivity 71.6%, specificity 75.7%] outperformed other models. The most crucial features in this predictive model were the maximal SBP drop and DBP drop of STS before medication (ΔSBP/ΔDBP). We achieved a prediction accuracy of 72% on independent test data. ΔSBP, ΔDBP, and standing mean artery pressure were the top three variables that contributed most to the predictions across all individual observations in the independent test data. CONCLUSIONS: The validated classifier could serve as a valuable tool for clinicians, offering the probability of a patient developing AOHPL at an early stage. This supports clinical decision-making, potentially enhancing the quality of life for PD patients.


Subject(s)
Hypotension, Orthostatic , Parkinson Disease , Humans , Levodopa/adverse effects , Hypotension, Orthostatic/chemically induced , Hypotension, Orthostatic/diagnosis , Quality of Life , Blood Pressure , Parkinson Disease/drug therapy
19.
Neurosci Lett ; 825: 137706, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38431040

ABSTRACT

INTRODUCTION: Levodopa-induced dyskinesia (LID) is a debilitating motor feature in a subset of patients with Parkinson's disease (PD) after prolonged therapeutic administration of levodopa. Preliminary animal and human studies are suggestive of a key role of dopamine type 3 (D3) receptor polymorphism (Ser9Gly; rs6280) in LID. Its contribution to development of LID among Indian PD patients has remained relatively unexplored and merits further investigation. METHODS AND MATERIALS: 200 well-characterised PD patients (100 without LID and 100 with LID) and 100 age-matched healthy controls were recruited from the outpatient department of Institute of Neurosciences Kolkata. MDS-UPDRS (Unified Parkinson's Disease Rating Scale from International Movement Disorder Society) Part III and AIMS (abnormal involuntary movement scale) were performed for estimation of severity of motor features and LID respectively in the ON state of the disease. Participants were analysed for the presence of Ser9Gly single nucleotide variant (SNV) (rs6280) by polymerase chain reaction followed by restriction fragment length polymorphism techniques. RESULTS: The frequency of AA genotype (serine type) was more frequently present in PD patients with LID compared to PD patients without LID (50 % vs 28 %; P = 0.002; OR = 2.57, 95 % CI: 1.43 - 4.62). The abnormal involuntary movement scale score was significantly higher in PD patients with AA genotype compared to carriers of glycine allele (AG + GG) (4.08 ± 3.35; P = 0.002). CONCLUSION: We observed a significant association of serine type SNV (rs6280) in D3 receptor gene in a cohort of PD patients with LID from India. More severe motor severity was found in patients with glycine substitution of the same SNV. The current study emphasised the role of D3 receptor in the pathogenesis of LID.


Subject(s)
Dyskinesia, Drug-Induced , Parkinson Disease , Animals , Humans , Antiparkinson Agents/therapeutic use , Dyskinesia, Drug-Induced/genetics , Dyskinesia, Drug-Induced/drug therapy , Glycine , Levodopa/adverse effects , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Polymorphism, Single Nucleotide , Receptors, Dopamine D3/genetics , Serine/genetics
20.
J Affect Disord ; 351: 895-903, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38342317

ABSTRACT

OBJECTIVE: Impulse control behaviors (ICBs) and apathy are believed to represent opposite motivational expressions of the same behavioral spectrum involving hypo- and hyperdopaminergic status, but this has been recently debated. Our study aims to estimate the co-occurrence of ICBs and apathy in early Parkinson's disease (PD) and to determine whether this complex neuropsychiatric condition is an important marker of PD prognoses. METHODS: Neuropsychiatric symptoms, clinical data, neuroimaging results, and demographic data from de novo PD patients were obtained from the Parkinson's Progression Markers Initiative, a prospective, multicenter, observational cohort. The clinical characteristics of ICBs co-occurring with apathy and their prevalence were analyzed. We compared the prognoses of the different groups during the 8-year follow-up. Multivariate Cox regression analysis was conducted to predict the development of levodopa-induced dyskinesia (LID) using baseline neuropsychiatric symptoms. RESULTS: A total of 422 PD patients and 195 healthy controls (HCs) were included. In brief, 87 (20.6 %) de novo PD patients and 37 (19.0 %) HCs had ICBs at baseline. Among them, 23 (26.4 %) de novo PD patients and 3 (8.1 %) HCs had clinical symptoms of both ICBs and apathy. The ICBs and apathy group had more severe non-motor symptoms than the isolated ICBs group. Cox regression analysis demonstrated that the co-occurrence of ICBs and apathy was a risk factor for LID development (HR 2.229, 95 % CI 1.209 to 4.110, p = 0.010). CONCLUSIONS: Co-occurrence of ICBs and apathy is common in patients with early PD and may help to identify the risk of LID development.


Subject(s)
Apathy , Disruptive, Impulse Control, and Conduct Disorders , Dyskinesias , Parkinson Disease , Humans , Disruptive, Impulse Control, and Conduct Disorders/chemically induced , Disruptive, Impulse Control, and Conduct Disorders/epidemiology , Dyskinesias/complications , Incidence , Levodopa/adverse effects , Parkinson Disease/drug therapy , Parkinson Disease/epidemiology , Parkinson Disease/complications , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...