Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.418
Filter
1.
Proc Natl Acad Sci U S A ; 121(29): e2403188121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990950

ABSTRACT

The kinetoplastid parasite, Trypanosoma brucei, undergoes a complex life cycle entailing slender and stumpy bloodstream forms in mammals and procyclic and metacyclic forms (MFs) in tsetse fly hosts. The numerous gene regulatory events that underlie T. brucei differentiation between hosts, as well as between active and quiescent stages within each host, take place in the near absence of transcriptional control. Rather, differentiation is controlled by RNA-binding proteins (RBPs) that associate with mRNA 3' untranslated regions (3'UTRs) to impact RNA stability and translational efficiency. DRBD18 is a multifunctional T. brucei RBP, shown to impact mRNA stability, translation, export, and processing. Here, we use single-cell RNAseq to characterize transcriptomic changes in cell populations that arise upon DRBD18 depletion, as well as to visualize transcriptome-wide alterations to 3'UTR length. We show that in procyclic insect stages, DRBD18 represses expression of stumpy bloodstream form and MF transcripts. Additionally, DRBD18 regulates the 3'UTR lengths of over 1,500 transcripts, typically promoting the use of distal polyadenylation sites, and thus the inclusion of 3'UTR regulatory elements. Remarkably, comparison of polyadenylation patterns in DRBD18 knockdowns with polyadenylation patterns in stumpy bloodstream forms shows numerous similarities, revealing a role for poly(A) site selection in developmental gene regulation, and indicating that DRBD18 controls this process for a set of transcripts. RNA immunoprecipitation supports a direct role for DRBD18 in poly(A) site selection. This report highlights the importance of alternative polyadenylation in T. brucei developmental control and identifies a critical RBP in this process.


Subject(s)
3' Untranslated Regions , Life Cycle Stages , Protozoan Proteins , RNA-Binding Proteins , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Life Cycle Stages/genetics , 3' Untranslated Regions/genetics , Animals , Transcriptome , RNA, Messenger/genetics , RNA, Messenger/metabolism , Poly A/metabolism , Poly A/genetics , Polyadenylation
2.
Bull Math Biol ; 86(8): 102, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976154

ABSTRACT

This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.


Subject(s)
Amphibians , Basic Reproduction Number , Epidemics , Host-Pathogen Interactions , Mathematical Concepts , Models, Biological , Population Dynamics , Animals , Basic Reproduction Number/statistics & numerical data , Epidemics/statistics & numerical data , Amphibians/microbiology , Amphibians/growth & development , Population Dynamics/statistics & numerical data , Starfish/growth & development , Starfish/microbiology , Life Cycle Stages , Chytridiomycota/physiology , Chytridiomycota/pathogenicity , Epidemiological Models , Computer Simulation
3.
Adv Exp Med Biol ; 1454: 75-105, 2024.
Article in English | MEDLINE | ID: mdl-39008264

ABSTRACT

Schistosomiasis is a major cause of morbidity in the world and almost 800 million people worldwide are at risk for schistosomiasis; it is second only to malaria as a major infectious disease. Globally, it is estimated that the disease affects more than 250 million people in 78 countries of the world and is responsible for some 280,000-500,000 deaths each year. The three major schistosomes infecting humans are Schistosoma mansoni, S. japonicum, and S. haematobium. This chapter covers a wide range of aspects of schistosomiasis, including basic biology of the parasites, epidemiology, immunopathology, treatment, control, vaccines, and genomics/proteomics. In this chapter, the reader will understand the significant toll this disease takes in terms of mortality and morbidity. A description of the various life stages of schistosomes is presented, which will be informative for both those unfamiliar with the disease and experienced scientists. Clinical and public health aspects are addressed that cover acute and chronic disease, diagnosis, current treatment regimens and alternative drugs, and schistosomiasis control programs. A brief overview of genomics and proteomics is included that details recent advances in the field that will help scientists investigate the molecular biology of schistosomes. The reader will take away an appreciation for general aspects of schistosomiasis and the current research advances.


Subject(s)
Schistosomiasis , Humans , Animals , Schistosomiasis/parasitology , Schistosomiasis/epidemiology , Schistosomiasis/diagnosis , Schistosoma/physiology , Schistosoma/genetics , Schistosoma/pathogenicity , Proteomics/methods , Life Cycle Stages , Genomics/methods
4.
Adv Exp Med Biol ; 1454: 107-155, 2024.
Article in English | MEDLINE | ID: mdl-39008265

ABSTRACT

Trematodes of the order Diplostomida are well known as serious pathogens of man, and both farm and wild animals; members of the genus Schistosoma (Schistosomatidae) are responsible for human schistosomosis (schistosomiasis) affecting more than 200 million people in tropical and subtropical countries, and infections of mammals and birds by animal schistosomes are of great veterinary importance. The order Diplostomida is also rich in species parasitizing other major taxa of vertebrates. The "Aporocotylidae" sensu lato are pathogenic in fish, "Spirorchiidae" sensu lato in reptiles. All these flukes have two-host life cycles, with asexually reproducing larvae usually in mollusks and occasionally in annelids, and adults usually live in the blood vessels of their vertebrate hosts. Pathology is frequently associated with inflammatory reactions to eggs trapped in various tissues/organs. On the other hand, the representatives of Diplostomidae and Strigeidae have three- or four-host life cycles in which vertebrates often serve not only as definitive but also as intermediate or paratenic hosts. Pathology is usually associated with migration of metacercariae and mesocercariae within the host tissues. The impact of these trematode infections on both farm and wild animals may be significant.


Subject(s)
Trematode Infections , Animals , Humans , Trematode Infections/parasitology , Trematode Infections/veterinary , Trematoda/physiology , Trematoda/pathogenicity , Life Cycle Stages , Host-Parasite Interactions , Schistosomatidae/genetics
5.
Braz J Biol ; 84: e278187, 2024.
Article in English | MEDLINE | ID: mdl-38985058

ABSTRACT

Zatrephina lineata (Coleoptera: Chrysomelidae) is a phytophagous insect, mainly of plants of the genera Ipomoea and Mikania. The objective was to study the development, survival and to describe the life stages of Z. lineata fed on leaves of Ipomoea pes-caprae. Biological observations were made daily with the aid of a stereoscopic microscope and the instars of this insect identified by the exuvia left between one moulting and the next. The duration of development and survival of the egg, larva and pupa stages and the first, second, third, fourth and fifth instars and of the nymph stage of Z. lineata differed, but not between sexes of this insect. The duration of development of Z. lineata was longer in the larval stage and in the fifth instar, and its survival greater in the egg and pupa stages and in the first and fifth instars. Zatrephina lineata eggs, cream-colored, are ellipsoid and deposited in groups on the adaxial surface of older I. pes-caprae leaves. The larvae of this insect go through five instars, with the first three being gregarious with chemo-behavioral defenses. The exarated pupae of Z. lineata, light yellow in color and with an oval shape flattened dorsoventrally, attach to the abaxial surface of the I. pes-caprae leaves. The shape of adults of this insect is oval, straw yellow in color with lighter longitudinal stripes and females are slightly larger than males.


Subject(s)
Coleoptera , Ipomoea , Larva , Plant Leaves , Animals , Coleoptera/classification , Coleoptera/growth & development , Male , Female , Plant Leaves/parasitology , Larva/growth & development , Ipomoea/parasitology , Pupa/growth & development , Life Cycle Stages/physiology
6.
Braz J Biol ; 84: e283484, 2024.
Article in English | MEDLINE | ID: mdl-38985072

ABSTRACT

The date palm mite, Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae), is a serious pest of dates in the Middle East and North Africa, inflicting severe economic damage if not controlled early. As predaceous mites are known to be potential biocontrol agents against several pests, so predation capacity, life table, reproduction, and survival of Amblyseius swirskii Athias-Henriot and Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae), collected from date palm farms in Qassim Saudi Arabia, were studied under laboratory conditions (25 °C, 30 °C, 35 °C and 50 ± 5% RH) against all motile stages of O. afrasiaticus. For both predators, mean developmental time, oviposition period, and longevity were inversely related to temperature from 25 to 35 °C. Various parameters were studied for A. swirskii and N. cucumeris at 25 °C, 30 °C and 35 °C, i.e. the female developmental time, 9.37, 7.29, 5.56, and 10.67, 8.38, 6.45 d; oviposition period, 19.77, 16.18, 13.94 and 15.90, 13.84, 10.64 d; longevity, 29.39, 24.79, 20.64 and 25.42, 21.94, 17.39 d; fecundity, 31.91, 37.10, 42.16 and 21.75, 26.84, 30.56 eggs per female, respectively. The maximum daily predation rate for both the predators was recorded at 35 °C during the oviposition period. The total predation of A. swirskii and N. cucumeris female was 370.86, 387.54, 405.83, 232.14, 263.32, 248.85 preys at 25 °C, 30 °C and 35 °C respectively. The maximum reproduction rate of A. swirskii and N. cucumeris (3.02, 2.87 eggs/♀/day) was recorded at 35 °C while the minimum (2.00, 1.36 eggs/♀/day) was recorded at 25 °C. The life table parameters were estimated as net reproductive rate (Ro) 21.68, 25.94, 29.52 and 18.95, 20.25, 22.78; the mean generation time (T) 24.92, 21.82, 18.24 and 26.30, 23.60, 20.56 d; the intrinsic rate of increase (rm) 0.181, 0.232, 0.248 and 0.170, 0.185, 0.196; the finite rate of increase (λ) 1.365, 1.551, 1.706 and 1.126, 1.324, 1.428 for A. swirskii and N. cucumeris at 25 °C, 30 °C and 35 °C respectively. The results of this study suggested that the two phytoseiid species are promising biological control agents of O. afrasiaticus at a wide range of temperatures.


Subject(s)
Mites , Pest Control, Biological , Phoeniceae , Predatory Behavior , Animals , Female , Predatory Behavior/physiology , Male , Mites/physiology , Phoeniceae/parasitology , Oviposition/physiology , Tetranychidae/physiology , Reproduction/physiology , Longevity , Life Cycle Stages/physiology , Life History Traits
7.
Adv Exp Med Biol ; 1454: 391-440, 2024.
Article in English | MEDLINE | ID: mdl-39008272

ABSTRACT

The trematodes are a species-rich group of parasites, with some estimates suggesting that there are more than 24,000 species. However, the complexities associated with their taxonomic status and nomenclature can hinder explorations of the biology of wildlife trematodes, including fundamental aspects such as host use, life cycle variation, pathology, and disease. In this chapter, we review work on selected trematodes of amphibians, birds, mammals, and their snail intermediate hosts, with the goal of providing a tool kit on how to study trematodes of wildlife. We provide a brief introduction to each group of wildlife trematodes, followed by some examples of the challenges each group of trematodes has relative to the goal of their identification and understanding of the biology and interactions these organisms have with their wildlife hosts.


Subject(s)
Animals, Wild , Birds , Host-Parasite Interactions , Trematoda , Trematode Infections , Animals , Trematoda/physiology , Trematoda/classification , Animals, Wild/parasitology , Trematode Infections/parasitology , Trematode Infections/veterinary , Birds/parasitology , Amphibians/parasitology , Snails/parasitology , Mammals/parasitology , Life Cycle Stages
8.
Parasite ; 31: 39, 2024.
Article in English | MEDLINE | ID: mdl-38995112

ABSTRACT

Echinococcus granulosus sensu lato is a platyhelminth parasite and the etiological cause of cystic echinococcosis (CE), a zoonotic and neglected disease that infects animals and humans worldwide. As a part of the biological arsenal of the parasite, cathepsin L proteases are a group of proteins that are believed to be essential for parasite penetration, immune evasion, and establishment in the tissues of the host. In this work, we have cloned and sequenced a new putative cathepsin L protease from Echinococcus canadensis (EcCLP1). The bioinformatic analysis suggests that EcCLP1 could be synthesized as a zymogen and activated after proteolytic cleavage. The multiple sequence alignment with other cathepsin proteases reveals important functional conserved features like a conserved active site, an N-linked glycosylation residue, a catalytic triad, an oxyanion hole, and three putative disulfide bonds. The phylogenetic analysis suggests that EcCLP1 could indeed be a cathepsin L cysteine protease from clade 1 as it grouped with cathepsins from other species in this clade. Modeling studies suggest that EcCLP1 has two domains forming a cleft where the active site is located and an occluding role for the propeptide. The transcriptomic analysis reveals different levels of cathepsin transcript expression along the different stages of the parasite life cycle. The whole-mount immunohistochemistry shows an interesting superficial punctate pattern of staining which suggests a secretory pattern of expression. The putative cathepsin L protease characterized here may represent an interesting tool for diagnostic purposes, vaccine design, or a new pharmacological target for antiparasitic intervention.


Title: Caractérisation moléculaire d'EcCLP1, une nouvelle protéase putative de type cathepsine L d'Echinococcus canadensis. Abstract: Echinococcus granulosus sensu lato est un Plathelminthe parasite et la cause étiologique de l'échinococcose kystique (EK), une maladie zoonotique et négligée qui infecte les animaux et les humains dans le monde entier. En tant que partie de l'arsenal biologique du parasite, les protéases de type cathepsine L sont un groupe de protéines considérées comme essentielles à la pénétration du parasite, l'évasion immunitaire et son établissement dans les tissus de l'hôte. Dans ce travail, nous avons cloné et séquencé une nouvelle protéase putative de type cathepsine L d'Echinococcus canadensis (EcCLP1). L'analyse bioinformatique suggère qu'EcCLP1 pourrait être synthétisée sous forme de zymogène et activée après clivage protéolytique. L'alignement de séquences multiples avec d'autres protéases de type cathepsine révèle d'importantes caractéristiques fonctionnelles conservées telles qu'un site actif conservé, un résidu de glycosylation lié à N, une triade catalytique, un trou oxyanion et trois liaisons disulfure putatives. L'analyse phylogénétique suggère qu'EcCLP1 pourrait en effet être une protéase de type cathepsine L du clade 1 car elle se regroupe avec les cathepsines d'autres espèces de ce clade. Les études de modélisation suggèrent qu'EcCLP1 possède deux domaines formant une fente où se trouve le site actif et un rôle d'occlusion pour le propeptide. L'analyse transcriptomique révèle différents niveaux d'expression du transcrit de la cathepsine au cours des différentes étapes du cycle de vie du parasite. L'immunohistochimie de montages entiers montre un intéressant motif de coloration ponctuée superficielle qui suggère un modèle d'expression sécrétoire. La protéase putative de type cathepsine L caractérisée ici peut représenter un outil intéressant à des fins de diagnostic, de conception de vaccins ou une nouvelle cible pharmacologique pour une intervention antiparasitaire.


Subject(s)
Amino Acid Sequence , Cathepsin L , Echinococcus , Phylogeny , Animals , Cathepsin L/genetics , Echinococcus/enzymology , Echinococcus/genetics , Echinococcus/classification , Sequence Alignment , Cloning, Molecular , Helminth Proteins/genetics , Helminth Proteins/chemistry , Life Cycle Stages , Echinococcosis/parasitology , Catalytic Domain , Gene Expression Profiling
9.
PLoS One ; 19(7): e0304739, 2024.
Article in English | MEDLINE | ID: mdl-38985709

ABSTRACT

Ecotoxicological tests used for risk assessment of toxicants and its mixtures rely both on classical life-cycle endpoints and bioindicator organisms usually derived from long-term laboratory cultures. While these cultures are thought to be comparable among laboratories and more sensitive than field organisms, it is not well investigated whether this assumption is met. Therefore, we aimed to investigate differential life-cycle endpoints response of two different strains of C. riparius, one originally from Spain and the other from Germany, kept under the same laboratory conditions for more than five years. To highlight any possible differences, the two populations were challenged with exposure to cadmium (Cd), polyvinyl chloride (PVC) microplastics and a co-exposure with both. Our results showed that significant differences between the strains became evident with the co-exposure of Cd and PVC MPs. The German strain showed attenuation of the deleterious Cd effects with microplastic co-exposure in survival and developmental time. Contrary to that, the Spanish strain showed no interaction between the substances. In conclusion, the toxicity-effects of contaminants may vary strongly among laboratory populations, which makes a universal risk assessment evaluation challenging.


Subject(s)
Cadmium , Chironomidae , Ecotoxicology , Microplastics , Animals , Cadmium/toxicity , Microplastics/toxicity , Chironomidae/drug effects , Chironomidae/growth & development , Ecotoxicology/methods , Water Pollutants, Chemical/toxicity , Life Cycle Stages/drug effects , Polyvinyl Chloride , Spain , Germany
10.
Sci Rep ; 14(1): 16248, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009624

ABSTRACT

Psyllid species, including the potato psyllid (PoP) Bactericera cockerelli (Sulc) (Triozidae) serve as host and vector of "Candidatus Liberibacter spp." ("Ca. Liberibacter"), which also infects diverse plant hosts, including citrus and tomato. Psyllid transmission of "Ca. Liberibacter" is circulative and propagative. The time of "Ca. Liberibacter" acquisition and therefore vector life stage most competent for bacterial transmission varies by pathosystems. Here, the potato psyllid-"Ca. Liberibacter solanacearum" (CLso) pathosystem was investigated to dissect CLso-prophage interactions in the tomato plant and PoP-psyllid host by real-time quantitative reverse transcriptase amplification of CLso genes/loci with predicted involvement in host infection and psyllid-CLso transmission. Genes/loci analyzed were associated with (1) CLso-adhesion, -invasion, -pathogenicity, and -motility, (2) prophage-adhesion and pathogenicity, and (3) CLso-lysogenic cycle. Relative gene expression was quantified by qRT-PCR amplification from total RNA isolated from CLso-infected 1st-2nd and 4th-5th nymphs and teneral adults and CLso-infected tomato plants in which CLso infection is thought to occur without SC1-SC2 replication. Gene/loci expression was host-dependent and varied with the psyllid developmental stage. Loci previously associated with repressor-anti-repressor regulation in the "Ca Liberibacter asiaticus"-prophage pathosystem, which maintains the lysogenic cycle in Asian citrus psyllid Diaphorina citri, were expressed in CLso-infected psyllids but not in CLso-infected tomato plants.


Subject(s)
Hemiptera , Plant Diseases , Prophages , Solanum lycopersicum , Animals , Hemiptera/microbiology , Prophages/genetics , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Solanum tuberosum/microbiology , Solanum tuberosum/parasitology , Insect Vectors/microbiology , Rhizobiaceae/genetics , Gene Expression Regulation, Bacterial , Life Cycle Stages/genetics
11.
Parasites Hosts Dis ; 62(2): 226-237, 2024 May.
Article in English | MEDLINE | ID: mdl-38835263

ABSTRACT

Ticks, blood-sucking ectoparasites, spread diseases to humans and animals. Haemaphysalis longicornis is a significant vector for tick-borne diseases in medical and veterinary contexts. Identifying protective antigens in H. longicornis for an anti-tick vaccine is a key tick control strategy. Enolase, a multifunctional protein, significantly converts D-2-phosphoglycerate and phosphoenolpyruvate in glycolysis and gluconeogenesis in cell cytoplasm. This study cloned a complete open reading frame (ORF) of enolase from the H. longicornis tick and characterized its transcriptional and silencing effect. We amplified the full-length cDNA of the enolase gene using rapid amplification of cDNA ends. The complete cDNA, with an ORF of 1,297 nucleotides, encoded a 432-amino acid polypeptide. Enolase of the Jeju strain H. longicornis exhibited the highest sequence similarity with H. flava (98%), followed by Dermacentor silvarum (82%). The enolase motifs identified included N-terminal and C-terminal regions, magnesium binding sites, and several phosphorylation sites. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that enolase mRNA transcripts were expressed across all developmental stages of ticks and organs such as salivary gland and midgut. RT-PCR showed higher transcript levels in syn-ganglia, suggesting that synganglion nerves influence enolase,s role in tick salivary glands. We injected enolase double-stranded RNA into adult unfed female ticks, after which they were subsequently fed with normal unfed males until they spontaneously dropped off. RNA interference significantly (P<0.05) reduced feeding and reproduction, along with abnormalities in eggs (no embryos) and hatching. These findings suggest enolase is a promising target for future tick control strategies.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , Ixodidae , Phosphopyruvate Hydratase , Animals , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Ixodidae/genetics , Ixodidae/enzymology , Female , Molecular Sequence Data , Life Cycle Stages/genetics , Gene Silencing , Male , Phylogeny , Base Sequence , DNA, Complementary/genetics , Haemaphysalis longicornis
12.
J Helminthol ; 98: e47, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828707

ABSTRACT

Relative to the numerous studies focused on mammalian schistosomes, fewer include avian schistosomatids particularly in the southern hemisphere. This is changing and current research emerging from the Neotropics shows a remarkable diversity of endemic taxa. To contribute to this effort, nine ducks (Spatula cyanoptera, S.versicolor, Netta peposaca), 12 swans (Cygnus melancoryphus) and 1,400 Physa spp. snails from Chile and Argentina were collected for adults and larval schistosomatids, respectively. Isolated schistosomatids were preserved for morphological and molecular analyses (28S and COI genes). Four different schistosomatid taxa were retrieved from birds: Trichobilharzia sp. in N. peposaca and S. cyanoptera that formed a clade; S.cyanoptera and S. versicolor hosted Trichobilharzia querquedulae; Cygnus melancoryphus hosted the nasal schistosomatid, Nasusbilharzia melancorhypha; and one visceral, Schistosomatidae gen. sp., which formed a clade with furcocercariae from Argentina and Chile from previous work. Of the physid snails, only one from Argentina had schistosomatid furcocercariae that based on molecular analyses grouped with T. querquedulae. This study represents the first description of adult schistosomatids from Chile as well as the elucidation of the life cycles of N.melancorhypha and T. querquedulae in Chile and Neotropics, respectively. Without well-preserved adults, the putative new genus Schistosomatidae gen. sp. could not be described, but its life cycle involves Chilina spp. and C. melancoryphus. Scanning electron microscopy of T. querquedulae revealed additional, undescribed morphological traits, highlighting its diagnostic importance. Authors stress the need for additional surveys of avian schistosomatids from the Neotropics to better understand their evolutionary history.


Subject(s)
Life Cycle Stages , Phylogeny , Schistosomatidae , Animals , Schistosomatidae/genetics , Schistosomatidae/classification , Schistosomatidae/isolation & purification , Schistosomatidae/growth & development , Schistosomatidae/anatomy & histology , Chile , Argentina , Birds/parasitology , Bird Diseases/parasitology , RNA, Ribosomal, 28S/genetics , Snails/parasitology , South America , Electron Transport Complex IV/genetics
13.
Infect Dis Poverty ; 13(1): 48, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902844

ABSTRACT

BACKGROUND: Human parasitic infections caused by Adenophorean nematodes encompass a range of diseases, including dioctophymiasis, trichuriasis, capillariasis, trichinellosis, and myositis. These infection can result in adverse impacts on human health and cause societal and economic concerns in tropical and subtropical regions. METHODS: This review conducted searches in PubMed, Embase and Google Scholar for relevant studies that published in established databases up to April 26, 2024. Studies that focused on the common morphology, life cycle, disease distribution, clinical manifestations, and prevention and control strategies for Adenophorean parasitic diseases in humans were included. RESULTS: Adenophorean nematodes exhibit shared morphological characteristics with a four-layered cuticle; uninucleate epidermal cells; pseudocoelom with six or more coelomocytes; generally three caudal glands; five esophageal glands; two testes in males with median-ventral supplementary glands in a single row; tail in males rarely possessing caudal alae; amphids always postlabial; presence of cephalic sensory organs; absence of phasmids; and a secretory-excretory system consisting of a single ventral gland cell, usually with a non-cuticularized terminal duct. Humans play two important roles in the life cycle of the nematode class, Adenophorea: 1) as a definitive host infected by ingesting undercooked paratenic hosts, embryonated eggs, infective larvae in fish tissue and meat contaminated with encysted or non-encysted larvae, and 2) as an accidental host infected by ingesting parasitic eggs in undercooked meat. Many organs are targeted by the Adenophorean nematode in humans such as the intestines, lungs, liver, kidneys, lymphatic circulation and blood vessels, resulting in gastrointestinal problems, excessive immunological responses, cell disruption, and even death. Most of these infections have significant incidence rates in the developing countries of Africa, Asia and Latin America; however, some parasitic diseases have restricted dissemination in outbreaks. To prevent these diseases, interventions together with education, sanitation, hygiene and animal control measures have been introduced in order to reduce and control parasite populations. CONCLUSIONS: The common morphology, life cycle, global epidemiology and pathology of human Adenophorean nematode-borne parasitic diseases were highlighted, as well as their prevention and control. The findings of this review will contribute to improvement of monitoring and predicting human-parasitic infections, understanding the relationship between animals, humans and parasites, and preventing and controlling parasitic diseases.


Subject(s)
Global Health , Animals , Humans , Life Cycle Stages , Nematoda/physiology , Nematode Infections/epidemiology , Nematode Infections/prevention & control , Nematode Infections/parasitology
14.
Nat Commun ; 15(1): 5219, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890312

ABSTRACT

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.


Subject(s)
Acetamides , Antimalarials , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/growth & development , Acetamides/pharmacology , Acetamides/chemistry , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Antimalarials/pharmacology , Antimalarials/chemistry , Animals , Carrier Proteins/metabolism , Carrier Proteins/genetics , Mutation , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/drug therapy , Humans , Drug Resistance/genetics , Drug Resistance/drug effects , Life Cycle Stages/drug effects
15.
Food Chem Toxicol ; 190: 114789, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844066

ABSTRACT

The safety assessments for chemicals targeted for use or expected to be exposed to specific life stages, including infancy, childhood, pregnancy and lactation, and geriatrics, need to account for extrapolation of data from healthy adults to these populations to assess their human health risk. However, often adequate and relevant toxicity or pharmacokinetic (PK) data of chemicals in specific life stages are not available. For such chemicals, New Approach Methodologies (NAMs), such as physiologically based pharmacokinetic (PBPK) modeling, biologically based dose response (BBDR) modeling, in vitro to in vivo extrapolation (IVIVE), etc. can be used to understand the variability of exposure and effects of chemicals in specific life stages and assess their associated risk. A life stage specific PBPK model incorporates the physiological and biochemical changes associated with each life stage and simulates their impact on the absorption, distribution, metabolism, and elimination (ADME) of these chemicals. In our review, we summarize the parameterization of life stage models based on New Approach Methodologies (NAMs) and discuss case studies that highlight the utility of a life stage based PBPK modeling for risk assessment. In addition, we discuss the utility of artificial intelligence (AI)/machine learning (ML) and other computational models, such as those based on in vitro data, as tools for estimation of relevant physiological or physicochemical parameters and selection of model. We also discuss existing gaps in the available toxicological datasets and current challenges that need to be overcome to expand the utility of NAMs for life stage-specific chemical risk assessment.


Subject(s)
Models, Biological , Risk Assessment/methods , Humans , Animals , Life Cycle Stages/drug effects , Female
16.
New Phytol ; 243(3): 922-935, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38859570

ABSTRACT

Understanding how widespread species adapt to variation in abiotic conditions across their ranges is fundamental to ecology. Insight may come from studying how among-population variation (APV) in the common garden corresponds with the environmental conditions of source populations. However, there are no such studies comparing native vs non-native populations across multiple life stages. We examined APV in the performance and functional traits of 59 Conyza canadensis populations, in response to drought, across large aridity gradients in the native (North America) and non-native (Eurasia) ranges in three experiments. Our treatment (dry vs wet) was applied at the recruitment, juvenile, and adult life stages. We found contrasting patterns of APV in drought responses between the two ranges. In the native range, plant performance was less reduced by drought in populations from xeric than mesic habitats, but such relationship was not apparent for non-native populations. These range-specific patterns were consistent across the life stages. The weak adaptive responses of non-native populations indicate that they can become highly abundant even without complete local adaptation to abiotic environments and suggest that long-established invaders may still be evolving to the abiotic environment. These findings may explain lag times in invasions and raise concern about future expansions.


Subject(s)
Droughts , Introduced Species , Biological Variation, Population , Adaptation, Physiological , Ecosystem , Life Cycle Stages , Water
17.
Front Cell Infect Microbiol ; 14: 1359888, 2024.
Article in English | MEDLINE | ID: mdl-38828265

ABSTRACT

Toxoplasma, an important intracellular parasite of humans and animals, causes life-threatening toxoplasmosis in immunocompromised individuals. Although Toxoplasma secretory proteins during acute infection (tachyzoite, which divides rapidly and causes inflammation) have been extensively characterized, those involved in chronic infection (bradyzoite, which divides slowly and is surrounded by a cyst wall) remain uncertain. Regulation of the cyst wall is essential to the parasite life cycle, and polysaccharides, such as chitin, in the cyst wall are necessary to sustain latent infection. Toxoplasma secretory proteins during the bradyzoite stage may have important roles in regulating the cyst wall via polysaccharides. Here, we focused on characterizing the hypothetical T. gondii chitinase, chitinase-like protein 1 (TgCLP1). We found that the chitinase-like domain containing TgCLP1 is partially present in the bradyzoite microneme and confirmed, albeit partially, its previous identification in the tachyzoite microneme. Furthermore, although parasites lacking TgCLP1 could convert from tachyzoites to bradyzoites and make an intact cyst wall, they failed to convert from bradyzoites to tachyzoites, indicating that TgCLP1 is necessary for bradyzoite reactivation. Taken together, our findings deepen our understanding of the molecular basis of recrudescence and could contribute to the development of novel strategies for the control of toxoplasmosis.


Subject(s)
Chitinases , Protozoan Proteins , Toxoplasma , Toxoplasmosis , Animals , Humans , Mice , Chitinases/metabolism , Chitinases/genetics , Life Cycle Stages , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Toxoplasma/enzymology , Toxoplasma/genetics , Toxoplasma/growth & development , Toxoplasma/metabolism , Toxoplasmosis/parasitology
18.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892332

ABSTRACT

Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.


Subject(s)
Life Cycle Stages , Plasmodium , Protein Processing, Post-Translational , Protozoan Proteins , Humans , Animals , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Plasmodium/metabolism , Plasmodium/genetics , Malaria/parasitology , Malaria/metabolism , Host-Parasite Interactions
19.
PLoS Negl Trop Dis ; 18(6): e0012251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38885188

ABSTRACT

Fasciolosis caused by Fasciola hepatica is a major public health and economic problem worldwide. Due to the lack of a successful vaccine and emerging resistance to the drug triclabendazole, alternative phytotherapeutic approaches are being investigated. This study investigated the in vitro anthelmintic activity of Lavender (Lavandula angustifolia) and carob (Ceratonia siliqua L.) essential oils (EOs) against F. hepatica. The in vitro study was based on an egg hatch assay (EHA), adult motility inhibition assays, DNA damage, reactive oxygen species (ROS) level along with several oxidative stress biomarkers including glutathione peroxidase (GSH), and glutathione-S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA). To this end, different concentrations of L. angustifolia and C. siliqua EOs (1, 5, 10, 25 and 50 mg/mL) were used to assess anthelmintic effects on different life stages including egg, and adults of F. hepatica for 24 hrs. The results indicated that these EOs play a significant role as anthelminthics, and the effect was dependent on time and concentration. The in vitro treatment of F. hepatica worms with both L. angustifolia and C. siliqua EOs increased DNA damage, ROS production and induction of oxidative stress (decreased SOD, GST and GSH, and increased MDA), significantly compared to control. Therefore, it can be concluded that L. angustifolia and C. siliqua EOs have the potential to be used as novel agents for the control and treatment of F. hepatica infections. Further studies are required to investigate their pharmacological potential and effectiveness in vivo for the treatment of parasitic infections.


Subject(s)
Anthelmintics , DNA Damage , Fasciola hepatica , Oxidative Stress , Plants, Medicinal , Animals , Oxidative Stress/drug effects , Fasciola hepatica/drug effects , DNA Damage/drug effects , Anthelmintics/pharmacology , Plants, Medicinal/chemistry , Biomarkers , Reactive Oxygen Species/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Lavandula/chemistry , Fascioliasis/drug therapy , Fascioliasis/parasitology , Fascioliasis/veterinary , Superoxide Dismutase/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Life Cycle Stages/drug effects
20.
PLoS One ; 19(6): e0305950, 2024.
Article in English | MEDLINE | ID: mdl-38905300

ABSTRACT

Anthropogenic pressures threaten biodiversity, necessitating conservation actions founded on robust ecological models. However, prevailing models inadequately capture the spatiotemporal variation in environmental pressures faced by species with high mobility or complex life histories, as data are often aggregated across species' life histories or spatial distributions. We highlight the limitations of static models for dynamic species and incorporate life history variation and spatial distributions for species and stressors into a trait-based vulnerability and impact model. We use green sea turtles in the Greater Caribbean Region to demonstrate how vulnerability and anthropogenic impact for a dynamic species change across four life stages. By incorporating life stages into a trait-based vulnerability model, we observed life stage-specific vulnerabilities that were otherwise unnoticed when using an aggregated trait value set. Early life stages were more vulnerable to some stressors, such as inorganic pollution or marine heat waves, and less vulnerable to others, such as bycatch. Incorporating spatial distributions of stressors and life stages revealed impacts differ for each life stage across spatial areas, emphasizing the importance of stage-specific conservation measures. Our approach showcases the importance of incorporating dynamic processes into ecological models and will enable better and more targeted conservation actions for species with complex life histories and high mobility.


Subject(s)
Turtles , Animals , Turtles/physiology , Biodiversity , Conservation of Natural Resources , Caribbean Region , Models, Biological , Life History Traits , Life Cycle Stages , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...