Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Alzheimers Res Ther ; 16(1): 146, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961441

ABSTRACT

BACKGROUND: Increasing evidence supports the use of plasma biomarkers of amyloid, tau, neurodegeneration, and neuroinflammation for diagnosis of dementia. However, their performance for positive and differential diagnosis of dementia with Lewy bodies (DLB) in clinical settings is still uncertain. METHODS: We conducted a retrospective biomarker study in two tertiary memory centers, Paris Lariboisière and CM2RR Strasbourg, France, enrolling patients with DLB (n = 104), Alzheimer's disease (AD, n = 76), and neurological controls (NC, n = 27). Measured biomarkers included plasma Aß40/Aß42 ratio, p-tau181, NfL, and GFAP using SIMOA and plasma YKL-40 and sTREM2 using ELISA. DLB patients with available CSF analysis (n = 90) were stratified according to their CSF Aß profile. RESULTS: DLB patients displayed modified plasma Aß ratio, p-tau181, and GFAP levels compared with NC and modified plasma Aß ratio, p-tau181, GFAP, NfL, and sTREM2 levels compared with AD patients. Plasma p-tau181 best differentiated DLB from AD patients (ROC analysis, area under the curve [AUC] = 0.80) and NC (AUC = 0.78), and combining biomarkers did not improve diagnosis performance. Plasma p-tau181 was the best standalone biomarker to differentiate amyloid-positive from amyloid-negative DLB cases (AUC = 0.75) and was associated with cognitive status in the DLB group. Combining plasma Aß ratio, p-tau181 and NfL increased performance to identify amyloid copathology (AUC = 0.79). Principal component analysis identified different segregation patterns of biomarkers in the DLB and AD groups. CONCLUSIONS: Amyloid, tau, neurodegeneration and neuroinflammation plasma biomarkers are modified in DLB, albeit with moderate diagnosis performance. Plasma p-tau181 can contribute to identify Aß copathology in DLB.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Lewy Body Disease , tau Proteins , Humans , Lewy Body Disease/blood , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/diagnosis , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Female , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Male , Aged , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Retrospective Studies , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Middle Aged , Aged, 80 and over , Axons/pathology , Neuroinflammatory Diseases/blood , Neuroinflammatory Diseases/diagnosis , Neuroinflammatory Diseases/cerebrospinal fluid , Chitinase-3-Like Protein 1/blood , Chitinase-3-Like Protein 1/cerebrospinal fluid , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Peptide Fragments/blood , Peptide Fragments/cerebrospinal fluid , Receptors, Immunologic/blood , Diagnosis, Differential , Membrane Glycoproteins
2.
J Neurol Sci ; 462: 123059, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850771

ABSTRACT

BACKGROUND: VGF and neuroserpin are neurosecretory proteins involved in the pathophysiology of neurodegenerative diseases. We aimed to evaluate their cerebrospinal fluid (CSF) concentrations in patients with Alzheimer's disease (AD) and Lewy body disease (LBD). METHODS: We measured CSF VGF [AQEE] peptide and neuroserpin levels in 108 LBD patients, 76 AD patients and 37 controls, and tested their associations with clinical scores and CSF AD markers. RESULTS: We found decreased CSF levels of VGF [AQEE] in patients with LBD and dementia compared to controls (p = 0.016) and patients with AD-dementia (p = 0.011), but with significant influence of age and sex distribution. Moreover, we observed, on the one hand, a significant associations between lower VGF [AQEE] and neuroserpin levels and poorer cognitive performance (i.e., lower Mini-Mental State Examination scores). On the other hand, higher levels of CSF tau proteins, especially pTau181, were significantly associated with higher concentrations of VGF [AQEE] and neuroserpin. Indeed, LBD patients with AD-like CSF profiles, especially T+ profiles, had higher levels of VGF [AQEE] and neuroserpin compared to controls and LBD/T- cases. DISCUSSION: CSF VGF [AQEE] and neuroserpin may show a complex relationship with cognitive decline when the levels are reduced, and with AD pathology when levels are increased. They may represent novel markers of neurosecretory impairment in neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Biomarkers , Lewy Body Disease , Neuropeptides , Neuroserpin , Serpins , Humans , Female , Male , Aged , Alzheimer Disease/cerebrospinal fluid , Lewy Body Disease/cerebrospinal fluid , Neuropeptides/cerebrospinal fluid , Serpins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Aged, 80 and over , Middle Aged , Nerve Growth Factors/cerebrospinal fluid
3.
Neurology ; 102(12): e209418, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38830138

ABSTRACT

BACKGROUND AND OBJECTIVES: Plasma ß-amyloid-1-42/1-40 (Aß42/40), phosphorylated-tau (P-tau), glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) have been widely examined in Alzheimer disease (AD), but little is known about their reflection of copathologies, clinical importance, and predictive value in dementia with Lewy bodies (DLB). We aimed to evaluate associations of these biomarkers with CSF amyloid, cognition, and core features in DLB. METHODS: This cross-sectional multicenter cohort study with prospective component included individuals with DLB, AD, and healthy controls (HCs), recruited from 2002 to 2020 with an annual follow-up of up to 5 years, from the European-Dementia With Lewy Bodies consortium. Plasma biomarkers were measured by single-molecule array (Neurology 4-Plex E kit). Amyloid status was determined by CSF Aß42 concentrations, and cognition was assessed by Mini-Mental State Examination (MMSE). Biomarker differences across groups, associations with amyloid status, and clinical core features were assessed by analysis of covariance. Associations with cognitive impairment and decline were assessed by linear regression and linear mixed-effects models. RESULTS: In our cohort consisting of 562 individuals (HC n = 89, DLB n = 342, AD n = 131; 250 women [44.5%], mean [SD] age of 71 [8] years), sex distribution did not differ between groups. Patients with DLB were significantly older, and had less years of education and worse baseline cognition than HC, but not AD. DLB participants stratified for amyloid status differed significantly in plasma Aß42/40 ratio (decreased in amyloid abnormal: ß = -0.008, 95% CI -0.016 to -0.0003, p = 0.01) and P-tau (increased in amyloid abnormal, P-tau181: ß = 0.246, 95% CI 0.011-0.481; P-tau231: ß = 0.227, 95% CI 0.035-0.419, both p < 0.05), but not in GFAP (ß = 0.068, 95% CI -0.018 to 0.153, p = 0.119), and NfL (ß = 0.004, 95% CI -0.087 to 0.096, p = 0.923) concentrations. Higher baseline GFAP, NfL, and P-tau concentrations were associated with lower MMSE scores in DLB, and GFAP and NfL were associated with a faster cognitive decline (GFAP: annual change of -2.11 MMSE points, 95% CI -2.88 to -1.35 MMSE points, p < 0.001; NfL: annual change of -2.13 MMSE points, 95% CI -2.97 to -1.29 MMSE points, p < 0.001). DLB participants with parkinsonism had higher concentrations of NfL (ß = 0.08, 95% CI 0.02-0.14, p = 0.006) than those without. DISCUSSION: Our study suggests a possible utility of plasma Aß42/40, P-tau181, and P-tau231 as a noninvasive biomarkers to assess amyloid copathology in DLB, and plasma GFAP and NfL as monitoring biomarkers for cognitive symptoms in DLB.


Subject(s)
Amyloid beta-Peptides , Biomarkers , Glial Fibrillary Acidic Protein , Lewy Body Disease , Neurofilament Proteins , tau Proteins , Humans , Female , Male , tau Proteins/cerebrospinal fluid , tau Proteins/blood , Aged , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/blood , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Glial Fibrillary Acidic Protein/blood , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Cross-Sectional Studies , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Middle Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/blood , Aged, 80 and over , Cohort Studies , Prospective Studies , Cognition/physiology , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/blood
4.
Mov Disord ; 39(6): 1065-1070, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38610104

ABSTRACT

BACKGROUND: The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE: The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS: We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS: GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS: rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Biomarkers , Glucosylceramidase , Lewy Body Disease , Membrane Glycoproteins , Polymorphism, Single Nucleotide , Humans , Female , Glucosylceramidase/genetics , Male , Lewy Body Disease/genetics , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/blood , Membrane Glycoproteins/genetics , Membrane Glycoproteins/cerebrospinal fluid , Aged , Middle Aged , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Aged, 80 and over , Genotype , Heterozygote , Gaucher Disease/genetics , Gaucher Disease/blood , Gaucher Disease/cerebrospinal fluid
5.
Ann Clin Transl Neurol ; 11(5): 1197-1210, 2024 May.
Article in English | MEDLINE | ID: mdl-38436140

ABSTRACT

OBJECTIVE: More than half of neurodegenerative disease patients have multiple pathologies at autopsy; however, most receive one diagnosis during life. We used the α-synuclein seed amplification assay (αSyn-SAA) and CSF biomarkers for amyloidosis and Alzheimer's disease (AD) neuropathological change (ADNC) to determine the frequency of co-pathologies in participants clinically diagnosed with Lewy body (LB) disease or AD. METHODS: Using receiver operating characteristic analyses on retrospective CSF samples from 150 participants determined αSyn-SAA accuracy, sensitivity, and specificity for identifying clinically defined LB disease and predicting future change in clinical diagnosis. CSF biomarkers helped determine the frequency of concomitant Lewy body pathology, ADNC, and/or amyloidosis in participants with LB disease and AD, across clinical spectra. RESULTS: Following a decade-long follow-up, the clinically or autopsy-defined diagnosis changed for nine participants. αSyn-SAA demonstrated improved accuracy (91.3%), sensitivity (89.3%), and specificity (93.3%) for identifying LB disease compared to all non-LB disease, highlighting the limitations of clinical diagnosis alone. When examining biomarkers of co-pathology, amyloidosis was present in 18%, 48%, and 71% (χ2(2) = 13.56, p = 0.001) and AD biomarkers were present in 0%, 8.7%, and 42.9% (χ2(2) = 18.44, p < 0.001) of LB disease participants with different stages of cognitive impairment respectively. Co-occurring biomarkers for αSyn-SAA and amyloidosis were present in 12% and 14% of AD compared to 43% and 57% LB disease participants with different stages of cognitive impairment (χ2(3) = 13.87, p = 0.003). INTERPRETATION: Our study shows that using a combination of αSyn-SAA and AD biomarkers can identify people with αSyn, ADNC, and co-pathology better and earlier than traditional clinical diagnostic criteria alone.


Subject(s)
Alzheimer Disease , Biomarkers , Lewy Body Disease , alpha-Synuclein , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Lewy Body Disease/diagnosis , Lewy Body Disease/cerebrospinal fluid , Aged , Biomarkers/cerebrospinal fluid , Male , Female , alpha-Synuclein/cerebrospinal fluid , Aged, 80 and over , Retrospective Studies , Middle Aged , Amyloidosis/diagnosis , Amyloidosis/cerebrospinal fluid , Sensitivity and Specificity
6.
Brain Res ; 1833: 148881, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38519009

ABSTRACT

BACKGROUND: To determine whether Lewy body dementia (LBD) patients with likely copathology of Alzheimer's disease (AD) exhibit greater neuropsychiatric symptom (NPS) compared to those without likely AD-type copathology. METHODS: We enrolled 69 individuals diagnosed with Lewy body dementia (LBD), comprising both dementia with Lewy bodies (DLB) (n = 36) and Parkinson's disease dementia (PDD) (n = 33). These participants had accessible cerebrospinal fluid (CSF) markers related to Alzheimer's disease (AD) and cognitive data. We assessed CSF levels of ß-amyloid 42 (Aß42), phosphorylated tau (p-tau), and total tau (t-tau). Employing autopsy-validated CSF thresholds (t-tau/Aß42 ratio > 0.3, n = 69), we categorized individuals into LBD with AD pathology (LBD + AD, n = 31) and LBD without apparent AD co-pathology (LBD - AD, n = 38). Moreover, the Hamilton Depression Scale (HAMD24), Hamilton Anxiety Scale (HAMA14), and Neuropsychiatric Inventory Questionnaire (NPI-Q) was used to assess the NPS. Spearman correlations were utilized to explore links between NPS and CSF marker profiles. RESULTS: In terms of neuropsychiatric symptoms, LBD + AD patients demonstrated notably elevated levels of depressive symptoms (HAMD24) in comparison to LBD - AD patients (P < 0.001). However, based on PDD and DLB groups, no significant variations were noted in the neuropsychiatric symptoms(P>0.05). Moreover, CSF-derived biomarkers of Aß42, and t-tau/Aß42 were also associated with HAMD24 total scores in the LBD + AD subsample (P < 0.05). CONCLUSION: There is an association between AD pathological markers and the NPS of LBD. The biologically based classification of LBD may be more advantageous in elucidating clinical heterogeneity than clinically defined syndromes.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Lewy Body Disease , tau Proteins , Humans , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/psychology , Lewy Body Disease/pathology , Female , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Male , Aged , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Middle Aged , Peptide Fragments/cerebrospinal fluid , Aged, 80 and over , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/psychology , Parkinson Disease/pathology , Neuropsychological Tests
7.
Alzheimers Dement ; 20(5): 3334-3341, 2024 May.
Article in English | MEDLINE | ID: mdl-38539061

ABSTRACT

INTRODUCTION: Lewy body disease (LBD) is a common primary or co-pathology in neurodegenerative syndromes. An alpha-synuclein seed amplification assay (αSyn-SAA) is clinically available, but clinical performance, especially lower sensitivity in amygdala-predominant cases, is not well understood. METHODS: Antemortem CSF from neuropathology-confirmed LBD cases was tested with αSyn-SAA (N = 56). Diagnostic performance and clinicopathological correlations were examined. RESULTS: Similar to prior reports, sensitivity was 100% for diffuse and transitional LBD (9/9), and overall specificity was 96.3% (26/27). Sensitivity was lower in amygdala-predominant (6/14, 42.8%) and brainstem-predominant LBD (1/6, 16.7%), but early spread outside these regions (without meeting criteria for higher stage) was more common in αSyn-SAA-positive cases (6/7, 85.7%) than negative (2/13, 15.4%). DISCUSSION: In this behavioral neurology cohort, αSyn-SAA had excellent diagnostic performance for cortical LBD. In amygdala- and brainstem-predominant cases, sensitivity was lower, but positivity was associated with anatomical spread, suggesting αSyn-SAA detects early LBD progression in these cohorts. HIGHLIGHTS: A cerebrospinal fluid alpha-synuclein assay detects cortical LBD with high sensitivity/specificity. Positivity in prodromal stages of LBD was associated with early cortical spread. The assay provides precision diagnosis of LBD that could support clinical trials. The assay can also identify LBD co-pathology, which may impact treatment responses.


Subject(s)
Autopsy , Lewy Body Disease , Sensitivity and Specificity , alpha-Synuclein , Humans , alpha-Synuclein/cerebrospinal fluid , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/pathology , Female , Male , Aged , Cohort Studies , Amygdala/pathology , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Middle Aged
8.
Alzheimers Dement ; 20(4): 2444-2452, 2024 04.
Article in English | MEDLINE | ID: mdl-38323747

ABSTRACT

INTRODUCTION: Lewy body disease, a frequently observed co-pathology in Alzheimer's disease (AD), can be identified antemortem in cerebrospinal fluid (CSF) by α-synuclein seed amplification assay (αS-SAA). The prevalence and clinical impact of CSF αS-SAA positivity in AD are still unknown. METHODS: αS-SAA was performed on CSF samples from 240 AD patients (preclinical, prodromal, and dementia stages), 85 controls, 84 patients with Parkinson's disease (PD), and 21 patients with PD with dementia or dementia with Lewy bodies. In AD patients, associations between αS-SAA positivity and cognitive changes were also evaluated. RESULTS: In agreement with available neuropathological studies, αS-SAA positivity was observed in 30% of AD patients (vs 9% in controls), and was associated with cognitive decline, visuospatial impairment, and behavioral disturbances. DISCUSSION: αS-SAA positivity in AD patients reflects the prevalence observed in neuropathological series and is associated with a worse clinical outcome. These data confirm the validity of CSF αS-SAA positivity as biomarker of synucleinopathy.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Lewy Body Disease/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
9.
Alzheimers Dement ; 20(1): 549-562, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37740924

ABSTRACT

INTRODUCTION: The National Institute on Aging - Alzheimer's Association (NIA-AA) ATN research framework proposes to use biomarkers for amyloid (A), tau (T), and neurodegeneration (N) to stage individuals with AD pathological features and track changes longitudinally. The overall aim was to utilize this framework to characterize pre-mortem ATN status longitudinally in a clinically diagnosed cohort of dementia with Lewy bodies (DLB) and to correlate it with the post mortem diagnosis. METHODS: The cohort was subtyped by cerebrospinal fluid (CSF) ATN category. A subcohort had longitudinal data, and a subgroup was neuropathologically evaluated. RESULTS: We observed a significant difference in Aß42/40 after 12 months in the A+T- group. Post mortem neuropathologic analyses indicated that most of the p-Tau 181 positive (T+) cases also had a high Braak stage. DISCUSSION: This suggests that DLB patients who are A+ but T- may need to be monitored to determine whether they remain A+ or ever progress to T positivity. HIGHLIGHTS: Some A+T- DLB subjects transition from A+ to negative after 12-months. Clinically diagnosed DLB with LBP-AD (A+T+) maintain their positivity. Clinically diagnosed DLB with LBP-AD (A+T+) maintain their positivity. Monitoring of the A+T- sub-type of DLB may be necessary.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Lewy Body Disease/diagnosis , Lewy Body Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
10.
J Extracell Vesicles ; 12(12): e12383, 2023 12.
Article in English | MEDLINE | ID: mdl-38082559

ABSTRACT

Dementia is a leading cause of death worldwide, with increasing prevalence as global life expectancy increases. The most common neurodegenerative disorders are Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). With this study, we took an in-depth look at the proteome of the (non-purified) cerebrospinal fluid (CSF) and the CSF-derived extracellular vesicles (EVs) of AD, PD, PD-MCI (Parkinson's disease with mild cognitive impairment), PDD and DLB patients analysed by label-free mass spectrometry. This has led to the discovery of differentially expressed proteins that may be helpful for differential diagnosis. We observed a greater number of differentially expressed proteins in CSF-derived EV samples (N = 276) compared to non-purified CSF (N = 169), with minimal overlap between both datasets. This finding suggests that CSF-derived EV samples may be more suitable for the discovery phase of a biomarker study, due to the removal of more abundant proteins, resulting in a narrower dynamic range. As disease-specific markers, we selected a total of 39 biomarker candidates identified in non-purified CSF, and 37 biomarker candidates across the different diseases under investigation in the CSF-derived EV data. After further exploration and validation of these proteins, they can be used to further differentiate between the included dementias and may offer new avenues for research into more disease-specific pharmacological therapeutics.


Subject(s)
Alzheimer Disease , Dementia , Extracellular Vesicles , Lewy Body Disease , Parkinson Disease , Humans , Alzheimer Disease/diagnosis , Lewy Body Disease/diagnosis , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/complications , Parkinson Disease/diagnosis , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/complications , Dementia/diagnosis , Dementia/cerebrospinal fluid , Dementia/etiology , Proteomics , Biomarkers
11.
Mov Disord ; 38(11): 2125-2131, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37792643

ABSTRACT

BACKGROUND: Misfolded α-synuclein in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) can be detected using the real-time quaking-induced conversion (RT-QuIC) technique in cerebrospinal fluid (CSF). OBJECTIVES: The objectives are (1) to examine misfolded CSF α-synuclein incidence, and (2) to compare clinical presentation, sports history, brain volumes, and RT-QuIC α-synuclein positivity in former athletes. METHODS: Thirty former athletes with magnetic resonance imaging, neuropsychological testing, and CSF analyzed for phosphorylated tau 181 (p-tau), total tau (t-tau), amyloid-ß 42 (Aß42), and neurofilament light chain (NfL). CSF α-synuclein was detected using RT-QuIC. RESULTS: Six (20%) former athletes were α-synuclein positive. α-Synuclein positive athletes were similar to α-synuclein negative athletes on demographics, sports history, clinical features, CSF p-tau, t-tau, Aß42, and NfL; however, had lower grey matter volumes in the right inferior orbitofrontal, right anterior insula and right olfactory cortices. CONCLUSIONS: α-Synuclein RT-QuIC analysis of CSF may be useful as a prodromal biofluid marker of PD and DLB. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Lewy Body Disease , Parkinson Disease , Humans , alpha-Synuclein/cerebrospinal fluid , Lewy Body Disease/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Athletes
12.
Nat Med ; 29(8): 1971-1978, 2023 08.
Article in English | MEDLINE | ID: mdl-37464059

ABSTRACT

α-Synuclein aggregates constitute the pathology of Lewy body (LB) disease. Little is known about the effects of LB pathology in preclinical (presymptomatic) individuals, either as isolated pathology or coexisting with Alzheimer's disease (AD) pathology (ß-amyloid (Aß) and tau). We examined the effects of LB pathology using a cerebrospinal fluid α-synuclein-seed amplification assay in 1,182 cognitively and neurologically unimpaired participants from the BioFINDER study: 8% were LB positive, 26% Aß positive (13% of those were LB positive) and 16% tau positive. LB positivity occurred more often in the presence of Aß positivity but not tau positivity. LB pathology had independently negative effects on cross-sectional and longitudinal global cognition and memory and on longitudinal attention/executive function. Tau had cognitive effects of a similar magnitude, but these were less pronounced for Aß. Participants with both LB and AD (Aß and tau) pathology exhibited faster cognitive decline than those with only LB or AD pathology. LB, but not AD, pathology was associated with reduced sense of smell. Only LB-positive participants progressed to clinical LB disease over 10 years. These results are important for individualized prognosis, recruitment and choice of outcome measures in preclinical LB disease trials, but also for the design of early AD trials because >10% of individuals with preclinical AD have coexisting LB pathology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Humans , alpha-Synuclein , Lewy Bodies/pathology , tau Proteins/cerebrospinal fluid , Cross-Sectional Studies , Alzheimer Disease/pathology , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/complications , Lewy Body Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Cognition , Cognitive Dysfunction/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Positron-Emission Tomography
13.
Alzheimers Dement ; 19(8): 3563-3574, 2023 08.
Article in English | MEDLINE | ID: mdl-36825551

ABSTRACT

INTRODUCTION: Cerebrospinal fluid (CSF) biomarkers for specific cellular disease processes are lacking for tauopathies. In this translational study we aimed to identify CSF biomarkers reflecting early tau pathology-associated unfolded protein response (UPR) activation. METHODS: We employed mass spectrometry proteomics and targeted immunoanalysis in a combination of biomarker discovery in primary mouse neurons in vitro and validation in patient CSF from two independent large multicentre cohorts (EMIF-AD MBD, n = 310; PRIDE, n = 771). RESULTS: First, we identify members of the protein disulfide isomerase (PDI) family in the neuronal UPR-activated secretome and validate secretion upon tau aggregation in vitro. Next, we demonstrate that PDIA1 and PDIA3 levels correlate with total- and phosphorylated-tau levels in CSF. PDIA1 levels are increased in CSF from AD patients compared to controls and patients with tau-unrelated frontotemporal and Lewy body dementia (LBD). HIGHLIGHTS: Neuronal unfolded protein response (UPR) activation induces the secretion of protein disulfide isomerases (PDIs) in vitro. PDIA1 is secreted upon tau aggregation in neurons in vitro. PDIA1 and PDIA3 levels correlate with total and phosphorylated tau levels in CSF. PDIA1 levels are increased in CSF from Alzheimer's disease (AD) patients compared to controls. PDIA1 levels are not increased in CSF from tau-unrelated frontotemporal dementia (FTD) and Lewy body dementia (LBD) patients.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Animals , Mice , Lewy Body Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Protein Disulfide-Isomerases , Amyloid beta-Peptides/cerebrospinal fluid , Phosphorylation , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
14.
Proc Natl Acad Sci U S A ; 119(50): e2213157119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36490316

ABSTRACT

The formation of toxic Amyloid ß-peptide (Aß) oligomers is one of the earliest events in the molecular pathology of Alzheimer's Disease (AD). These oligomers lead to a variety of downstream effects, including impaired neuronal signaling, neuroinflammation, tau phosphorylation, and neurodegeneration, and it is estimated that these events begin 10 to 20 y before the presentation of symptoms. Toxic Aß oligomers contain a nonstandard protein structure, termed α-sheet, and designed α-sheet peptides target this main-chain structure in toxic oligomers independent of sequence. Here we show that a designed α-sheet peptide inhibits the deleterious effects on neuronal signaling and also serves as a capture agent in our soluble oligomer binding assay (SOBA). Pre-incubated synthetic α-sheet-containing Aß oligomers produce strong SOBA signals, while monomeric and ß-sheet protofibrillar Aß do not. α-sheet containing oligomers were also present in cerebrospinal fluid (CSF) from an AD patient versus a noncognitively impaired control. For the detection of toxic oligomers in plasma, we developed a plate coating to increase the density of the capture peptide. The proof of concept was achieved by testing 379 banked human plasma samples. SOBA detected Aß oligomers in patients on the AD continuum, including controls who later progressed to mild cognitive impairment. In addition, SOBA discriminated AD from other forms of dementia, yielding sensitivity and specificity of 99% relative to clinical and neuropathological diagnoses. To explore the broader potential of SOBA, we adapted the assay for a-synuclein oligomers and confirmed their presence in CSF from patients with Parkinson's disease and Lewy body dementia.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/metabolism , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Parkinson Disease/blood , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/metabolism , Peptide Fragments/blood , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/metabolism , Cerebrospinal Fluid/chemistry , Lewy Body Disease/blood , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/metabolism , Immunoenzyme Techniques/methods
15.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362275

ABSTRACT

Background: Alpha-synuclein, abnormally aggregated in Dementia with Lewy Bodies (DLB), could represent a potential biomarker to improve the differentiation between DLB and Alzheimer's disease (AD). Our main objective was to compare Cerebrospinal Fluid (CSF) alpha-synuclein levels between patients with DLB, AD and Neurological Control (NC) individuals. Methods: In a monocentric retrospective study, we assessed CSF alpha-synuclein concentration with a validated ELISA kit (ADx EUROIMMUN) in patients with DLB, AD and NC from a tertiary memory clinic. Between-group comparisons were performed, and Receiver Operating Characteristic analysis was used to identify the best CSF alpha-synuclein threshold. We examined the associations between CSF alpha-synuclein, other core AD CSF biomarkers and brain MRI characteristics. Results: We included 127 participants (mean age: 69.3 ± 8.1, Men: 41.7%). CSF alpha-synuclein levels were significantly lower in DLB than in AD (1.28 ± 0.52 ng/mL vs. 2.26 ± 0.91 ng/mL, respectively, p < 0.001) without differences due to the stage of cognitive impairment. The best alpha-synuclein threshold was characterized by an Area Under the Curve = 0.85, Sensitivity = 82.0% and Specificity = 76.0%. CSF alpha-synuclein was associated with CSF AT(N) biomarkers positivity (p < 0.01) but not with hippocampal atrophy or white matter lesions. Conclusion: CSF Alpha-synuclein evaluation could help to early differentiate patients with DLB and AD in association with existing biomarkers.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Aged , Humans , Male , Middle Aged , alpha-Synuclein/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Lewy Body Disease/diagnosis , Lewy Body Disease/cerebrospinal fluid , Retrospective Studies , tau Proteins/cerebrospinal fluid , Female
16.
Alzheimer Dis Assoc Disord ; 36(4): 368-373, 2022.
Article in English | MEDLINE | ID: mdl-36183420

ABSTRACT

OBJECTIVE: This study investigated whether α-synuclein and tau in cerebrospinal fluid (CSF) can be used as biomarkers to diagnose dementia with Lewy bodies (DLB). MATERIALS AND METHODS: We retrieved 3303 studies with "Dementia with Lewy bodies," "α-synuclein," and "tau" as keywords. We formulated screening criteria, and 2 researchers completed the screening, quality evaluation, and data extraction tasks. Finally, 35 studies related to tau, and 14 studies related to α-synuclein were included. Review Manager 5.4 and Stata16 were used for meta-analysis. Subgroup, sensitivity, and meta-regression analyses were performed to identify sources of heterogeneity and strengthen the results. RESULTS: Compared with the control group, DLB patients showed significantly higher CSF levels of tau [weighted mean difference=81.36 (59.82, 102.91); Z =7.40; P <0.00001], and lower CSF levels of α-synuclein [weighted mean difference=-95.25 (-162.02, -28.48); Z =2.80; P =0.005]. Mini-Mental State Examination (MMSE) score, male ratio, and disease duration were not sources of heterogeneity on subgroup and meta-regression analyses. Sensitivity analysis revealed no significant differences. CONCLUSIONS: Higher levels of tau and lower levels of α-synuclein were found in the CSF of patients with DLB compared with the control group. Therefore, CSF tau and α-synuclein levels may be diagnostic biomarkers for DLB.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Humans , Male , alpha-Synuclein/cerebrospinal fluid , Lewy Body Disease/diagnosis , Lewy Body Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Alzheimer Disease/diagnosis , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
17.
J Alzheimers Dis ; 90(1): 363-380, 2022.
Article in English | MEDLINE | ID: mdl-36120776

ABSTRACT

BACKGROUND: The differential diagnosis of frontotemporal dementia (FTD) is still a challenging task due to its symptomatic overlap with other neurological diseases and the lack of biofluid-based biomarkers. OBJECTIVE: To investigate the diagnostic potential of a combination of novel biomarkers in cerebrospinal fluid (CSF) and blood. METHODS: We included 135 patients from the Center for Memory Disturbances, University of Perugia, with the diagnoses FTD (n = 37), mild cognitive impairment due to Alzheimer's disease (MCI-AD, n = 47), Lewy body dementia (PDD/DLB, n = 22), and cognitively unimpaired patients as controls (OND, n = 29). Biomarker levels of neuronal pentraxin-2 (NPTX2), neuronal pentraxin receptor, neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured in CSF, as well as NfL and GFAP in serum. We assessed biomarker differences by analysis of covariance and generalized linear models (GLM). We performed receiver operating characteristics analyses and Spearman correlation to determine biomarker associations. RESULTS: CSF NPTX2 and serum GFAP levels varied most between diagnostic groups. The combination of CSF NPTX2, serum NfL and serum GFAP differentiated FTD from the other groups with good accuracy (FTD versus MCI-AD: area under the curve (AUC) [95% CI] = 0.89 [0.81-0.96]; FTD versus PDD/DLB: AUC = 0.82 [0.71-0.93]; FTD versus OND: AUC = 0.80 [0.70-0.91]). CSF NPTX2 and serum GFAP correlated positively only in PDD/DLB (ρ= 0.56, p < 0.05). NPTX2 and serum NfL did not correlate in any of the diagnostic groups. Serum GFAP and serum NfL correlated positively in all groups (ρ= 0.47-0.74, p < 0.05). CONCLUSION: We show the combined potential of CSF NPTX2, serum NfL, and serum GFAP to differentiate FTD from other neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Lewy Body Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/cerebrospinal fluid , Glial Fibrillary Acidic Protein , Intermediate Filaments , Lewy Body Disease/cerebrospinal fluid , Neurofilament Proteins , tau Proteins/cerebrospinal fluid
18.
Int J Mol Sci ; 23(13)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35805926

ABSTRACT

SerpinA1 (α1-antitrypsin) is a soluble glycoprotein, the cerebrospinal fluid (CSF) isoforms of which showed disease-specific changes in neurodegenerative disorders that are still unexplored in Alz-heimer's disease (AD). By means of capillary isoelectric focusing immunoassay, we investigated six serpinA1 isoforms in CSF samples of controls (n = 29), AD-MCI (n = 29), AD-dem (n = 26) and Lewy body disease (LBD, n = 59) patients and correlated the findings with CSF AD core biomarkers (Aß42/40 ratio, p-tau, t-tau). Four CSF serpinA1 isoforms were differently expressed in AD patients compared to controls and LBD patients, especially isoforms 2 and 4. AD-specific changes were found since the MCI stage and significantly correlated with decreased Aß42/40 (p < 0.05) and in-creased p-tau and t-tau levels in CSF (p < 0.001). Analysis of serpinA1 isoform provided good di-agnostic accuracy in discriminating AD patients versus controls (AUC = 0.80) and versus LBD patients (AUC = 0.92), with best results in patients in the dementia stage (AUC = 0.97). SerpinA1 isoform expression is altered in AD patients, suggesting a common, albeit disease-specific, in-volvement of serpinA1 in most neurodegenerative disorders.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Neurodegenerative Diseases , alpha 1-Antitrypsin , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans , Lewy Body Disease/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , Protein Isoforms , alpha 1-Antitrypsin/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
19.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742814

ABSTRACT

Dementia with Lewy Bodies (DLB) is a common form of cognitive neurodegenerative disease. Only one third of patients are correctly diagnosed due to the clinical similarity mainly with Alzheimer's disease (AD). In this review, we evaluate the interest of different biomarkers: cerebrospinal fluid (CSF), brain MRI, FP-CIT SPECT, MIBG SPECT, PET by focusing more specifically on differential diagnosis between DLB and AD. FP-CIT SPECT is of high interest to discriminate DLB and AD, but not at the prodromal stage (i.e., MCI). MIBG SPECT with decreased cardiac sympathetic activity, perfusion SPECT with occipital hypoperfusion, FDG PET with occipital hypometabolism and cingulate island signs are of interest at the dementia stage but with a lower validity. Brain MRI has shown differences in group study with lower grey matter concentration of the Insula in prodromal DLB, but its interest in clinical routines is not demonstrated. Concerning CSF biomarkers, many studies have already examined the relevance of AD biomarkers but also alpha-synuclein assays in DLB, so we will focus as comprehensively as possible on other biomarkers (especially those that do not appear to be directly related to synucleinopathy) that may be of interest in the differential diagnosis between AD and DLB. Furthermore, we would like to highlight the growing interest in CSF synuclein RT-QuIC, which seems to be an excellent discrimination tool but its application in clinical routine remains to be demonstrated, given the non-automation of the process.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Neurodegenerative Diseases , 3-Iodobenzylguanidine , Alzheimer Disease/diagnostic imaging , Biomarkers , Diagnosis, Differential , Humans , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/diagnostic imaging , Neurodegenerative Diseases/diagnosis , Tomography, Emission-Computed, Single-Photon/methods
20.
Medicina (Kaunas) ; 58(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35630029

ABSTRACT

The use and interpretation of diagnostic cerebrospinal fluid (CSF) biomarkers for neurodegenerative disorders, such as Dementia with Lewy bodies (DLB), represent a clinical challenge. According to the literature, the composition of CSF in DLB patients varies. Some patients present with reduced levels of amyloid, others with full Alzheimer Disease CSF profile (both reduced amyloid and increased phospho-tau) and some with a normal profile. Some patients may present with abnormal levels of a-synuclein. Continuous efforts will be required to establish useful CSF biomarkers for the early diagnosis of DLB. Given the heterogeneity of methods and results between studies, further validation is fundamental before conclusions can be drawn.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Alzheimer Disease/diagnosis , Biomarkers/cerebrospinal fluid , Humans , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/diagnosis , tau Proteins/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...