Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.809
1.
Sci Rep ; 14(1): 13802, 2024 06 14.
Article En | MEDLINE | ID: mdl-38877312

Sodium-glucose cotransporter (SGLT) 2 inhibition is a well-known target for the treatment of type 2 diabetes, renal disease and chronic heart failure. The protein SGLT2 is encoded by SLC5A2 (Solute Carrier Family 5 Member 2), which is highly expressed in renal cortex, but also in the testes where glucose uptake may be essential for spermatogenesis and androgen synthesis. We postulated that in healthy males, SGLT2 inhibitor therapy may affect gonadal function. We examined the impact on gonadal and steroid hormones in a post-hoc analysis of a double-blind, randomized, placebo-controlled research including 26 healthy males who were given either placebo or empagliflozin 10 mg once daily for four weeks. After one month of empagliflozin, there were no discernible changes in androgen, pituitary gonadotropin hormones, or inhibin B. Regardless of BMI category, the administration of empagliflozin, a highly selective SGLT2 inhibitor, did not alter serum androgen levels in men without diabetes. While SGLT2 is present in the testes, its inhibition does not seem to affect testosterone production in Leydig cells nor inhibin B secretion by the Sertoli cells.


Benzhydryl Compounds , Glucosides , Sodium-Glucose Transporter 2 Inhibitors , Male , Humans , Benzhydryl Compounds/pharmacology , Glucosides/pharmacology , Adult , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Double-Blind Method , Testis/metabolism , Testis/drug effects , Testosterone/blood , Inhibins/blood , Inhibins/metabolism , Middle Aged , Sodium-Glucose Transporter 2/metabolism , Androgens/metabolism , Leydig Cells/metabolism , Leydig Cells/drug effects , Sertoli Cells/metabolism , Sertoli Cells/drug effects
2.
Cell Commun Signal ; 22(1): 330, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38879537

Sex-specific gonadal differentiation is directed by complex signalling promoting development in either male or female direction, while simultaneously inhibiting the opposite pathway. In mice, the WNT/ß-catenin pathway promotes ovarian development and the importance of actively inhibiting this pathway to ensure normal testis development has been recognised. However, the implications of alterations in the tightly regulated WNT/ß-catenin signalling during human fetal gonad development has not yet been examined in detail. Thus, the aim of this study was to examine the consequences of dysregulating the WNT/ß-catenin signalling pathway in the supporting cell lineage during sex-specific human fetal gonad development using an established and extensively validated ex vivo culture model. Inhibition of WNT/ß-catenin signalling in human fetal ovary cultures resulted in only minor effects, including reduced secretion of RSPO1 and reduced cell proliferation although this was not consistently found in all treatment groups. In contrast, promotion of WNT/ß-catenin signalling in testes severely affected development and function. This included disrupted seminiferous cord structures, reduced cell proliferation, reduced expression of SOX9/AMH, reduced secretion of Inhibin B and AMH as well as loss of the germ cell population. Additionally, Leydig cell function was markedly impaired with reduced secretion of testosterone, androstenedione and INSL3. Together, this study suggests that dysregulated WNT/ß-catenin signalling during human fetal gonad development severely impairs testicular development and function. Importantly, our study highlights the notion that sufficient inhibition of the opposite pathway during sex-specific gonadal differentiation is essential to ensure normal development and function also applies to human fetal gonads.


Testis , Wnt Signaling Pathway , Humans , Male , Testis/metabolism , Testis/embryology , Female , Sex Differentiation/genetics , Fetus/metabolism , Cell Differentiation , Cell Proliferation , beta Catenin/metabolism , Leydig Cells/metabolism , Leydig Cells/cytology , Ovary/metabolism , Ovary/embryology
3.
Anat Histol Embryol ; 53(4): e13062, 2024 Jul.
Article En | MEDLINE | ID: mdl-38837469

Although the order Rodentia does not present a high risk of extinction compared to mammals as a whole, several families demonstrate high levels of threat and/or data deficiency, therefore highlighting the need for targeted research and the application of ecological and reproductive data to the development of conservation actions. The order Rodentia, the largest among mammals, includes 9 families, and the family Cricetidae is the most diverse of the Brazilian rodents. In Brazil, 12 of the 16 genera of Oecomys are found. Oecomys bicolor is known in Brazil as the 'arboreal rat' and is, found in dry, deciduous and tropical forests. The mean body weight of Oecomys bicolor was 35.8 g and the gonadal, tubular and epithelial somatic indexes were, 0.53%, 0.47% and 0.37%, respectively. Seminiferous tubules volume density was 89.72% and the mitotic and meiotic indexes corresponded to 8.59 and 2.45 cells, respectively, and the yield of spermatogenesis was 23.83 cells. The intertubular compartment represented 10.28% of the testis parenchyma and around 5% of the interstitial space was occupied by Leydig cells, whose number per gram of testis was 11.10 × 107 cells. By evaluating the biometric and histomorphometric characteristics of the testis, there is evidence that this species has a high investment in reproduction. Due to the high contribution of the seminiferous epithelium and the intertubular compartment in this species, compared to the others of the same family, it is possible to infer that the species Oecomys bicolor has a promiscuous reproductive behaviour.


Arvicolinae , Leydig Cells , Spermatogenesis , Testis , Animals , Spermatogenesis/physiology , Male , Testis/anatomy & histology , Testis/physiology , Leydig Cells/cytology , Leydig Cells/physiology , Arvicolinae/anatomy & histology , Arvicolinae/physiology , Seminiferous Tubules/anatomy & histology , Brazil
4.
Cells ; 13(11)2024 Jun 05.
Article En | MEDLINE | ID: mdl-38891111

Ferroptosis hallmarked by lipid peroxidation and iron homeostasis imbalance is involved in the occurrence and development of various diseases. The plant growth regulator chlormequat chloride (CCC) can contribute to the causality and exacerbation of reproductive disorders. However, the mechanism by which CCC may cause Leydig cell attenuation remains poorly understood. In this study, TM3 Leydig cells were used to investigate the inhibitory effect of CCC on cell growth and its possible mechanism. The results showed that CCC caused apoptosis, pyroptosis, ferroptosis and necroinflammation in TM3 cells. By comparing the effects of ferroptosis inhibitor Ferrostatin-1 (Fer-1) and pan-Caspase inhibitor Z-VAD-FMK (ZVF) on lipid peroxidation and Caspase-mediated regulated cell death (RCD), we found that Fer-1 was better at rescuing the growth of TM3 cells than ZVF. Although ZVF reduced mitochondrial ROS level and inhibited the activation of Caspase3 and Caspase1, it could not significantly ameliorate lipid peroxidation and the levels of IL-1ß and HMGB1 like Fer-1. Therefore, ferroptosis might be a key non apoptotic RCD mode responsible for CCC-driven inflammation, leading to weakened viability and proliferation of TM3 cells. In addition, overexpression of ferritin light chain (FTL) promoted the resistance of TM3 cells to CCC-induced ferroptosis-mediated inflammation and to some extent improved the inhibition of viability and proliferation. Altogether, ferroptosis-initiated inflammation might play a key role in CCC-impaired TM3 cell growth.


Cell Proliferation , Ferroptosis , Inflammation , Leydig Cells , Ferroptosis/drug effects , Animals , Male , Mice , Leydig Cells/drug effects , Leydig Cells/metabolism , Leydig Cells/pathology , Inflammation/pathology , Inflammation/drug therapy , Cell Proliferation/drug effects , Lipid Peroxidation/drug effects , Reactive Oxygen Species/metabolism , Cell Line , Apoptosis/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Amino Acid Chloromethyl Ketones/pharmacology , Cyclohexylamines , Phenylenediamines
5.
Int J Mol Sci ; 25(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38791457

Insulin-like peptide 3 (INSL3) is a biomarker for Leydig cells in the testes of vertebrates, and it is principally involved in spermatogenesis through specific binding with the RXFP2 receptor. This study reports the insl3 gene transcript and the Insl3 prepropeptide expression in both non-reproductive and reproductive tissues of Danio rerio. An immunohistochemistry analysis shows that the hormone is present at a low level in the Leydig cells and germ cells at all stages of Danio rerio testis differentiation. Considering that the insl3 gene is transcribed in Leydig cells, our results highlight an autocrine and paracrine function of this hormone in the Danio rerio testis, adding new information on the Insl3 mode of action in reproduction. We also show that Insl3 and Rxfp2 belonging to Danio rerio and other vertebrate species share most of the amino acid residues involved in the ligand-receptor interaction and activation, suggesting a conserved mechanism of action during vertebrate evolution.


Insulin , Insulins , Proteins , Receptors, G-Protein-Coupled , Testis , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Male , Proteins/metabolism , Proteins/genetics , Insulin/metabolism , Testis/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Insulins/metabolism , Insulins/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Leydig Cells/metabolism , Amino Acid Sequence , Spermatogenesis/genetics
6.
Reprod Domest Anim ; 59(5): e14583, 2024 May.
Article En | MEDLINE | ID: mdl-38747479

Testosterone, an important sex hormone, regulates sexual maturation, testicular development, spermatogenesis and the maintenance of secondary sexual characteristics in males. Testicular Leydig cells are the primary source of testosterone production in the body. Hezuo pigs, native to the southern part of Gansu, China, are characterized by early sexual maturity, strong disease resistance and roughage tolerance. This study employed type IV collagenase digestion combined with cell sieve filtration to isolate and purify Leydig cells from the testicular tissue of 1-month-old Hezuo pigs. We also preliminarily investigated the functions of these cells. The results indicated that the purity of the isolated and purified Leydig cells was as high as 95%. Immunofluorescence analysis demonstrated that the isolated cells specifically expressed the 3ß-hydroxysteroid dehydrogenase antibody. Enzyme-linked immunosorbent assay results showed that the testosterone secretion of the Leydig cells cultured in vitro (generations 5-9) ranged between 1.29-1.67 ng/mL. Additionally, the content of the cellular autophagy signature protein microtubule-associated protein 1 light chain 3 was measured at 230-280 pg/mL. Through this study, we established an in vitro system for the isolation, purification and characterization of testicular Leydig cells from 1-month-old Hezuo pigs, providing a reference for exploring the molecular mechanism behind precocious puberty in Hezuo pigs.


Leydig Cells , Testosterone , Animals , Male , Leydig Cells/metabolism , Testosterone/metabolism , Swine , Testis/cytology , Cells, Cultured , Cell Culture Techniques/veterinary , Cell Separation/methods , Cell Separation/veterinary
7.
FASEB J ; 38(9): e23650, 2024 May 15.
Article En | MEDLINE | ID: mdl-38696238

The global challenge of male infertility is escalating, notably due to the decreased testosterone (T) synthesis in testicular Leydig cells under stress, underscoring the critical need for a more profound understanding of its regulatory mechanisms. CREBZF, a novel basic region-leucine zipper transcription factor, regulates testosterone synthesis in mouse Leydig cells in vitro; however, further validation through in vivo experiments is essential. Our study utilized Cyp17a1-Cre to knock out CREBZF in androgen-synthesis cells and explored the physiological roles of CREBZF in fertility, steroid hormone synthesis, and behaviors in adult male mice. Conditional knockout (cKO) CREBZF did not affect fertility and serum testosterone level in male mice. Primary Leydig cells isolated from CREBZF-cKO mice showed impaired testosterone secretion and decreased mRNA levels of Star, Cyp17a1, and Hsd3b1. Loss of CREBZF resulted in thickening of the adrenal cortex, especially X-zone, with elevated serum corticosterone and dehydroepiandrosterone levels and decreased serum dehydroepiandrosterone sulfate levels. Immunohistochemical staining revealed increased expression of StAR, Cyp11a1, and 17ß-Hsd3 in the adrenal cortex of CREBZF-cKO mice, while the expression of AR was significantly reduced. Along with the histological changes and abnormal steroid levels in the adrenal gland, CREBZF-cKO mice showed higher anxiety-like behavior and impaired memory in the elevated plus maze and Barnes maze, respectively. In summary, CREBZF is dispensable for fertility, and CREBZF deficiency in Leydig cells promotes adrenal function in adult male mice. These results shed light on the requirement of CREBZF for fertility, adrenal steroid synthesis, and stress response in adult male mice, and contribute to understanding the crosstalk between testes and adrenal glands.


Adrenal Cortex , Leydig Cells , Mice, Knockout , Animals , Male , Mice , Leydig Cells/metabolism , Adrenal Cortex/metabolism , Androgens/metabolism , Testosterone/blood , Testosterone/metabolism , Behavior, Animal , Mice, Inbred C57BL
8.
PLoS One ; 19(5): e0299017, 2024.
Article En | MEDLINE | ID: mdl-38758777

A growing threat to male infertility has become a major concern for the human population due to the advent of modern technologies as a source of radiofrequency radiation (RFR). Since these technologies have become an integral part of our daily lives, thus, it becomes necessary to know the impression of such radiations on human health. In view of this, the current study aims to focus on the biological effects of radiofrequency electromagnetic radiations on mouse Leydig cell line (TM3) in a time-dependent manner. TM3 cells were exposed to RFR emitted from 4G cell phone and also exposed to a particular frequency of 1800 MHz and 2450 MHz from RFR exposure system. The cells were then evaluated for different parameters such as cell viability, cell proliferation, testosterone production, and ROS generation. A considerable reduction in the testosterone levels and proliferation rate of TM3 cells were observed at 120 min of exposure as compared to the control group in all exposure settings. Conversely, the intracellular ROS levels showed a significant rise at 60, 90 and 120 min of exposure in both mobile phone and 2450 MHz exposure groups. However, RFR treatment for different time durations (15, 30, 45, 60, 90, and 120 min) did not have significant effect on cell viability at any of the exposure condition (2450 MHz, 1800 MHz, and mobile phone radiation). Therefore, our findings concluded with the negative impact of radiofrequency electromagnetic radiations on Leydig cell's physiological functions, which could be a serious concern for male infertility. However, additional studies are required to determine the specific mechanism of RFR action as well as its long-term consequences.


Cell Proliferation , Cell Survival , Leydig Cells , Radio Waves , Reactive Oxygen Species , Testosterone , Male , Leydig Cells/radiation effects , Leydig Cells/metabolism , Animals , Mice , Reactive Oxygen Species/metabolism , Radio Waves/adverse effects , Cell Proliferation/radiation effects , Testosterone/metabolism , Cell Survival/radiation effects , Cell Line , Cell Phone , Electromagnetic Radiation
9.
Reprod Biol ; 24(2): 100890, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723297

Recently we reported expressional alterations in 219 genes and their transcripts in Leydig cell tumors but nowadays there is still a lack of full basic biochemical characteristics of these tumors. The discovery of potential biochemical markers for tumor management from early detection, treatments, and control of therapy results may markedly supplement genetic data. Leydig cell micronodules were obtained from patients with azoospermia who were qualified for testicular biopsy. The biochemistry of Leydig cell tumors was analyzed using histological staining and spectrophotometric measurements of total proteins, carbohydrates, lipids, and nucleic acids. In addition, the levels of calcium (Ca2 +), copper (Cu2 +), zinc (Zn2 +), and selenium (Se2 +) ions were measured. When compared to healthy testis we revealed, for the first time, that in the interstitial tissue with Leydig cell tumors, great amounts of proteins, carbohydrates, lipids, and acids were dislocated from the seminiferous tubules. Measurements of organic compounds showed a decrease (P < 0.05) only in the Cu2 + content in Leydig cell tumors which may be related to their altered biochemical structure. This specific result may be promising for designing further approaches to manage this tumor based on combining morphological and molecular data.


Leydig Cell Tumor , Testicular Neoplasms , Humans , Male , Leydig Cell Tumor/pathology , Leydig Cell Tumor/metabolism , Testicular Neoplasms/pathology , Testicular Neoplasms/metabolism , Adult , Copper/metabolism , Testis/pathology , Testis/metabolism , Zinc/metabolism , Selenium , Calcium/metabolism , Azoospermia/metabolism , Azoospermia/pathology , Leydig Cells/metabolism , Leydig Cells/pathology
10.
Ecotoxicol Environ Saf ; 279: 116462, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38776784

Tris (2-ethylhexyl) phosphate (TEHP) is a frequently used organophosphorus flame retardant with significant ecotoxicity and widespread human exposure. Recent research indicates that TEHP has reproductive toxicity. However, the precise cell mechanism is not enough understood. Here, by using testicular mesenchymal stromal TM3 cells as a model, we reveal that TEHP induces apoptosis. Then RNA sequencing analysis, immunofluorescence, and western blotting results show that THEP inhibits autophagy flux and enhances endoplasmic reticulum (ER) stress. Moreover, the activation of the ER stress is critical for TEHP-induced cell injury. Interestingly, TEHP-induced ER stress is contributed to autophagic flux inhibition. Furthermore, pharmacological inhibition of autophagy aggravates, and activation of autophagy attenuates TEHP-induced apoptosis. In summary, these findings indicate that TEHP triggers apoptosis in mouse TM3 cells through ER stress activation and autophagy flux inhibition, offering a new perspective on the mechanisms underlying TEHP-induced interstitial cytotoxicity in the mouse testis.


Apoptosis , Autophagy , Endoplasmic Reticulum Stress , Flame Retardants , Leydig Cells , Endoplasmic Reticulum Stress/drug effects , Autophagy/drug effects , Animals , Male , Leydig Cells/drug effects , Mice , Apoptosis/drug effects , Flame Retardants/toxicity , Cell Line
11.
J Food Sci ; 89(6): 3858-3870, 2024 Jun.
Article En | MEDLINE | ID: mdl-38725370

Bisphenol A (BPA) is an endocrine disruptor with reproductive toxicity. Further, 1,25-dihydroxyvitamin D3 (VD3) plays an important role in male reproduction by binding vitamin D receptor (VDR) and mediating the pleiotropic biological actions that include spermatogenesis. However, whether VD3/VDR regulates the effect of BPA on Leydig cells (LCs) injury remains unknown. This study aimed to explore the effects of VD on BPA-induced cytotoxicity in mouse LCs. Hereby, LCs treated with BPA, VD3, or both were subjected to the assays of cell apoptosis, proliferation, autophagy, and levels of target proteins. This study unveiled that cell viability was dose-dependently reduced after exposure to BPA. BPA treatment significantly inhibited LC proliferation, induced apoptosis, and also downregulated VDR expression. By jointly analyzing transcriptome data and Comparative Toxicogenomics Database (CTD) data, autophagy signaling pathways related to testicular development and male reproduction were screened out. Therefore, the autophagy phenomenon of cells was further detected. The results showed that BPA treatment could activate cell autophagy, Vdr-/- inhibits cell autophagy, and active VD3 does not have a significant effect on the autophagy of normal LCs. After VD3 and BPA were used in combination, the autophagy of cells was further enhanced, and VD3 could alleviate BPA-induced damage of LCs. In conclusion, this study found that supplementing VD3 could eliminate the inhibition of BPA on VDR expression, further enhance LCs autophagy effect, and alleviate the inhibition of LCs proliferation and induction of apoptosis by BPA, playing a protective role in cells. The research results will provide valuable strategies to alleviate BPA-induced reproductive toxicity.


Apoptosis , Autophagy , Benzhydryl Compounds , Cell Proliferation , Cell Survival , Endocrine Disruptors , Leydig Cells , Phenols , Receptors, Calcitriol , Animals , Benzhydryl Compounds/toxicity , Male , Mice , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Apoptosis/drug effects , Leydig Cells/drug effects , Leydig Cells/metabolism , Autophagy/drug effects , Endocrine Disruptors/toxicity , Cell Proliferation/drug effects , Cell Survival/drug effects , Calcitriol/pharmacology , Testis/drug effects , Testis/metabolism
12.
Free Radic Biol Med ; 221: 40-51, 2024 Aug 20.
Article En | MEDLINE | ID: mdl-38759901

Fine particulate matter (PM2.5), a significant component of air pollution particulate matter, is inevitable and closely associated with increasing male reproductive disorder. However, the testicular targets of PM2.5 and its toxicity related molecular mechanisms are still not fully understood. In this study, the conditional knockout (cKO) mice and primary Leydig cells were used to explore the testicular targets of PM2.5 and the related underlying mechanisms. First, apparent the structure impairment of seminiferous tubules, Leydig cells vacuolization, decline of serum testosterone and sperm quality reduction were found in male wild-type (WT) and Sirt1 knockout mice after exposure to PM2.5. Enrichment analyses revealed that differentially expressed genes (DEGs) were enriched in steroid hormone biosynthesis, ferroptosis, and HIF-1 signaling pathway in the mice testes after exposure to PM2.5, which were subsequently verified by the molecular biological analyses. Notably, similar enrichment analyses results were also observed in primary Leydig cells after treatment with PM2.5. In addition, Knockdown of Sirt1 significantly increased PM2.5-induced expression and activation of HIF-1α, which was in parallel to the changes of cellular iron levels, oxidative stress indicators and the ferroptosis markers. In conclusion, this highlights that PM2.5 triggers ferroptosis via SIRT1/HIF-1α signaling pathway to inhibit testosterone synthesis in males. These findings provide a novel research support for the study that PM2.5 causes male reproductive injury.


Ferroptosis , Hypoxia-Inducible Factor 1, alpha Subunit , Leydig Cells , Mice, Knockout , Particulate Matter , Signal Transduction , Sirtuin 1 , Testosterone , Animals , Male , Testosterone/metabolism , Testosterone/blood , Particulate Matter/toxicity , Particulate Matter/adverse effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Sirtuin 1/metabolism , Sirtuin 1/genetics , Signal Transduction/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Leydig Cells/metabolism , Leydig Cells/drug effects , Leydig Cells/pathology , Testis/metabolism , Testis/pathology , Testis/drug effects , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
13.
Biomed Pharmacother ; 175: 116700, 2024 Jun.
Article En | MEDLINE | ID: mdl-38703505

Late-onset hypogonadism (LOH) is an age-related disease in men characterized by decreased testosterone levels with symptoms such as decreased libido, erectile dysfunction, and depression. Thymus quinquecostatus Celakovski (TQC) is a plant used as a volatile oil in traditional medicine, and its bioactive compounds have anti-inflammatory potential. Based on this knowledge, the present study aimed to investigate the effects of TQC extract (TE) on LOH in TM3 Leydig cells and in an in vivo aging mouse model. The aqueous extract of T. quinquecostatus Celakovski (12.5, 25, and 50 µg/mL concentrations) was used to measure parameters such as cell viability, testosterone level, body weight, and gene expression, via in vivo studies. Interestingly, TE increased testosterone levels in TM3 cells in a dose-dependent manner without affecting cell viability. Furthermore, TE significantly increased the expression of genes involved in the cytochrome P450 family (Cyp11a1, Cyp17a1, Cyp19a1, and Srd5a2), which regulate testosterone biosynthesis. In aging mouse models, TE increased testosterone levels without affecting body weight and testicular tissue weight tissue of an aging animal group. In addition, the high-dose TE-treated group (50 mg/kg) showed significantly increased expression of the cytochrome p450 enzymes, similar to the in vitro results. Furthermore, HPLC-MS analysis confirmed the presence of caffeic acid and rosmarinic acid as bioactive compounds in TE. Thus, the results obtained in the present study confirmed that TQC and its bioactive compounds can be used for LOH treatment to enhance testosterone production.


Aging , Plant Extracts , Testis , Testosterone , Thymus Plant , Animals , Testosterone/blood , Male , Aging/drug effects , Aging/metabolism , Mice , Plant Extracts/pharmacology , Testis/drug effects , Testis/metabolism , Thymus Plant/chemistry , Leydig Cells/drug effects , Leydig Cells/metabolism , Cell Survival/drug effects , Cell Line , Hypogonadism/drug therapy , Disease Models, Animal
14.
Cell Mol Life Sci ; 81(1): 212, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724675

Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.


Infertility, Male , Leydig Cells , Pre-B-Cell Leukemia Transcription Factor 1 , Testis , Testosterone , Animals , Male , Leydig Cells/metabolism , Leydig Cells/pathology , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Mice , Testosterone/metabolism , Testis/metabolism , Testis/pathology , Infertility, Male/genetics , Infertility, Male/pathology , Infertility, Male/metabolism , Cell Differentiation/genetics , Spermatogenesis/genetics , Mice, Inbred C57BL , Mice, Knockout
15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732137

Gonadotoxic agents could impair spermatogenesis and may lead to male infertility. The present study aimed to evaluate the effect of IL-1ß on the development of spermatogenesis from cells isolated from seminiferous tubules (STs) of normal and busulfan-treated immature mice in vitro. Cells were cultured in a 3D in vitro culture system for 5 weeks. We examined the development of cells from the different stages of spermatogenesis by immunofluorescence staining or qPCR analyses. Factors of Sertoli and Leydig cells were examined by qPCR analysis. We showed that busulfan (BU) treatment significantly reduced the expression of testicular IL-1ß in the treated mice compared to the control group (CT). Cultures of cells from normal and busulfan-treated immature mice induced the development of pre-meiotic (Vasa), meiotic (Boule), and post-meiotic (acrosin) cells. However, the percentage of developed Boule and acrosin cells was significantly lower in cultures of busulfan-treated mice compared to normal mice. Adding IL-1ß to both cultures significantly increased the percentages of Vasa, Boule, and acrosin cells compared to their controls. However, the percentage of Boule and acrosin cells was significantly lower from cultures of busulfan-treated mice that were treated with IL-1ß compared to cultures treated with IL-1ß from normal mice. Furthermore, addition of IL-1ß to cultures from normal mice significantly increased only the expression of androgen receptor and transferrin but no other factors of Sertoli cells compared to their CT. However, the addition of IL-1ß to cultures from busulfan-treated mice significantly increased only the expression of androgen-binding protein and the FSH receptor compared to their CT. Adding IL-1ß to cultures of normal mice did not affect the expression of 3ßHSD compared to the CT, but it significantly reduced its expression in cultures from busulfan-treated mice compared to the CT. Our findings demonstrate the development of different stages of spermatogenesis in vitro from busulfan-treated mice and that IL-1ß could potentiate this development in vitro.


Busulfan , Interleukin-1beta , Spermatogenesis , Animals , Busulfan/pharmacology , Spermatogenesis/drug effects , Male , Interleukin-1beta/metabolism , Mice , Sertoli Cells/metabolism , Sertoli Cells/drug effects , Sertoli Cells/cytology , Testis/metabolism , Testis/drug effects , Testis/cytology , Leydig Cells/metabolism , Leydig Cells/drug effects , Seminiferous Tubules/drug effects , Seminiferous Tubules/metabolism , Cells, Cultured
16.
PLoS One ; 19(4): e0292198, 2024.
Article En | MEDLINE | ID: mdl-38574116

The surgical sterilization of cats and dogs has been used to prevent their unwanted breeding for decades. However, this is an expensive and invasive procedure, and often impractical in wider contexts, for example the control of feral populations. A sterilization agent that could be administered in a single injection, would not only eliminate the risks imposed by surgery but also be a much more cost-effective solution to this worldwide problem. In this study, we sought to develop a targeting peptide that would selectively bind to Leydig cells of the testes. Subsequently, after covalently attaching a cell ablation agent, Auristatin, to this peptide we aimed to apply this conjugated product (LH2Auristatin) to adult male mice in vivo, both alone and together with a previously developed Sertoli cell targeting peptide (FSH2Menadione). The application of LH2Auristatin alone resulted in an increase in sperm DNA damage, reduced mean testes weights and mean seminiferous tubule size, along with extensive germ cell apoptosis and a reduction in litter sizes. Together with FSH2Menadione there was also an increase in embryo resorptions. These promising results were observed in around a third of all treated animals. Given this variability, we discuss how these reagents might be modified in order to increase target cell ablation and improve their efficacy as sterilization agents.


Leydig Cells , Testis , Male , Mice , Animals , Cats , Dogs , Spermatogenesis , Semen , Sertoli Cells/metabolism , Peptides/metabolism
17.
Int J Mol Sci ; 25(7)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38612808

We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.


Colonic Diseases , Interstitial Cells of Cajal , Animals , Mice , Male , Serotonin/pharmacology , Leydig Cells , Adenylyl Cyclase Inhibitors , Calcium Channel Blockers , Protein Kinase Inhibitors
18.
J Agric Food Chem ; 72(18): 10616-10626, 2024 May 08.
Article En | MEDLINE | ID: mdl-38656193

Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 µM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.


Leydig Cells , Mitochondria , Mitochondrial Dynamics , Oxidative Stress , Rats, Sprague-Dawley , Trichothecenes , Animals , Male , Mitochondrial Dynamics/drug effects , Rats , Leydig Cells/drug effects , Leydig Cells/metabolism , Leydig Cells/cytology , Trichothecenes/toxicity , Oxidative Stress/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Testosterone/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Humans , Dynamins/metabolism , Dynamins/genetics , Membrane Potential, Mitochondrial/drug effects
19.
Environ Pollut ; 350: 124030, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38663511

As a widely used alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been detected in the environment and humans; however, little is known regarding its male reproductive toxicity. To compare the effects of HFPO-TA on steroid hormone synthesis with PFOA, we exposed Leydig cells (MLTC-1) to non-lethal doses (0.1, 1, and 10 µM) of PFOA and HFPO-TA for 48 h. It was found that the levels of steroid hormones, 17α-hydroxyprogesterone (OHP), androstenedione (ASD), and testosterone (T) were significantly increased in 1 and 10 µM of PFOA and HFPO-TA groups, with greater elevation being observed in the HFPO-TA groups than in the PFOA groups at 10 µM. We further showed that the two rate-limiting steroidogenic genes (Star and Cyp11a1) were up-regulated, while Hsd3b, Cyp17a1, and Hsd17b were down-regulated or unchanged after PFOA/HFPO-TA exposure. Moreover, PFOA exposure significantly up-regulated histone H3K4me1/3 and H3K9me1, while down-regulated H3K4me2 and H3K9me2/3 levels. By contrast, H3K4me2/3 and H3K9me2/3 were enhanced, while H3K4me1 and H3K9me1 were repressed after HFPO-TA treatment. It was further confirmed that H3K4me1/3 were increased and H3K9me2 was decreased in Star and Cyp11a1 promoters by PFOA, while HFPO-TA increased H3K4me2/3 and decreased H3K9me1 in the two gene promoters. Therefore, we propose that low levels of PFOA/HFPO-TA enhance the expression of Star and Cyp11a1 by regulating H3K4 and H3K9 methylation, thus stimulating the production of steroid hormones in MLTC-1 cells. Collectively, HFPO-TA exhibits stronger effects on steroidogenesis compared to PFOA, which may be ascribed to the distinct regulation of histone modifications. These data suggest that HFPO-TA does not appear to be a safer alternative to PFOA on the aspect of male reproductive toxicity.


Caprylates , Fluorocarbons , Fluorocarbons/toxicity , Caprylates/toxicity , Animals , Male , Histone Code/drug effects , Leydig Cells/drug effects , Leydig Cells/metabolism , Testosterone/metabolism , Histones/metabolism , Mice
20.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Article En | MEDLINE | ID: mdl-38613362

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Glomerulonephritis , Plant Extracts , Testosterone , Male , Animals , Mice , Leydig Cells , Curcuma , Hydrocortisone , Yang Deficiency
...