Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 94.671
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 516-522, jul. 2024. graf, ilus
Article En | LILACS | ID: biblio-1538029

This article aimed to discuss the protection of trans - nerolidol on vascular endothelial cells (ECs) injured by lipopolysac charides. ECs were divided into four groups: normal, model, low and high dose trans - nerolidol treatment groups. The cell survival rate and the contents of NO in the cell culture supernatant were determined. The protein expression and transcript level of pe roxisome proliferator - activated receptor - γ (PPARγ), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase (iNOS) were determined by western blotting and RT - PCR respectively. Compared with the normal group, cell livability, protein e xpression and mRNA transcript level of PPARγ and eNOS decreased, NO contents, protein expression and mRNA transcript tlevel of iNOS increased in model group significantly. Compared with model group, all the changes recovered in different degree in treatmen t groups. Hence, it was concluded that trans - nerolidol can alleviate the ECs injuryby the regulation of iNOS/eNOS through activating PPARγ in a dose - dependent manner


Este artículo tiene como objetivo discutir la protección del trans - nerolidol en las células endoteliales vasculares (CE) dañadas por lipopolisacáridos. Las CE se di vidieron en cuatro grupos: normal, modelo, grupos de tratamiento con trans - nerolidol de baja y alta dosis. Se determinó la tasa de supervivencia de las células y los contenidos de óxido nítrico (NO) en el sobrenadante del cultivo celular. La expresión de p roteínas y el nivel de transcripción del receptor activado por proliferadores de peroxisomas - γ (PPARγ), el óxido nítrico sint et asa endotelial (eNOS) y el óxido nítrico sint et asa inducible (iNOS) se determinaron mediante western blot y RT - PCR, respectivamen te. En comparación con el grupo normal, la viabilidad celular, la expresión de proteínas y el nivel de transcripción de PPARγ y eNOS disminuyeron, los contenidos de NO, la expresión de proteínas y el nivel de transcripción de iNOS aumentaron significativam ente en el grupo modelo. En comparación con el grupo modelo, todos los cambios se recuperaron en diferentes grados en los grupos de tratamiento. Por lo tanto, se concluyó que el trans - nerolidol puede aliviar el daño en las CE regulando iNOS/eNOS a través d e la activación de PPARγ de manera dependiente de la dosis.


Sesquiterpenes/pharmacology , Lipopolysaccharides/pharmacology , Endothelial Cells/drug effects
2.
J Transl Med ; 22(1): 535, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38840216

BACKGROUND: Inflammation and endothelial barrier dysfunction are the major pathophysiological changes in acute respiratory distress syndrome (ARDS). Sphingosine-1-phosphate receptor 3 (S1PR3), a G protein-coupled receptor, has been found to mediate inflammation and endothelial cell (EC) integrity. However, the function of S1PR3 in ARDS has not been fully elucidated. METHODS: We used a murine lipopolysaccharide (LPS)-induced ARDS model and an LPS- stimulated ECs model to investigate the role of S1PR3 in anti-inflammatory effects and endothelial barrier protection during ARDS. RESULTS: We found that S1PR3 expression was increased in the lung tissues of mice with LPS-induced ARDS. TY-52156, a selective S1PR3 inhibitor, effectively attenuated LPS-induced inflammation by suppressing the expression of proinflammatory cytokines and restored the endothelial barrier by repairing adherens junctions and reducing vascular leakage. S1PR3 inhibition was achieved by an adeno-associated virus in vivo and a small interfering RNA in vitro. Both the in vivo and in vitro studies demonstrated that pharmacological or genetic inhibition of S1PR3 protected against ARDS by inhibiting the NF-κB pathway and improving mitochondrial oxidative phosphorylation. CONCLUSIONS: S1PR3 inhibition protects against LPS-induced ARDS via suppression of pulmonary inflammation and promotion of the endothelial barrier by inhibiting NF-κB and improving mitochondrial oxidative phosphorylation, indicating that S1PR3 is a potential therapeutic target for ARDS.


Lipopolysaccharides , Mice, Inbred C57BL , Mitochondria , NF-kappa B , Oxidative Phosphorylation , Respiratory Distress Syndrome , Sphingosine-1-Phosphate Receptors , Animals , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , NF-kappa B/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Phosphorylation/drug effects , Male , Receptors, Lysosphingolipid/metabolism , Receptors, Lysosphingolipid/antagonists & inhibitors , Humans , Lung/pathology , Lung/drug effects , Lung/metabolism , Mice , Inflammation/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Protective Agents/pharmacology , Cytokines/metabolism
3.
Front Immunol ; 15: 1381735, 2024.
Article En | MEDLINE | ID: mdl-38840923

Background: Acute liver injury (ALI), which is a type of inflammation-mediated hepatocellular injury, is a clinical syndrome that results from hepatocellular apoptosis and hemorrhagic necrosis. Apoptosis stimulating protein of p53-2 (ASPP2) is a proapoptotic member of the p53 binding protein family. However, the role of ASPP2 in the pathogenesis of ALI and its regulatory mechanisms remain unclear. Methods: The expression of ASPP2 were compared between liver biopsies derived from patients with CHB, patients with ALI, and normal controls. Acute liver injury was modelled in mice by administration of D-GalN/LPS. Liver injury was demonstrated by serum transaminases and histological assessment of liver sections. ASPP2-knockdown mice (ASPP2+/-) were used to determine its role in acute liver injury. Mouse bone marrow macrophages (BMMs) were isolated from wildtype and ASPP2+/- mice and stimulated with LPS, and the supernatant was collected to incubate with the primary hepatocytes. Quantitative real-time PCR and western blot were used to analyze the expression level of target. Results: The expression of ASPP2 was significantly upregulated in the liver tissue of ALI patients and acute liver injury mice. ASPP2+/- mice significantly relieved liver injury through reducing liver inflammation and decreasing hepatocyte apoptosis. Moreover, the conditioned medium (CM) of ASPP2+/- bone marrow-derived macrophages (BMMs) protected hepatocytes against apoptosis. Mechanistically, we revealed that ASPP2 deficiency in BMMs specifically upregulated IL-6 through autophagy activation, which decreased the level of TNF-α to reduce hepatocytes apoptosis. Furthermore, up-regulation of ASPP2 sensitizes hepatocytes to TNF-α-induced apoptosis. Conclusion: Our novel findings show the critical role of ASPP2 in inflammatory immunoregulatory mechanism of ALI and provide a rationale to target ASPP2 as a refined therapeutic strategy to ameliorate acute liver injury.


Apoptosis Regulatory Proteins , Apoptosis , Animals , Humans , Mice , Male , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Mice, Knockout , Liver/pathology , Liver/metabolism , Liver/immunology , Hepatocytes/metabolism , Hepatocytes/pathology , Mice, Inbred C57BL , Disease Models, Animal , Inflammation/immunology , Inflammation/metabolism , Female , Lipopolysaccharides , Middle Aged , Macrophages/immunology , Macrophages/metabolism , Adult , Tumor Suppressor Proteins
4.
Nat Commun ; 15(1): 4711, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830841

The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.


Fetus , Lipopolysaccharides , Liver , Lung , Placenta , Female , Pregnancy , Placenta/metabolism , Placenta/immunology , Animals , Fetus/immunology , Fetus/metabolism , Lung/immunology , Lung/metabolism , Liver/metabolism , Liver/immunology , Docosahexaenoic Acids/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Mice , Inflammation/immunology , Inflammation/metabolism , Mice, Inbred C57BL , Adaptation, Physiological/immunology , Fetal Development/immunology , Maternal-Fetal Exchange/immunology , Interleukin-6/metabolism , Interleukin-6/immunology
5.
Nat Commun ; 15(1): 4724, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830855

Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.


Galectin 3 , Lipopolysaccharides , Mice, Inbred C57BL , Neutrophils , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Galectin 3/metabolism , Galectin 3/genetics , Neutrophils/immunology , Neutrophils/metabolism , Humans , Mice , Pseudomonas Infections/immunology , Male , Female , Respiratory Insufficiency/metabolism , Mice, Knockout , Phagocytosis , Immunity, Innate , Galectins/metabolism , Galectins/genetics
6.
J Neuroinflammation ; 21(1): 143, 2024 May 31.
Article En | MEDLINE | ID: mdl-38822367

The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.


Co-Repressor Proteins , Interleukin-10 , Mice, Knockout , Microglia , Neuroinflammatory Diseases , PPAR gamma , Signal Transduction , Animals , Mice , Microglia/metabolism , Microglia/drug effects , PPAR gamma/metabolism , PPAR gamma/genetics , Signal Transduction/physiology , Signal Transduction/drug effects , Neuroinflammatory Diseases/metabolism , Interleukin-10/metabolism , Interleukin-10/deficiency , Interleukin-10/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Depression/metabolism , Depression/etiology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/deficiency , Mice, Inbred C57BL , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Male , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Lipopolysaccharides/toxicity
8.
Sci Rep ; 14(1): 12827, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834834

Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.


Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lipopolysaccharides , Myeloid Differentiation Factor 88 , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/metabolism , Animals , NF-kappa B/metabolism , Humans , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/microbiology , Mice , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/microbiology , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Neoplasm Invasiveness , Inflammation/metabolism , Inflammation/pathology , Bacteroidetes , Gastrointestinal Microbiome , Cell Movement/drug effects , Male , Neoplasm Metastasis , Cell Proliferation , Female
9.
Cell Commun Signal ; 22(1): 309, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38835076

BACKGROUND: Neuroinflammation is widely acknowledged as a characteristic feature of almost all neurological disorders and specifically in depression- and anxiety-like disorders. In recent years, there has been significant attention on natural compounds with potent anti-inflammatory effects due to their potential in mitigating neuroinflammation and neuroplasticity. METHODS: In the present study, we aimed to evaluate the neuroprotective effects of oleacein (OC), a rare secoiridoid derivative found in extra virgin olive oil. Our goal was to explore the BDNF/TrkB neurotrophic activity of OC and subsequently assess its potential for modulating neuroinflammatory response using human neuroblastoma cells (SH-SY5Y cells) and an in vivo model of depression induced by lipopolysaccharide (LPS)-mediated inflammation. RESULTS: In SH-SY5Y cells, OC exhibited a significant dose-dependent increase in BDNF expression. This enhancement was absent when cells were co-treated with inhibitors of BDNF's receptor TrkB, as well as downstream molecules PI3K and MEK. Whole-transcriptomics analysis revealed that OC upregulated cell cycle-related genes under normal conditions, while downregulating inflammation-associated genes in LPS-induced conditions. Furthermore, surface plasmon resonance (SPR) assays demonstrated that OC exhibited a stronger and more stable binding affinity to TrkB compared to the positive control, 7,8-dihydroxyflavone. Importantly, bioluminescence imaging revealed that a single oral dose of OC significantly increased BDNF expression in the brains of Bdnf-IRES-AkaLuc mice. Furthermore, oral administration of OC at a dosage of 10 mg/kg body weight for 10 days significantly reduced immobility time in the tail suspension test compared to the LPS-treated group. RT-qPCR analysis revealed that OC significantly decreased the expression of pro-inflammatory cytokines Tnfα, Il6, and Il1ß, while simultaneously enhancing Bdnf expression, as well as both pro and mature BDNF protein levels in mice hippocampus. These changes were comparable to those induced by the positive control antidepressant drug fluoxetine. Additionally, microarray analysis of mouse brains confirmed that OC could counteract LPS-induced inflammatory biological events. CONCLUSION: Altogether, our study represents the first report on the potential antineuroinflammatory and antidepressant properties of OC via modulation of BDNF/TrkB neurotrophic activity. This finding underscores the potential of OC as a natural therapeutic agent for depression- and anxiety-related disorders.


Brain-Derived Neurotrophic Factor , Lipopolysaccharides , Receptor, trkB , Animals , Humans , Receptor, trkB/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Lipopolysaccharides/pharmacology , Mice , Neuroinflammatory Diseases/drug therapy , Cell Line, Tumor , Cyclopentane Monoterpenes/pharmacology , Male , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mice, Inbred C57BL , Olive Oil/pharmacology , Olive Oil/chemistry , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Inflammation/pathology , Aldehydes , Membrane Glycoproteins , Phenols
10.
Cell Mol Neurobiol ; 44(1): 48, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822888

C3-positive reactive astrocytes play a neurotoxic role in various neurodegenerative diseases. However, the mechanisms controlling C3-positive reactive astrocyte induction are largely unknown. We found that the length of the primary cilium, a cellular organelle that receives extracellular signals was increased in C3-positive reactive astrocytes, and the loss or shortening of primary cilium decreased the count of C3-positive reactive astrocytes. Pharmacological experiments suggested that Ca2+ signalling may synergistically promote C3 expression in reactive astrocytes. Conditional knockout (cKO) mice that specifically inhibit primary cilium formation in astrocytes upon drug stimulation exhibited a reduction in the proportions of C3-positive reactive astrocytes and apoptotic cells in the brain even after the injection of lipopolysaccharide (LPS). Additionally, the novel object recognition (NOR) score observed in the cKO mice was higher than that observed in the neuroinflammation model mice. These results suggest that the primary cilium in astrocytes positively regulates C3 expression. We propose that regulating astrocyte-specific primary cilium signalling may be a novel strategy for the suppression of neuroinflammation.


Astrocytes , Cilia , Mice, Knockout , Animals , Astrocytes/metabolism , Astrocytes/drug effects , Cilia/metabolism , Cilia/drug effects , Mice , Complement C3/metabolism , Mice, Inbred C57BL , Lipopolysaccharides/pharmacology , Apoptosis/drug effects
11.
BMC Vet Res ; 20(1): 236, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824607

BACKGROUND: The chicken's inflammatory response is an essential part of the bird's response to infection. A single dose of Escherichia coli (E. coli) lipopolysaccharide (LPS) endotoxin can activate the acute phase response (APR) and lead to the production of acute phase proteins (APPs). In this study, the responses of established chicken APPs, Serum amyloid A (SAA) and Alpha-1-acid-glycoprotein (AGP), were compared to two novel APPs, Hemopexin (Hpx) and Extracellular fatty acid binding protein (Ex-FABP), in 15-day old broilers over a time course of 48 h post E.coli LPS challenge. We aimed to investigate and validate their role as biomarkers of an APR. Novel plant extracts, Citrus (CTS) and cucumber (CMB), were used as dietary supplements to investigate their ability to reduce the inflammatory response initiated by the endotoxin. RESULTS: A significant increase of established (SAA, AGP) and novel (Ex-FABP, Hpx) APPs was detected post E.coli LPS challenge. Extracellular fatty acid binding protein (Ex-FABP) showed a similar early response to SAA post LPS challenge by increasing ~ 20-fold at 12 h post challenge (P < 0.001). Hemopexin (Hpx) showed a later response by increasing ∼5-fold at 24 h post challenge (P < 0.001) with a similar trend to AGP. No differences in APP responses were identified between diets (CTS and CMB) using any of the established or novel biomarkers. CONCLUSIONS: Hpx and Ex-FABP were confirmed as potential biomarkers of APR in broilers when using an E. coli LPS model along with SAA and AGP. However, no clear advantage for using either of dietary supplements to modulate the APR was identified at the dosage used.


Acute-Phase Proteins , Acute-Phase Reaction , Biomarkers , Chickens , Escherichia coli , Lipopolysaccharides , Animals , Biomarkers/blood , Lipopolysaccharides/pharmacology , Acute-Phase Proteins/metabolism , Acute-Phase Proteins/analysis , Endotoxins , Serum Amyloid A Protein/analysis , Serum Amyloid A Protein/metabolism , Orosomucoid/metabolism , Dietary Supplements , Plant Extracts/pharmacology , Fatty Acid-Binding Proteins/metabolism , Poultry Diseases/microbiology , Hemopexin/metabolism
12.
Front Immunol ; 15: 1405622, 2024.
Article En | MEDLINE | ID: mdl-38827741

Background: Severe acute pancreatitis (SAP) is an inflammatory disorder affecting the gastrointestinal system. Intestinal injury plays an important role in the treatment of severe acute pancreatitis. In this study, we mainly investigated the role of S1PR2 in regulating macrophage pyroptosis in the intestinal injury of severe acute pancreatitis. Methods: The SAP model was constructed using cerulein and lipopolysaccharide, and the expression of S1PR2 was inhibited by JTE-013 to detect the degree of pancreatitis and intestinal tissue damage in mice. Meanwhile, the level of pyroptosis-related protein was detected by western blot, the level of related mRNA was detected by PCR, and the level of serum inflammatory factors was detected by ELISA. In vitro experiments, LPS+ATP was used to construct the pyroptosis model of THP-1. After knockdown and overexpression of S1PR2, the pyroptosis proteins level was detected by western blot, the related mRNA level was detected by PCR, and the level of cell supernatant inflammatory factors were detected by ELISA. A rescue experiment was used to verify the sufficient necessity of the RhoA/ROCK pathway in S1PR2-induced pyroptosis. Meanwhile, THP-1 and FHC were co-cultured to verify that cytokines released by THP-1 after damage could regulate FHC damage. Results: Our results demonstrated that JTE-013 effectively attenuated intestinal injury and inflammation in mice with SAP. Furthermore, we observed a significant reduction in the expression of pyroptosis-related proteins within the intestinal tissue of SAP mice upon treatment with JTE-013. We confirmed the involvement of S1PR2 in THP-1 cell pyroptosis in vitro. Specifically, activation of S1PR2 triggered pyroptosis in THP-1 cells through the RhoA/ROCK signaling pathway. Moreover, it was observed that inflammatory factors released during THP-1 cell pyroptosis exerted an impact on cohesin expression in FHC cells. Conclusion: The involvement of S1PR2 in SAP-induced intestinal mucosal injury may be attributed to its regulation of macrophage pyroptosis.


Disease Models, Animal , Macrophages , Pancreatitis , Pyroptosis , Sphingosine-1-Phosphate Receptors , Animals , Mice , Humans , Macrophages/metabolism , Macrophages/immunology , Pancreatitis/metabolism , Pancreatitis/immunology , Pancreatitis/pathology , Pancreatitis/chemically induced , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Male , Signal Transduction , Mice, Inbred C57BL , rhoA GTP-Binding Protein/metabolism , THP-1 Cells , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/pathology , Intestines/immunology , Cytokines/metabolism , Lipopolysaccharides , Pyrazoles , Pyridines
13.
Front Immunol ; 15: 983686, 2024.
Article En | MEDLINE | ID: mdl-38827742

Recently, OTULIN haploinsufficiency was linked to enhanced susceptibility to Staphylococcus aureus infections accompanied by local necrosis and systemic inflammation. The pathogenesis observed in haploinsufficient patients differs from the hyperinflammation seen in classical OTULIN-related autoinflammatory syndrome (ORAS) patients and is characterized by increased susceptibility of dermal fibroblasts to S. aureus alpha toxin-inflicted cytotoxic damage. Immunological abnormalities were not observed in OTULIN haploinsufficient patients, suggesting a non-hematopoietic basis. In this research report, we investigated an Otulin+/- mouse model after in vivo provocation with lipopolysaccharide (LPS) to explore the potential role of hematopoietic-driven inflammation in OTULIN haploinsufficiency. We observed a hyperinflammatory signature in LPS-provoked Otulin+/- mice, which was driven by CD64+ monocytes and macrophages. Bone marrow-derived macrophages (BMDMs) of Otulin+/- mice demonstrated higher proinflammatory cytokine secretion after in vitro stimulation with LPS or polyinosinic:polycytidylic acid (Poly(I:C)). Our experiments in full and mixed bone marrow chimeric mice suggest that, in contrast to humans, the observed inflammation was mainly driven by the hematopoietic compartment with cell-extrinsic effects likely contributing to inflammatory outcomes. Using an OTULIN haploinsufficient mouse model, we validated the role of OTULIN in the regulation of environmentally directed inflammation.


Haploinsufficiency , Inflammation , Lipopolysaccharides , Macrophages , Animals , Mice , Inflammation/genetics , Macrophages/immunology , Macrophages/metabolism , Disease Models, Animal , Cytokines/metabolism , Poly I-C , Mice, Inbred C57BL , Mice, Knockout , Humans
14.
Food Res Int ; 188: 114433, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823827

Whey derived peptides have shown potential activity improving brain function in pathological condition. However, there is little information about their mechanism of action on glial cells, which have important immune functions in brain. Astrocytes and microglia are essential in inflammatory and oxidative defense that take place in neurodegenerative disease. In this work we evaluate antioxidant and anti-inflammatory potential bioactivity of whey peptide in glial cells. Peptides were formed during simulated gastrointestinal digestion (Infogest protocol), and low molecular weight (<5kDA) peptides (WPHf) attenuated reactive oxygen species (ROS) production induced by hydrogen peroxide stimulus in both cells in dose-dependent manner. WPHf induced an increase in the antioxidant glutathione (GSH) content and prevented GSH reduction induced by lipopolysaccharides (LPS) stimulus in astrocytes cells in a cell specific form. An increase in cytokine mRNA expression (TNFα and IL6) and nitric oxide secretion induced by LPS was attenuated by WPHf pre-treatment in both cells. The inflammatory pathway was dependent on NFκB activation. Bioactive peptide ranking analysis showed positive correlation with hydrophobicity and negative correlation with high molecular weights. The sequence identification revealed 19 peptides cross-referred with bioactive database. Whey peptides were rich in leucine, valine and tyrosine in the C-terminal region and lysine in the N-terminal region. The anti-inflammatory and antioxidant potential of whey peptides were assessed in glia cells and its mechanisms of action were related, such as modulation of antioxidant enzymes and anti-inflammatory pathways. Features of the peptide structure, such as molecular size, hydrophobicity and types of amino acids present in the terminal region are associated to bioactivity.


Anti-Inflammatory Agents , Antioxidants , Neuroglia , Whey Proteins , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Whey Proteins/pharmacology , Whey Proteins/chemistry , Whey Proteins/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Animals , Reactive Oxygen Species/metabolism , Lipopolysaccharides/pharmacology , Glutathione/metabolism , Peptides/pharmacology , Nitric Oxide/metabolism , Astrocytes/drug effects , Astrocytes/metabolism
15.
Neuron ; 112(9): 1381-1383, 2024 May 01.
Article En | MEDLINE | ID: mdl-38697021

Infections frequently cause behavioral changes, known as sickness behavior. In a recent study,1 Yipp and collaborators discovered a sensory circuit that is activated by a bacterial lipopolysaccharide during lung infection and drives sickness behaviors independent of inflammation. Biofilm-producing bacteria, however, avoid activating this lung-brain circuit, resulting in infection without sickness behavior.


Illness Behavior , Animals , Humans , Illness Behavior/physiology , Lipopolysaccharides , Brain , Biofilms , Nerve Net/physiology
16.
Sci Rep ; 14(1): 12490, 2024 05 31.
Article En | MEDLINE | ID: mdl-38821994

Satureja is an aromatic plant that is used for flavoring, perfume, and food manufacturing due to its pleasant essential oil. Modern medicine research revealed several biological activities of Satureja essential oil, including antifungal, antibacterial, antiviral, antioxidant, anticancer, and anti-inflammatory. However, the functional properties of Satureja fatty acid have not been explored. This study examined the fatty acid profile, lipid nutritional quality, antioxidant, anti-amylase, and anti-lipase capacities of Satureja. The efficiency of Satureja fatty acid on the anti-oxidative and anti-inflammatory parameters in LPS-induced macrophage through the Nrf2/NF-kB/NADH oxidase pathway was examined. The whole lipid extract was prepared with chloroform/methanol/water solution. Fatty acids methyl ester from whole lipid extract were prepared with methanol/sulfuric acid reagent. The fatty acid profile was analyzed using gas chromatography-mass spectrometry. Total antioxidant was determined by ABTS decolorization. Lipase and amylase activities were determined by monitoring the decomposition of p-nitrophenyl butyrate and starch. The macrophage cell line was grown in DMEM media in the presence of fatty acid. The hydrogen peroxide production in treated cells was monitored using the FOX reagent. NADH oxidase activity was measured by monitoring NADH breakdown. The expression of NOX, NF-kB, and NRF2, were tested in the treated cells by real-time PCR. The main components of the Satureja fatty acid were linolenic acid (24.67-37.32%), palmitic acid (10.65-20.29%), linoleic acid (8.31-13.39%), oleic acid (4.42-14.35%), stearic acid (2.76-8.77%) and palmitoleic acid (1.77-4.95%). Given the nutritional quality, omega-3 PUFA (23.58-37.32%), SFA (21.53-26.70%), omega-6 PUFA (10.86-16.14%), omega-9 MUFA (4.42-14.35%), and omega-7 MUFA (1.77-4.95%) comprise the majority of fatty acids. Satureja fatty acid has a promising unsaturation index (120.77-164.27), PUFA/MUFA (2.07-6.41), hypocholesterolemic index (2.44-3.47), health-promoting index (2.03-2.42), PUFA/SFA (1.37-1.94), nutritive value index (0.53-1.71), MUFA/SFA (0.30-0.80) omega-6/omega-3 (0.34-0.65), atherogenicity index (0.41-0.49), and thrombogenicity index (0.17-0.27). Satureja fatty acid displayed strong antioxidant capacity (with IC50 ranging from 354 to 428 µg/mL), anti-lipase capacity (with IC50 ranging from 354 to 428 µg/mL), and anti-amylase capacity (with IC50 ranging from 370 to 390 µg/mL). LPS induced the expression of NOX, NRF2, and NF-kB and the synthesis of hydrogen peroxide in macrophage cells. In LPS-stimulated macrophages, Satureja fatty acid reduced NOX expression, hydrogen peroxide, and NF-kB expression and increased NRF2 at 0.04 mg/mL. In conclusion, Satureja fatty acids have potent antioxidant, anti-amylase, anti-lipase, and anti-inflammatory activities. The mechanisms in lowering oxidative stress markers depended on down-regulating superoxide-producing enzymes at gene and protein levels. Satureja polyunsaturated omega-3 fatty acids could be recommended for healthy products combined with dietary therapy to treat obesity, diabetes, and oxidative stress.


Anti-Inflammatory Agents , Antioxidants , Fatty Acids , Lipopolysaccharides , Macrophages , NF-E2-Related Factor 2 , NF-kappa B , Satureja , NF-E2-Related Factor 2/metabolism , Macrophages/drug effects , Macrophages/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Fatty Acids/metabolism , NF-kappa B/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Mice , Satureja/chemistry , Lipase/metabolism , Signal Transduction/drug effects , RAW 264.7 Cells , Multienzyme Complexes , NADH, NADPH Oxidoreductases
17.
Aging (Albany NY) ; 16(10): 8645-8656, 2024 May 15.
Article En | MEDLINE | ID: mdl-38752883

Mangiferin, a naturally occurring potent glucosylxanthone, is mainly isolated from the Mangifera indica plant and shows potential pharmacological properties, including anti-bacterial, anti-inflammation, and antioxidant in sepsis-induced lung and kidney injury. However, there was a puzzle as to whether mangiferin had a protective effect on sepsis-associated encephalopathy. To answer this question, we established an in vitro cell model of sepsis-associated encephalopathy and investigated the neuroprotective effects of mangiferin in primary cultured hippocampal neurons challenged with lipopolysaccharide (LPS). Neurons treated with 20 µmol/L or 40 µmol/L mangiferin for 48 h can significantly reverse cell injuries induced by LPS treatment, including improved cell viability, decreased inflammatory cytokines secretion, relief of microtubule-associated light chain 3 expression levels and several autophagosomes, as well as attenuated cell apoptosis. Furthermore, mangiferin eliminated pathogenic proteins and elevated neuroprotective factors at both the mRNA and protein levels, showing strong neuroprotective effects of mangiferin, including anti-inflammatory, anti-autophagy, and anti-apoptotic effects on neurons in vitro.


Apoptosis , Hippocampus , Lipopolysaccharides , Neurons , Neuroprotective Agents , Xanthones , Xanthones/pharmacology , Animals , Neurons/drug effects , Neurons/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Neuroprotective Agents/pharmacology , Cells, Cultured , Apoptosis/drug effects , Cell Survival/drug effects , Autophagy/drug effects , Rats , Cytokines/metabolism
18.
Mol Biol Rep ; 51(1): 698, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811424

BACKGROUND: Existing investigations suggest that the blockade of phosphoinositide 3-kinase (PI3K) activity contributes to inflammatory solution in allergic asthma, but whether this inhibition directly attenuates neutrophilic airway inflammation in vivo is still unclear. We explored the pharmacological effects of LY294002, a specific inhibitor of PI3K on the progression of neutrophilic airway inflammation and investigated the underlying mechanism. METHODS AND RESULTS: Female C57BL/6 mice were intranasally sensitized with ovalbumin (OVA) together with lipopolysaccharide (LPS) on days 0 and 6, and challenged with OVA on days 14-17 to establish a neutrophilic airway disease model. In the challenge phase, a subset of mice was treated intratracheally with LY294002. We found that treatment of LY294002 attenuates clinic symptoms of inflammatory mice. Histological studies showed that LY294002 significantly inhibited inflammatory cell infiltration and mucus production. The treatment also significantly inhibited OVA-LPS induced increases in inflammatory cell counts, especially neutrophil counts, and IL-17 levels in bronchoalveolar lavage fluid (BALF). LY294002 treated mice exhibited significantly increased IL-10 levels in BALF compared to the untreated mice. In addition, LY294002 reduced the plasma concentrations of IL-6 and IL-17. The anti-inflammatory effects of LY29402 were correlated with the downregulation of NLRP3 inflammasome. CONCLUSIONS: Our findings suggested that LY294002 as a potential pharmacological target for neutrophilic airway inflammation.


Asthma , Bronchoalveolar Lavage Fluid , Chromones , Disease Models, Animal , Inflammasomes , Lipopolysaccharides , Mice, Inbred C57BL , Morpholines , NLR Family, Pyrin Domain-Containing 3 Protein , Neutrophils , Ovalbumin , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Animals , Asthma/drug therapy , Asthma/chemically induced , Asthma/metabolism , Asthma/immunology , Lipopolysaccharides/pharmacology , Mice , Inflammasomes/metabolism , Inflammasomes/drug effects , Female , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Chromones/pharmacology , Morpholines/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lung/pathology , Lung/drug effects , Lung/metabolism , Interleukin-17/metabolism
19.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(4): 377-380, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38813631

OBJECTIVE: To investigate the effect of nuclear factor E2-related factor 2 (Nrf2) on the cellular tight junction protein Claudin-18 in endotoxin-induced acute lung injury (ALI). METHODS: Eighteen healthy male C57BL/6 mice were divided into control group, endotoxin-induced ALI model group (ALI group) and Nrf2 activator tert-butylhydroquinone (tBHQ) pretreatment group (tBHQ+ALI group) according to random number table method, with 6 mice in each group. Mice endotoxin-induced ALI model was reproduced by intraperitoneal injection of lipopolysaccharide (LPS, 15 mg/kg), and the mice in the control group was injected with an equal amount of phosphate buffer solution (PBS). The mice in the tBHQ+ALI group received three intraperitoneal injections of tBHQ (a total of 50 mg/kg) at an interval of 1 hour before molding. The last injection of tBHQ was accompanied by LPS of 15 mg/kg. The mice in the control group and model group were given equal amounts of PBS, and PBS or LPS was given at the last injection. The mice were sacrificed at 12 hours after LPS injection to take lung tissues. After the lung tissue was stained with hematoxylin-eosin (HE) staining, the pathological changes were observed under light microscopy, and the lung injury score was calculated. The lung wet/dry ratio (W/D) was determined. Nrf2 protein expression in the lung tissue was detected by Western blotting. Positive expression of Claudin-18 in the lung tissue was determined by immunohistochemistry. RESULTS: The lung tissue showed normal structure, without significant pathological change in the control group. Compared with the control group, the alveolar septum widened accompanied by inflammatory cell infiltration, capillary hyperemia and tissue edema in the ALI group, the lung injury score and lung W/D ratio were significantly increased (lung injury score: 6.50±1.05 vs. 1.83±0.75, lung W/D ratio: 3.79±0.22 vs. 3.20±0.14, both P < 0.01), and the Nrf2 protein expression and Claudin-18 positive expression in the lung tissue were significantly lowered [Nrf2 protein (Nrf2/ß-actin): 0.41±0.33 vs. 1.22±0.33, Claudin-18 (A value): 0.28±0.07 vs. 0.44±0.10, both P < 0.05]. After tBHQ pretreatment, the degree of lung histopathological injury was significantly reduced compared with the ALI group, the alveolar space slightly abnormal, inflammatory cell infiltration and tissue edema reduced, the lung injury score and lung W/D ratio were significantly decreased (lung injury score: 3.00±0.89 vs. 6.50±1.05, lung W/D ratio: 3.28±0.19 vs. 3.79±0.22, both P < 0.01), and Nrf2 protein expression and Claudin-18 positive expression in the lung tissue were significantly increased [Nrf2 protein (Nrf2/ß-actin): 1.26±0.09 vs. 0.41±0.33, Claudin-18 (A valure): 0.45±0.04 vs. 0.28±0.07, both P < 0.05]. CONCLUSIONS: Nrf2 alleviated pulmonary edema and improved endotoxin-induced ALI by up-regulating Claudin-18 expression.


Acute Lung Injury , Claudins , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Animals , Acute Lung Injury/metabolism , Acute Lung Injury/chemically induced , Male , NF-E2-Related Factor 2/metabolism , Mice , Claudins/metabolism , Endotoxins/adverse effects , Endotoxins/toxicity , Disease Models, Animal , Lipopolysaccharides/adverse effects , Lipopolysaccharides/toxicity , Lung/metabolism , Lung/pathology , Up-Regulation , Tight Junctions/metabolism , Hydroquinones
20.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 238-242, 2024 May 27.
Article En | MEDLINE | ID: mdl-38814213

Patients with sepsis are often complicated by acute kidney injury (AKI), which greatly increases mortality. In this study, our purpose was to explore the expression and function of CDGSH iron sulfur domain 2 (CISD2) in septic AKI, and the underlying molecular mechanism. Western blot and quantitative real-time polymerase chain reaction (RT-PCR) were employed to detect protein and mRNA levels in cells. The inflammation level of cells was evaluated by detecting the content of inflammatory factors (TNF-α, IL-1ß, IL-6). Apoptosis of cells was evaluated by Caspase-3 activity assay, flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP Nick-End Labeling (TUNEL) staining. CISD2 was down-regulated in HK-2 cells treated with lipopolysaccharide (LPS). LPS treatment increased the level of inflammatory factors, the activity of Caspase-3, and the rate of apoptosis in HK-2 cells. However, overexpression of CISD2 significantly suppressed these effects. Moreover, overexpression of CISD2 activated the Sonic Hedgehog (SHH) signaling pathway. The use of cyclopamine (Cyc), a SHH signaling pathway inhibitor, eliminated the effect of overexpressing CISD2, that is, inhibiting LPS-induced inflammation and apoptosis of HK-2 cells. LPS treatment down-regulated CISD2 in HK-2 cells, and overexpression of CISD2 could inhibit LPS-induced inflammation and apoptosis of HK-2 cells by activating the SHH signaling pathway.


Acute Kidney Injury , Apoptosis , Hedgehog Proteins , Lipopolysaccharides , Sepsis , Signal Transduction , Humans , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 3/genetics , Cell Line , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Sepsis/metabolism , Sepsis/complications , Signal Transduction/drug effects
...