Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.884
1.
Elife ; 122024 May 28.
Article En | MEDLINE | ID: mdl-38805376

Drosophila is a powerful model to study how lipids affect spermatogenesis. Yet, the contribution of neutral lipids, a major lipid group which resides in organelles called lipid droplets (LD), to sperm development is largely unknown. Emerging evidence suggests LD are present in the testis and that loss of neutral lipid- and LD-associated genes causes subfertility; however, key regulators of testis neutral lipids and LD remain unclear. Here, we show LD are present in early-stage somatic and germline cells within the Drosophila testis. We identified a role for triglyceride lipase brummer (bmm) in regulating testis LD, and found that whole-body loss of bmm leads to defects in sperm development. Importantly, these represent cell-autonomous roles for bmm in regulating testis LD and spermatogenesis. Because lipidomic analysis of bmm mutants revealed excess triglyceride accumulation, and spermatogenic defects in bmm mutants were rescued by genetically blocking triglyceride synthesis, our data suggest that bmm-mediated regulation of triglyceride influences sperm development. This identifies triglyceride as an important neutral lipid that contributes to Drosophila sperm development, and reveals a key role for bmm in regulating testis triglyceride levels during spermatogenesis.


Drosophila Proteins , Drosophila melanogaster , Lipase , Spermatogenesis , Testis , Triglycerides , Animals , Male , Triglycerides/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Testis/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Lipase/metabolism , Lipase/genetics , Lipid Droplets/metabolism , Spermatozoa/metabolism
2.
J Pak Med Assoc ; 74(5): 993-997, 2024 May.
Article En | MEDLINE | ID: mdl-38783455

Mesenter ic p anniculitis (MP) is a b enign infla mmatory condi tion of the abdomin al mesentery, whi ch presents with a wid e variety of symptoms. I t is diagnosed non - invasively through com puted to mography (CT ) scan, whereas biopsy is still co nside red th e gold standa rd. Steroids are the first line of treatment. Here, we report four cases who presented with abdominal pain. These patients were overweight and the CT scan findings were suggestive of mese nte ric panniculitis. Three cases had concomitant non- alcoholic steatohep atitis w ith el evated alanine transaminase levels, dyslipidaemia, and insulin resistance. FibroSca n showed moderate to severe steatosis. PNPLA3 rs738409 genotype was homozygous positive (GG) in one patient, whereas two patients were heterozygous positive (CG ). This a ssociat io n has not been well-described so far and w arrants f ur ther inve s tigation. There may be some common predisposing factors.


Non-alcoholic Fatty Liver Disease , Panniculitis, Peritoneal , Humans , Panniculitis, Peritoneal/complications , Panniculitis, Peritoneal/diagnosis , Male , Female , Adult , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics , Middle Aged , Tomography, X-Ray Computed , Lipase/genetics , Lipase/blood , Membrane Proteins/genetics , Abdominal Pain/etiology , Acyltransferases , Phospholipases A2, Calcium-Independent
3.
Arch Microbiol ; 206(6): 264, 2024 May 18.
Article En | MEDLINE | ID: mdl-38760519

Fungi that inhabit fire-prone forests have to be adapted to harsh conditions and fungi affiliated to Ascomycota recovered from foliar litter samples were used for bioprospecting of molecules such as enzymes. Agni's fungi isolated from leaf litter, whose spores are capable of tolerating 110 oC were screened for thermostable lipases. One of the isolates, Leptosphaerulina trifolii A SMR-2011 exhibited high positive lipase activity than other isolates while screening through agar plate assay using Tween 20 in the medium. Maximum lipase activity (173.2 U/mg) of L. trifolii was observed at six days of inoculation and decreased thereafter. Among different oils used, the maximum lipase activity was attained by soybean oil (940.1 U/mg) followed by sunflower oil (917.1 U/mg), and then by mustard oil (884.8 U/mg), showing its specificity towards unsaturated fatty acids. Among the various organic nitrogen sources tested, soybean meal showed maximum lipase activity (985.4 U/mg). The partially purified enzyme was active over a wide range of pH from 8 to 12 with a pH optimum of 11.0 (728.1 U/mg) and a temperature range of 60-80 oC with an optimal temperature of 70 oC (779.1 U/mg). The results showed that lipase produced by L. trifolii is alkali stable and retained 85% of its activity at pH 11.0. This enzyme also showed high thermal stability retaining more than 50% of activity when incubated at 60 oC to 90 °C for 2 h. The ions Ca2+ and Mn2+ induced the lipase activity, while Cu2+ and Zn2+ ions lowered the activity compared to control. These results suggests that the leaf litter fungus L. trifolii serves as a potential source for the production of alkali-tolerant and thermostable lipase.


Ascomycota , Enzyme Stability , Fungal Proteins , Lipase , Plant Leaves , Lipase/metabolism , Lipase/genetics , Plant Leaves/microbiology , Ascomycota/enzymology , Ascomycota/genetics , Ascomycota/metabolism , Hydrogen-Ion Concentration , Fungal Proteins/metabolism , Fungal Proteins/genetics , Temperature , Substrate Specificity , Hot Temperature , Bacterial Proteins
4.
Commun Biol ; 7(1): 572, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750133

Long-chain fatty acids with antimicrobial properties are abundant on the skin and mucosal surfaces, where they are essential to restrict the proliferation of opportunistic pathogens such as Staphylococcus aureus. These antimicrobial fatty acids (AFAs) elicit bacterial adaptation strategies, which have yet to be fully elucidated. Characterizing the pervasive mechanisms used by S. aureus to resist AFAs could open new avenues to prevent pathogen colonization. Here, we identify the S. aureus lipase Lip2 as a novel resistance factor against AFAs. Lip2 detoxifies AFAs via esterification with cholesterol. This is reminiscent of the activity of the fatty acid-modifying enzyme (FAME), whose identity has remained elusive for over three decades. In vitro, Lip2-dependent AFA-detoxification was apparent during planktonic growth and biofilm formation. Our genomic analysis revealed that prophage-mediated inactivation of Lip2 was rare in blood, nose, and skin strains, suggesting a particularly important role of Lip2 for host - microbe interactions. In a mouse model of S. aureus skin colonization, bacteria were protected from sapienic acid (a human-specific AFA) in a cholesterol- and lipase-dependent manner. These results suggest Lip2 is the long-sought FAME that exquisitely manipulates environmental lipids to promote bacterial growth in otherwise inhospitable niches.


Fatty Acids , Lipase , Staphylococcus aureus , Staphylococcus aureus/metabolism , Fatty Acids/metabolism , Animals , Mice , Lipase/metabolism , Lipase/genetics , Humans , Staphylococcal Infections/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Biofilms/growth & development , Female , Staphylococcal Skin Infections/microbiology
5.
J Diabetes Res ; 2024: 5511454, 2024.
Article En | MEDLINE | ID: mdl-38736904

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Adipogenesis , Adipose Tissue, Brown , Adipose Tissue, White , Diet, High-Fat , Lipase , Mice, Inbred C57BL , Animals , Mice , Male , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lipase/metabolism , Lipase/genetics , Obesity/metabolism , Lipolysis , Uncoupling Protein 1/metabolism , Fibroblast Growth Factors/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Adipocytes/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Lipogenesis , Acyltransferases
6.
Nat Commun ; 15(1): 2869, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693144

Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically. They include a greater number of lipid droplets (LDs) and LD-associated mitochondria compared to control cells. These pre-pathologic indicators are effectively reversed by Aramchol, an inhibitor of stearoyl-CoA desaturase. Bioenergetically, AC iHLCs have lower spare capacity, slower ATP production and their mitochondrial fuel flexibility towards fatty acids and glutamate is weakened. MARC1 and PNPLA3, genes implicated by GWAS in alcohol cirrhosis, show to correlate with lipid droplet-associated and mitochondria-mediated oxidative damage in AC iHLCs. Knockdown of PNPLA3 expression exacerbates mitochondrial deficits and leads to lipid droplets alterations. These findings suggest that differences in mitochondrial bioenergetics and lipid droplet formation are intrinsic to AC hepatocytes and can play a role in its pathogenesis.


Acyltransferases , Energy Metabolism , Hepatocytes , Induced Pluripotent Stem Cells , Lipase , Lipid Droplets , Liver Cirrhosis, Alcoholic , Mitochondria , Phospholipases A2, Calcium-Independent , Humans , Hepatocytes/metabolism , Hepatocytes/pathology , Induced Pluripotent Stem Cells/metabolism , Lipid Droplets/metabolism , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/pathology , Liver Cirrhosis, Alcoholic/genetics , Lipase/metabolism , Lipase/genetics , Mitochondria/metabolism , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Middle Aged , Adult , Oxidative Stress
7.
Hepatol Commun ; 8(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38780253

BACKGROUND: The PNPLA3-rs738409-G, TM6SF2-rs58542926-T, and HSD17B13-rs6834314-A polymorphisms have been associated with cirrhosis, hepatic decompensation, and HCC. However, whether they remain associated with HCC and decompensation in people who already have cirrhosis remains unclear, which limits the clinical utility of genetics in risk stratification as HCC is uncommon in the absence of cirrhosis. We aimed to characterize the effects of PNPLA3, TM6SF2, and HSD17B13 genotype on hepatic decompensation, HCC, and liver-related mortality or liver transplant in patients with baseline compensated cirrhosis. METHODS: We conducted a single-center retrospective study of patients in the Michigan Genomics Initiative who underwent genotyping. The primary predictors were PNPLA3, TM6SF2, and HSD17B13 genotypes. Primary outcomes were either hepatic decompensation, HCC, or liver-related mortality/transplant. We conducted competing risk Fine-Gray analyses on our cohort. RESULTS: We identified 732 patients with baseline compensated cirrhosis. During follow-up, 50% of patients developed decompensation, 13% developed HCC, 24% underwent liver transplant, and 27% died. PNPLA3-rs738409-G genotype was associated with risk of incident HCC: adjusted subhazard hazard ratio 2.42 (1.40-4.17), p=0.0015 for PNPLA3-rs738409-GG vs. PNPLA3-rs738409-CC genotype. The 5-year cumulative incidence of HCC was higher in PNPLA3-rs738409-GG carriers than PNPLA3-rs738409-CC/-CG carriers: 15.6% (9.0%-24.0%) vs. 7.4% (5.2%-10.0%), p<0.001. PNPLA3 genotype was not associated with decompensation or the combined outcome of liver-related mortality or liver transplant. TM6SF2 and HSD17B13 genotypes were not associated with decompensation or HCC. CONCLUSIONS: The PNPLA3-rs738409-G allele is associated with an increased risk of HCC among patients with baseline compensated cirrhosis. People with cirrhosis and PNPLA3-rs738409-GG genotype may warrant more intensive HCC surveillance.


Alleles , Carcinoma, Hepatocellular , Lipase , Liver Cirrhosis , Liver Neoplasms , Membrane Proteins , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Male , Lipase/genetics , Female , Liver Cirrhosis/genetics , Liver Cirrhosis/complications , Liver Cirrhosis/mortality , Membrane Proteins/genetics , Middle Aged , Retrospective Studies , Aged , 17-Hydroxysteroid Dehydrogenases/genetics , Genotype , Liver Transplantation , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Risk Factors , Acyltransferases , Phospholipases A2, Calcium-Independent
8.
Hepatol Commun ; 8(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38780312

BACKGROUND: Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive form of metabolic dysfunction-associated steatotic liver disease, for which there is limited information about patient experience, including the patient journey. METHODS: In this study, we conducted interviews with patients with MASH to qualitatively evaluate the patient journey and help elucidate the experiences of this patient population. We also investigated if the patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148M variant (non-Hispanic) or being of Hispanic ethnicity may influence patient experiences because these 2 subgroups develop advanced liver disease more frequently than other patient groups. RESULTS: One-to-one interviews were conducted with 28 adults (with PNPLA3 I148M genetic variant, n = 10; Hispanic, n = 8) living in the United States who had been diagnosed with MASH with liver fibrosis. Patients were asked open-ended questions about their experiences before, at, and after their diagnosis. The data collected found that patients experienced a long process of misdiagnoses before their diagnosis of MASH, a lack of clear information provided by clinicians, and limited accessibility to support groups. Hispanic patients reported "impact on family/friends" (75%) and "fear of disease progression" (75%) more frequently than the other patient cohorts interviewed. This is the first report of "fear of progression" in patients with MASH. No patients who were White and had the PNPLA3 I148M variant reported nausea/vomiting, in contrast to other patient cohorts. CONCLUSIONS: This qualitative study identified key aspects of the patient journey that are important for clinical providers and medical teams to recognize. We also propose a new algorithm that could be developed to help screen relatives of patients who are found to carry the PNPLA3 I148M variant.


Lipase , Membrane Proteins , Qualitative Research , Humans , Membrane Proteins/genetics , Lipase/genetics , Male , Female , Middle Aged , Adult , Hispanic or Latino/genetics , Aged , Fatty Liver/genetics , United States , Liver Cirrhosis/genetics , Acyltransferases , Phospholipases A2, Calcium-Independent
9.
Nat Commun ; 15(1): 4410, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782979

Pancreatic ß cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.


Brain , Drosophila Proteins , Drosophila melanogaster , Insulin Secretion , Insulin , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Brain-Gut Axis/physiology , Lipase/metabolism , Lipase/genetics , Dietary Fats/metabolism , Glucose/metabolism , Fat Body/metabolism , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Male
10.
Microb Cell Fact ; 23(1): 155, 2024 May 27.
Article En | MEDLINE | ID: mdl-38802857

BACKGROUND: Rhizomucor miehei (RM) lipase is a regioselective lipase widely used in food, pharmaceutical and biofuel industries. However, the high cost and low purity of the commercial RM lipase limit its industrial applications. Therefore, it is necessary to develop cost-effective strategies for large-scale preparation of this lipase. The present study explored the high-level expression of RM lipase using superfolder green fluorescent protein (sfGFP)-mediated Escherichia coli secretion system. RESULTS: The sfGFP(-15) mutant was fused to the C-terminus of RM lipase to mediate its secretion expression. The yield of the fusion protein reached approximately 5.1 g/L with high-density fermentation in 5-L fermentors. Unlike conventional secretion expression methods, only a small portion of the target protein was secreted into the cell culture while majority of the fusion protein was still remained in the cytoplasm. However, in contrast to intracellular expression, the target protein in the cytoplasm could be transported efficiently to the supernatant through a simple washing step with equal volume of phosphate saline (PBS), without causing cell disruption. Hence, the approach facilitated the downstream purification step of the recombinant RM lipase. Moreover, contamination or decline of the engineered strain and degradation or deactivation of the target enzyme can be detected efficiently because they exhibited bright green fluorescence. Next, the target protein was immobilized with anion-exchange and macropore resins. Diethylaminoethyl sepharose (DEAE), a weak-basic anion-exchange resin, exhibited the highest bind capacity but inhibited the activity of RM lipase dramatically. On the contrary, RM lipase fixed with macropore resin D101 demonstrated the highest specific activity. Although immobilization with D101 didn't improve the activity of the enzyme, the thermostability of the immobilized enzyme elevated significantly. The immobilized RM lipase retained approximately 90% of its activity after 3-h incubation at 80 °C. Therefore, D101 was chosen as the supporting material of the target protein. CONCLUSION: The present study established a highly efficient strategy for large-scale preparation of RM lipase. This innovative technique not only provides high-purity RM lipase at a low cost but also has great potential as a platform for the preparation of lipases in the future.


Escherichia coli , Lipase , Rhizomucor , Lipase/genetics , Lipase/metabolism , Lipase/chemistry , Rhizomucor/enzymology , Rhizomucor/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/genetics , Enzymes, Immobilized/chemistry , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/biosynthesis , Fermentation
11.
Plant Cell Rep ; 43(6): 145, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761220

KEY MESSAGE: We highlight the emerging role of the R. solani novel lipase domain effector AGLIP1 in suppressing pattern-triggered immunity and inducing plant cell death. The dynamic interplay between plants and Rhizoctonia solani constitutes a multifaceted struggle for survival and dominance. Within this complex dynamic, R. solani has evolved virulence mechanisms by secreting effectors that disrupt plants' first line of defense. A newly discovered effector, AGLIP1 in R. solani, plays a pivotal role in inducing plant cell death and subverting immune responses. AGLIP1, a protein containing a signal peptide and a lipase domain, involves complex formation in the intercellular space, followed by translocation to the plant cytoplasm, where it induces cell death (CD) and suppresses defense gene regulation. This study provides valuable insights into the intricate molecular interactions between plants and necrotrophic fungi, underscoring the imperative for further exploration in this field.


Lipase , Plant Diseases , Rhizoctonia , Rhizoctonia/pathogenicity , Rhizoctonia/physiology , Plant Diseases/microbiology , Plant Diseases/immunology , Lipase/metabolism , Lipase/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Cell Death , Plant Immunity/genetics , Protein Domains , Gene Expression Regulation, Plant
12.
Int J Biol Macromol ; 268(Pt 2): 131916, 2024 May.
Article En | MEDLINE | ID: mdl-38679264

A polylactic acid degrading triacylglycerol lipase (TGL) was identified from Bacillus safensis based on genome annotation and validated by real-time quantitative PCR. TGL displayed optimal activity at pH 9.0 and 55 °C. It maintained stability at pH 9.0 and temperatures 45 °C. The activity of TGL was found to benefit from the presence of potassium sodium ions, and low concentrations of Triton X-100. The TGL could erode the surface of polylactic acid films and increase its hydrophilicity. The hydrolysis products of polylactic acid by TGL were lactate monomer and dimer. TGL contains a classical catalytic triad structure of lipase (Ser77, Asp133, and His156) and an Ala-X-Ser-X-Gly sequence. Compared with some lipases produced by the same genus Bacillus, TGL is highly conserved in its amino acid sequence, mainly reflected in the amino acid residues that exercise the enzyme activity, including the catalytic activity center and the substrate binding sites.


Bacillus , Lipase , Polyesters , Bacillus/enzymology , Lipase/chemistry , Lipase/metabolism , Lipase/genetics , Polyesters/chemistry , Polyesters/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Substrate Specificity , Temperature , Enzyme Stability , Amino Acid Sequence , Catalytic Domain
13.
Mol Biochem Parasitol ; 258: 111618, 2024 Jun.
Article En | MEDLINE | ID: mdl-38588892

Trypanosoma cruzi is a parasite with a high capacity to adapt to the host. Animal models have already demonstrated that the tropism of this parasite occurs not only in cardiac/digestive tissues but also in adipose tissue (AT). That said, the consequences ofT. cruziinfection for AT and the implications of treatment with Benzonidazole in this tissue are under discussion. Here, we tested the hypothesis that T. cruzi infection in adipose tissue upon treatment with Benzonidazole (Bz) and the interaction of mononuclear immune cells (PBMC) influences the relative expression of ACAT1, FASN, and PNPLA2 genes. Thus, stem cells derived from adipose tissue (ADSC) after adipogenic differentiation were indirectly cultivated with PBMC after infection with the T. cruzi Y strain and treatment with Bz. We use the TcSAT-IAM system and RT-qPCR to evaluate the parasite load and the relative quantification (ΔCt) of the ACAT1, FASN, and PNPLA2 genes. Our results demonstrate that treatment with Bz did not reduce adipocyte infection in the presence (p-value: 0.5796) or absence (p-value: 0.1854) of cultivation with PBMC. In addition, even though there is no statistical difference when compared to the control group (AT), T. cruzi induces the FASN expression (Rq: 14.00). However, treatment with Bz in AT suggests the increases of PNPLA2 expression levels (Rq: 12.58), even in the absence of T. cruzi infection. During indirect cultivation with PBMC, T. cruzi smooths the expression of PNPLA2 (Rq: 0.824) and instigates the expression of ACAT1 (Rq: 1.632) and FASN (Rq: 1.394). Furthermore, the treatment with Bz during infection induces PNPLA2 expression (Rq: 1.871), maintaining FASN expression levels (Rq: 1.334). Given this, our results indicate that treatment with Benzonidazole did not decrease T. cruzi infection in adipose tissue. However, treating the adipocyte cells with Bz during the interaction with PBMC cells influences the lipid pathways scenario, inducing lipolytic metabolism through the expression of PNPLA2.


Acyltransferases , Adipose Tissue , Fatty Acid Synthase, Type I , Leukocytes, Mononuclear , Lipase , Trypanosoma cruzi , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/parasitology , Adipose Tissue/parasitology , Adipose Tissue/metabolism , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/genetics , Lipase/genetics , Lipase/metabolism , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Acetyl-CoA C-Acetyltransferase/genetics , Acetyl-CoA C-Acetyltransferase/metabolism , Chagas Disease/drug therapy , Chagas Disease/parasitology , Chagas Disease/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Parasite Load , Gene Expression , Cells, Cultured
14.
Sci Rep ; 14(1): 9753, 2024 04 29.
Article En | MEDLINE | ID: mdl-38679617

Genome-wide association studies have identified several genetic variants associated with nonalcoholic fatty liver disease. To emphasize metabolic abnormalities in fatty liver, metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been introduced; thus, we aimed to investigate single-nucleotide polymorphisms related to MAFLD and its subtypes. A genome-wide association study was performed to identify genetic factors related to MAFLD. We used a Korean population-based sample of 2282 subjects with MAFLD and a control group of 4669. We replicated the results in a validation sample which included 639 patients with MAFLD and 1578 controls. Additionally, we categorized participants into three groups, no MAFLD, metabolic dysfunction (MD)-MAFLD, and overweight/obese-MAFLD. After adjusting for age, sex, and principal component scores, rs738409 [risk allele G] and rs3810622 [risk allele T], located in the PNPLA3 gene, showed significant associations with MAFLD (P-values, discovery set = 1.60 × 10-15 and 4.84 × 10-10; odds ratios, 1.365 and 1.284, validation set = 1.39 × 10-4, and 7.15 × 10-4, odds ratios, 1.299 and 1.264, respectively). An additional SNP rs59148799 [risk allele G] located in the GATAD2A gene showed a significant association with MAFLD (P-values, discovery set = 2.08 × 10-8 and validation set = 0.034, odds ratios, 1.387 and 1.250). rs738409 was significantly associated with MAFLD subtypes ([overweight/obese-MAFLD; odds ratio (95% confidence interval), P-values, 1.515 (1.351-1.700), 1.43 × 10-12 and MD-MAFLD: 1.300 (1.191-1.416), 2.90 × 10-9]. There was a significant relationship between rs3810622 and overweight/obese-MAFLD and MD-MAFLD [odds ratios (95% confidence interval), P-values, 1.418 (1.258, 1.600), 1.21 × 10-8 and 1.225 (1.122, 1.340), 7.06 × 10-6, respectively]; the statistical significance remained in the validation set. PNPLA3 was significantly associated with MAFLD and MAFLD subtypes in the Korean population. These results indicate that genetic factors play an important role in the pathogenesis of MAFLD.


Acyltransferases , Genetic Predisposition to Disease , Genome-Wide Association Study , Lipase , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Polymorphism, Single Nucleotide , Humans , Male , Female , Republic of Korea/epidemiology , Middle Aged , Lipase/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/epidemiology , Adult , Membrane Proteins/genetics , Obesity/genetics , Alleles , Aged , Case-Control Studies
15.
Genes (Basel) ; 15(4)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38674389

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a frequent clinical condition globally. Single nucleotide polymorphisms (SNPs) associated with NAFLD have been proposed in the literature and based on bioinformatic screening. The association between NAFLD and genetic variants in Egyptians is still unclear. Hence, we sought to investigate the association of some genetic variants with NAFLD in Egyptians. Egyptians have been categorized into either the MASLD group (n = 205) or the healthy control group (n = 187). The severity of hepatic steatosis and liver fibrosis was assessed by a Fibroscan device. TaqMan-based genotyping assays were employed to explore the association of selected SNPs with MASLD. PNPLA3 rs738409 C>G variant is associated with the presence of MASLD with liver fibrosis, the severity of both hepatic steatosis and liver fibrosis, increased systolic and diastolic blood pressure and increased alanine aminotransferase (all p < 0.05), while the TM6SF2 rs58542926 C>T, HSD17B13 rs9992651 G>A, and GCKR rs1260326 T>C variants were not (all p > 0.05). The TM6SF2 rs58542926 T allele is associated with increased fasting blood glucose and a decreased waist circumference. The GCKR rs1260326 C allele is associated with decreased aspartate transaminase and diastolic blood pressure (all p < 0.05). Only after adjusting for the risk factors (age, sex, BMI, WC, HDL, TG, diabetes mellitus, and hypertension) F2 liver fibrosis score is negatively correlated with the HSD17B13 rs9992651 GA genotype. This study offers evidence for the association of the PNPLA3 rs738409 C>G variant with MASLD among Egyptians and for the association of the PNPLA3 rs738409 G allele, the TM6SF2 rs58542926 T allele, and the GCKR rs1260326 C allele with some parameters of cardiometabolic criteria.


17-Hydroxysteroid Dehydrogenases , Acyltransferases , Adaptor Proteins, Signal Transducing , Lipase , Membrane Proteins , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Polymorphism, Single Nucleotide , Humans , Membrane Proteins/genetics , Lipase/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Egypt , Male , Female , Middle Aged , Adaptor Proteins, Signal Transducing/genetics , Adult , 17-Hydroxysteroid Dehydrogenases/genetics , Genetic Predisposition to Disease , Severity of Illness Index , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Case-Control Studies , Genotype
16.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 1-7, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678634

 Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main causes of community- and hospital-acquired infections. The expression of virulence genes in S. aureus is arranged by regulators like the accessory gene regulator (agr). The present study aims to estimate phenotypic characteristics of S. aureus and investigate the occurrence of agr genes with their correlation to biofilm formation. In this study, 34 MRSA strains out of 100 S. aureus isolates were recovered in a variety of clinical samples. Phenotypic characterization and ability of biofilm formation were assessed. About 8(24%) of isolates were biofilm producers. The percentages of biofilm production among isolates were 3(37.5%), 2(25%), 3(37.5%) as strong, moderate, and weak, respectively. Furthermore, the resistance rates for all antibiotics were higher in biofilm producers and 76% of the isolates were staphyloxanthin producers, around 82% of the strains showed resistance to H2O2. Hemolytic activity was detected in 74% of the total isolates. The activity of the protease enzyme was 68%. The lipase enzyme was active in 79% of the tested S. aureus isolates. The majority of isolates were established to be agrI 84%, followed by agrII 53%, agrIII 32%, and 30% of the isolates have agr IV. Our study indicated that the majority of MRSA isolates were non-biofilm producers and the agr I is the most dominant type. Thus, agr I is not correlated with biofilm production.


Bacterial Proteins , Biofilms , Methicillin-Resistant Staphylococcus aureus , Xanthophylls , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Biofilms/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Lipase/genetics , Lipase/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Polymorphism, Genetic , Staphylococcal Infections/microbiology , Trans-Activators/genetics , Trans-Activators/metabolism , Humans
17.
Nat Genet ; 56(5): 827-837, 2024 May.
Article En | MEDLINE | ID: mdl-38632349

We report a multi-ancestry genome-wide association study on liver cirrhosis and its associated endophenotypes, alanine aminotransferase (ALT) and γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver function tests and a validation cohort of 21,689 cases and 617,729 controls, we identify and validate 14 risk associations for cirrhosis. Many variants are located near genes involved in hepatic lipid metabolism. One of these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We develop a polygenic risk score that associates with the progression from cirrhosis to HCC. By focusing on prioritized genes from common variant analyses, we find that rare coding variants in GPAM associate with lower ALT, supporting GPAM as a potential target for therapeutic inhibition. In conclusion, this study provides insights into the genetic underpinnings of cirrhosis.


Genetic Predisposition to Disease , Genome-Wide Association Study , Liver Cirrhosis , Humans , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/genetics , Alanine Transaminase/blood , Polymorphism, Single Nucleotide , Male , Lipase/genetics , Female , gamma-Glutamyltransferase/genetics , Membrane Proteins/genetics , Cohort Studies , Case-Control Studies , Multifactorial Inheritance/genetics , Risk Factors , Genetic Variation
18.
Scand J Gastroenterol ; 59(6): 737-741, 2024 Jun.
Article En | MEDLINE | ID: mdl-38563432

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver condition worldwide. There is an urgent need to develop new biomarkers to assess disease severity and to define patients with a progressive phenotype. Activin A is a new promising biomarker with conflicting results about liver fibrosis. In this study we investigate levels of Activin A in patients with biopsy proven MASLD. We assess levels of Activin A in regard to fibrosis stage and genetic variant I148M in the patatin-like phospholipase domain-containing protein 3 (PNPLA3). METHODS: Activin A levels were assessed in plasma samples from patients with biopsy-proven MASLD in a cross-sectional study. All patients were clinically evaluated and the PNPLA3 I148M genotype of the cohort was assessed. FINDINGS: 41 patients were included and 27% of these had advanced fibrosis. In MASLD patients with advanced fibrosis, Activin A levels was higher (p < 0.001) and could classify advanced fibrosis with an AUROC for activin A of 0.836 (p < 0.001). Patients homozygous for PNPLA3 I148M G/G had higher levels of activin A than non-homozygotes (p = 0.027). CONCLUSIONS: Circulating activin A levels were associated with advanced fibrosis and could be a potential blood biomarker for identifying advanced fibrosis in MASLD. Patients with the risk genotype PNPLA3 I148M G/G had higher levels of activin A proposing activin A as a contributor of the transition from simple steatosis to a fibrotic phenotype.


Activins , Biomarkers , Fatty Liver , Lipase , Liver Cirrhosis , Membrane Proteins , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/blood , Female , Middle Aged , Lipase/genetics , Lipase/blood , Liver Cirrhosis/genetics , Liver Cirrhosis/blood , Cross-Sectional Studies , Activins/blood , Activins/genetics , Biomarkers/blood , Adult , Fatty Liver/genetics , Fatty Liver/blood , Fatty Liver/pathology , Aged , Genotype , Liver/pathology , Severity of Illness Index , Acyltransferases , Phospholipases A2, Calcium-Independent
20.
Proc Natl Acad Sci U S A ; 121(18): e2318619121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38657050

Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.


Acyltransferases , Golgi Apparatus , Lipid Droplets , Phospholipases A2, Calcium-Independent , Humans , Acyltransferases/metabolism , Golgi Apparatus/metabolism , Lipase/metabolism , Lipase/genetics , Lipid Droplets/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Phospholipases A2, Calcium-Independent/metabolism
...