Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40.626
Filter
1.
Lipids Health Dis ; 23(1): 256, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164739

ABSTRACT

BACKGROUND: Recent studies have implicated remnant cholesterol (RC) in the etiology, progression, and prognosis of cancer. However, very few of them concentrated on the study of the precise relationship between serum RC levels and cancer risk, leaving this subject unexplored. Consequently, this study aims to investigate the association between serum RC levels and 4 site-specific cancers, employing a dual approach that combines observational and mendelian randomization (MR) analysis. METHODS: Based on data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2020, this study collected data from18,067 participants. To rule out confounders, this study utilized weighted multivariable logistic regression and assessed non-linear associations using restricted cubic spline (RCS) regression, followed by two-piecewise linear regression. Sensitivity analysis conducted in this study included subgroup analysis, multiple imputation, outlier removal, and propensity score matching. To strengthen causal inference, this study employed univariable and multivariable MR analysis. The robustness and reliability of the findings were estimated by the application of replication and meta-analysis. RESULTS: The results of multivariable logistic regression analysis demonstrated a significant association between serum RC levels and breast cancer, showing that individuals in the higher logRC category had a higher risk of breast cancer compared to those in the lower category (Q3 vs. Q1: OR = 1.71, 95% CI: 1.01-2.88, P = 0.044). Weighted RCS revealed an inverted L-shape association between RC and the risk of breast cancer (P-nonlinear = 0.0386, P-overall = 0.010). Primary MR analysis provided evidence for an increased risk of breast (IVW: OR = 1.08, 95% CI: 1.03-1.12, P = 0.000951) and colorectal cancer (IVW: OR = 1.12, 95% CI: 1.00-1.24, P = 0.0476) associated with RC. However, the results of replication and meta-analysis did not support a significant causal association of RC with the risk of breast cancer (OR = 1.04, 95% CI: 0.95-1.13), lung cancer (OR = 0.95, 95% CI: 0.88-1.03), colorectal cancer (OR = 1.05, 95% CI: 0.92-1.19), and prostate cancer (OR = 1.01, 95% CI: 0.95-1.08). CONCLUSION: Although a non-linear relationship was observed in the cross-sectional study between remnant cholesterol levels and breast cancer risk, MR analyses failed to provide any causal evidence.


Subject(s)
Cholesterol , Mendelian Randomization Analysis , Humans , Female , Cholesterol/blood , Cross-Sectional Studies , Middle Aged , Male , Risk Factors , Neoplasms/blood , Neoplasms/genetics , Neoplasms/epidemiology , Breast Neoplasms/blood , Breast Neoplasms/genetics , Breast Neoplasms/epidemiology , Adult , Nutrition Surveys , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Colorectal Neoplasms/epidemiology , Aged , Logistic Models , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/epidemiology , Lipoproteins , Triglycerides
2.
Sci Rep ; 14(1): 18098, 2024 08 05.
Article in English | MEDLINE | ID: mdl-39103476

ABSTRACT

Despite the clear association between remnant cholesterol (RC)and diabetes risk, no study to date has examined the relationship between RC and reversal of prediabetes to normoglycemia. This retrospective cohort study included a total of 15,023 patients with prediabetes who underwent a physical examination between 2010 and 2016. The link between initial RC levels and the reversion from prediabetes to normoglycemia was analyzed using the Cox proportional-hazards regression model. Additionally, the study explored the possible relationship between RC and the probability of returning normoglycemia by applying Cox proportional hazards regression models with cubic spline functions. To address competing risks, a multivariate Cox regression analysis was undertaken, treating the onset of diabetes as a competing risk event for reversing prediabetes to normoglycemia. Additionally, the study incorporated extensive subgroup analyses alongside multiple sensitivity analyses, enhancing the reliability and robustness of the results. After adjusting for covariates, the findings indicated that RC was inversely associated with the likelihood of reverting to normoglycemia (per 5 mg/dL increase, HR = 0.918, 95% CI 0.909-0.927). The analysis also revealed a nonlinear relationship between RC and normoglycemia reversion, with an inflection point at 51.08 mg/dL. For RC values below this inflection point (RC < 50.08 mg/dL), the HR for the probability of returning to normoglycemia was 0.907 (95% CI 0.897-0.917 per 5 mg/dL). Additionally, the competing risks model demonstrated a negative relationship between RC and the reversal of prediabetes to normoglycemia (SHR = 0.92, 95% CI 0.91-0.93). Sensitivity analyses confirmed the robustness and stability of these results. This study demonstrated a negative and non-linear association between RC and the probability of reversion to normoglycemia in Chinese adults with prediabetes. By actively intervening to reduce RC levels, at least to below 51.08 mg/dL, further reduction of RC may significantly increase the probability of returning to normoglycemia from prediabetes.


Subject(s)
Cholesterol , Prediabetic State , Humans , Prediabetic State/epidemiology , Female , Male , Middle Aged , Cholesterol/blood , Retrospective Studies , Adult , Blood Glucose/metabolism , Blood Glucose/analysis , China/epidemiology , Proportional Hazards Models , Aged , Triglycerides/blood , Asian People , Risk Factors , Cohort Studies , East Asian People , Lipoproteins
3.
Hum Genomics ; 18(1): 85, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090729

ABSTRACT

Sitosterolemia is a rare inherited disorder caused by mutations in the ABCG5/ABCG8 genes. These genes encode proteins involved in the transport of plant sterols. Mutations in these genes lead to decreased excretion of phytosterols, which can accumulate in the body and lead to a variety of health problems, including premature coronary artery disease. We conducted the first genome-wide association study (GWAS) in the Middle East/North Africa population to identify genetic determinants of plant sterol levels in Qatari people. GWAS was performed on serum levels of ß-sitosterol and campesterol using the Metabolon platform from Qatar Biobank (QBB) and genome sequence data provided by Qatar Genome Program. A trans-ancestry meta-analysis of data from our Qatari cohort with summary statistics from a previously published large cohort (9758 subjects) of European ancestry was conducted. Using conditional analysis, we identified two independent single nucleotide polymorphisms associated with ß-sitosterol (rs145164937 and rs4299376), and two others with campesterol (rs7598542 and rs75901165) in the Qatari population in addition to previously reported variants. All of them map to the ABCG5/8 locus except rs75901165 which is located within the Intraflagellar Transport 43 (IFT43) gene. The meta-analysis replicated most of the reported variants, and our study provided significant support for the association of variants in SCARB1 and ABO with sitosterolemia. Evaluation of a polygenic risk score devised from European GWAS data showed moderate performance when applied to QBB (adjusted-R2 = 0.082). These findings provide new insights into the genetic architecture of phytosterol metabolism while showing the importance including under-represented populations in future GWAS studies.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , ATP Binding Cassette Transporter, Subfamily G, Member 8 , Genome-Wide Association Study , Lipid Metabolism, Inborn Errors , Phytosterols , Polymorphism, Single Nucleotide , Sitosterols , Humans , Phytosterols/blood , Phytosterols/genetics , Phytosterols/adverse effects , Polymorphism, Single Nucleotide/genetics , Sitosterols/blood , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/blood , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Male , Female , Intestinal Diseases/genetics , Intestinal Diseases/blood , Adult , Cholesterol/blood , Cholesterol/analogs & derivatives , Hypercholesterolemia/genetics , Hypercholesterolemia/blood , Middle Aged , Lipoproteins/blood , Lipoproteins/genetics , ATP-Binding Cassette Transporters/genetics
4.
Nutrients ; 16(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39125409

ABSTRACT

Cardiovascular diseases (CVDs) represent the leading cause of mortality worldwide, despite the significant advancements that have been made in terms of primary and secondary prevention strategies over the past decades [...].


Subject(s)
Cardiovascular Diseases , Lipoproteins , Humans , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Lipoproteins/blood , Nutritional Status
5.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125855

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a progressive liver disease characterized by the build-up of fat in the liver of individuals in the absence of alcohol consumption. This condition has become a burden in modern societies aggravated by the lack of appropriate predictive biomarkers (other than liver biopsy). To better understand this disease and to find appropriate biomarkers, a new technology has emerged in the last two decades with the ability to explore the unmapped role of lipids in this disease: lipidomics. This technology, based on the combination of chromatography and mass spectrometry, has been extensively used to explore the lipid metabolism of NAFLD. In this review, we aim to summarize the knowledge gained through lipidomics assays exploring tissues, plasma, and lipoproteins from individuals with NAFLD. Our goal is to identify common features and active pathways that could facilitate the finding of a reliable biomarker from this field. The most frequent observation was a variable decrease (1-9%) in polyunsaturated fatty acids in phospholipids and non-esterified fatty acids in NAFLD patients, both in plasma and liver. Additionally, a reduction in phosphatidylcholines is a common feature in the liver. Due to the scarcity of studies, further research is needed to properly detect lipoprotein, plasma, and tissue lipid signatures of NAFLD etiologies, and NAFLD subtypes, and to define the relevance of this technology in disease management strategies in the push toward personalized medicine.


Subject(s)
Biomarkers , Lipidomics , Non-alcoholic Fatty Liver Disease , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnosis , Humans , Biomarkers/blood , Lipidomics/methods , Lipoproteins/metabolism , Lipoproteins/blood , Lipid Metabolism , Liver/metabolism , Animals
6.
Bull Math Biol ; 86(9): 112, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093509

ABSTRACT

Macrophages in atherosclerotic lesions exhibit a spectrum of behaviours or phenotypes. The phenotypic distribution of monocyte-derived macrophages (MDMs), its correlation with MDM lipid content, and relation to blood lipoprotein densities are not well understood. Of particular interest is the balance between low density lipoproteins (LDL) and high density lipoproteins (HDL), which carry bad and good cholesterol respectively. To address these issues, we have developed a mathematical model for early atherosclerosis in which the MDM population is structured by phenotype and lipid content. The model admits a simpler, closed subsystem whose analysis shows how lesion composition becomes more pathological as the blood density of LDL increases relative to the HDL capacity. We use asymptotic analysis to derive a power-law relationship between MDM phenotype and lipid content at steady-state. This relationship enables us to understand why, for example, lipid-laden MDMs have a more inflammatory phenotype than lipid-poor MDMs when blood LDL lipid density greatly exceeds HDL capacity. We show further that the MDM phenotype distribution always attains a local maximum, while the lipid content distribution may be unimodal, adopt a quasi-uniform profile or decrease monotonically. Pathological lesions exhibit a local maximum in both the phenotype and lipid content MDM distributions, with the maximum at an inflammatory phenotype and near the lipid content capacity respectively. These results illustrate how macrophage heterogeneity arises in early atherosclerosis and provide a framework for future model validation through comparison with single-cell RNA sequencing data.


Subject(s)
Atherosclerosis , Lipoproteins, HDL , Lipoproteins, LDL , Macrophages , Mathematical Concepts , Phenotype , Humans , Macrophages/metabolism , Macrophages/pathology , Atherosclerosis/pathology , Atherosclerosis/metabolism , Atherosclerosis/blood , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/blood , Lipoproteins, HDL/blood , Lipoproteins, HDL/metabolism , Models, Cardiovascular , Lipid Metabolism , Lipoproteins/metabolism , Lipoproteins/blood , Computer Simulation
7.
Sci Rep ; 14(1): 19120, 2024 08 18.
Article in English | MEDLINE | ID: mdl-39155305

ABSTRACT

Cardiovascular disease is one of the leading causes of death worldwide. Evidence suggests that alterations in the gut microbiome could play a role in cardiovascular diseases, including heart failure. The purpose of this study was to evaluate the effect of synbiotics on serum paraoxonase 1(PON1), soluble CD163/soluble TNF-like weak inducer of apoptosis (sCD163/sTWEAK), and lipid profile, which are involved in heart failure in patients with chronic heart failure. In this triple-blind randomized clinical trial, 90 eligible patients were included in the study. They were randomly assigned to receive one capsule (500 mg) of synbiotics or a placebo daily for ten weeks. Serum PON1, sCD163/sTWEAK, and lipid profiles were measured at the beginning and end of the study. The data were analyzed by SPSS 24, and the p-value < 0.05 was considered statistically significant. Among 90 patients who met the inclusion criteria, 80 completed the study. The primary outcomes showed a small effect on sTWEAK, with an adjusted standard mean difference (SMD) of 0.2. However, no significant changes were observed in sCD163/sTWEAK (SMD: 0.16). Secondary outcomes indicated no changes in PON1, total cholesterol (TC), or LDL-C levels. However, there was an increase in HDL-C levels (adjusted SMD: 0.46, 95% CI: 0.02-0.91) and a decrease in TG and TC/HDL levels (adjusted SMD: - 0.5 and - 0.3, respectively) in the synbiotic group. A favorable effect of synbiotics on sTWEAK, HDL, TG, and TC/HDL of patients with heart failure was observed, but no statistically significant effect was found on sCD163/sTWEAK, PON1, LDL, and TC factors.


Subject(s)
Aryldialkylphosphatase , Heart Failure , Synbiotics , Humans , Aryldialkylphosphatase/blood , Male , Female , Synbiotics/administration & dosage , Heart Failure/blood , Middle Aged , Aged , Receptors, Cell Surface/blood , Antigens, CD/blood , Cytokine TWEAK/blood , Lipoproteins/blood , Chronic Disease , Biomarkers/blood , Antigens, Differentiation, Myelomonocytic
8.
ACS Appl Mater Interfaces ; 16(34): 44386-44398, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39149774

ABSTRACT

Extracellular vesicles (EVs) are present in blood at much lower concentrations (5-6 orders of magnitude) compared to lipoprotein particles (LP). Because LP and EV overlap in size and density, isolating high-purity EVs is a significant challenge. While the current two-step sequential EV isolation process using size-expression chromatography (SEC) followed by a density gradient (DG) achieves high purity, the time-consuming ultracentrifugation (UC) step in DG hinders workflow efficiency. This paper introduces an optimized magnetic bead reagent, LipoMin, functionalized with glycosaminoglycans (GAGs), as a rapid alternative for LP removal during the second-step process in about 10 minutes. We evaluated LipoMin's efficacy on two sample types: (a) EV fractions isolated by size exclusion chromatography (SEC + LipoMin) and (b) the pellet obtained from ultracentrifugation (UC + LipoMin). The workflow is remarkably simple, involving a 10 min incubation with LipoMin followed by magnetic separation of the LP-depleted EV-containing supernatant. Results from enzyme-linked immunosorbent assay (ELISA) revealed that LipoMin removes 98.2% ApoB from SEC EV fractions, comparable to the LP removal ability of DG in the SEC + DG two-step process. Importantly, the EV yield (CD81 ELISA) remained at 93.0% and Western blot analysis confirmed that key EV markers, flotillin and CD81, were not compromised. Recombinant EV (rEV), an EV reference standard, was spiked into SEC EV fractions and recovered 89% of CD81 protein. For UC + LipoMin, ApoA1 decreased by 76.5% while retaining 90.7% of CD81. Notably, both colorectal cancer (CRC) and Alzheimer's disease (AD) samples processed by SEC + LipoMin and UC + LipoMin displayed clear expression of relevant EV and clinical markers. With a 10 min workflow (resulting in a 96% time saving compared to the traditional method), the LipoMin reagent offers a rapid and efficient alternative to DG for LP depletion, paving the way for a streamlined SEC + LipoMin two-step EV isolation process.


Subject(s)
Chromatography, Gel , Extracellular Vesicles , Glycosaminoglycans , Lipoproteins , Ultracentrifugation , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Ultracentrifugation/methods , Humans , Lipoproteins/chemistry , Lipoproteins/isolation & purification , Glycosaminoglycans/chemistry , Glycosaminoglycans/isolation & purification
9.
Clin Sci (Lond) ; 138(17): 1039-1054, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39136693

ABSTRACT

Maternal high-fat diet intake has profound effects on the long-term health of offspring, predisposing them to a higher susceptibility to obesity and metabolic dysfunction-associated steatotic liver disease. However, the detailed mechanisms underlying the role of a maternal high-fat diet in hepatic lipid accumulation in offspring, especially at the weaning age, remain largely unclear. In this study, female C57BL/6J mice were randomly assigned to either a high-fat diet or a control diet, and lipid metabolism parameters were assessed in male offspring at weaning. Gut microbiota analysis and targeted metabolomics of short-chain fatty acids (SCFAs) in these offspring were further performed. Both in vivo and in vitro studies were conducted to explore the role of butyrate in hepatic cholesterol excretion in the liver and HepG2 cells. Our results showed that maternal high-fat feeding led to obesity and dyslipidemia, and exacerbated hepatic lipid accumulation in the livers of offspring at weaning. We observed significant decreases in the abundance of the Firmicutes phylum and the Allobaculum genus, known as producers of SCFAs, particularly butyrate, in the offspring of dams fed a high-fat diet. Additionally, maternal high-fat diet feeding markedly decreased serum butyrate levels and down-regulated ATP-binding cassette transporters G5 (ABCG5) in the liver, accompanied by decreased phosphorylated AMP-activated protein kinase (AMPK) and histone deacetylase 5 (HADC5) expressions. Subsequent in vitro studies revealed that butyrate could induce ABCG5 activation and alleviate lipid accumulation via the AMPK-pHDAC5 pathway in HepG2 cells. Moreover, knockdown of HDAC5 up-regulated ABCG5 expression and promoted cholesterol excretion in HepG2 cells. In conclusion, our study provides novel insights into how maternal high-fat diet feeding inhibits hepatic cholesterol excretion and down-regulates ABCG5 through the butyrate-AMPK-pHDAC5 pathway in offspring at weaning.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , Butyrates , Cholesterol , Diet, High-Fat , Gastrointestinal Microbiome , Liver , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Female , Butyrates/metabolism , Humans , Liver/metabolism , Hep G2 Cells , ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Male , Cholesterol/metabolism , Cholesterol/blood , Pregnancy , Mice , Lipid Metabolism , Prenatal Exposure Delayed Effects/metabolism , Maternal Nutritional Physiological Phenomena , Obesity/metabolism , Obesity/microbiology , Dyslipidemias/metabolism , Dyslipidemias/microbiology , Dyslipidemias/etiology , Lipoproteins
10.
J Infect Dis ; 230(Supplement_1): S82-S86, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140718

ABSTRACT

Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is transmitted by Ixodes spp ticks. The rise in Lyme disease cases since its discovery in the 1970s has reinforced the need for a vaccine. A vaccine based on B burgdorferi outer surface protein A (OspA) was approved by the Food and Drug Administration (FDA) several decades ago, but was pulled from the market a few years later, reportedly due to poor sales, despite multiple organizations concluding that it was safe and effective. Newer OspA-based vaccines are being developed and are likely to be available in the coming years. More recently, there has been a push to develop vaccines that target the tick vector instead of the pathogen to inhibit tick feeding and thus prevent transmission of tick-borne pathogens to humans and wildlife reservoirs. This review outlines the history of Lyme disease vaccines and this movement to anti-tick vaccine approaches.


Subject(s)
Borrelia burgdorferi , Ixodes , Lyme Disease Vaccines , Lyme Disease , Lyme Disease/prevention & control , Lyme Disease/immunology , Humans , Animals , Borrelia burgdorferi/immunology , Lyme Disease Vaccines/immunology , Ixodes/microbiology , Vaccination , Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/administration & dosage , Antigens, Surface/immunology , Lipoproteins/immunology
11.
Vox Sang ; 119(8): 821-826, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946160

ABSTRACT

BACKGROUND AND OBJECTIVES: The detection of treponemal antibodies, which are used to make a diagnosis of syphilis, is important both for diagnostic purposes and as a mandatory blood donor test in most countries. We evaluated the feasibility of using Kode Technology to make syphilis peptide red cell kodecytes for use in column agglutination serologic platforms. MATERIALS AND METHODS: Candidate Kode Technology function-spacer-lipid (FSL) constructs were made for the Treponema pallidum lipoprotein (TmpA) of T. pallidum, using the peptide and FSL selection algorithms, and then used to make kodecytes. Developmental kodecytes were evaluated against a large range of syphilis antibody reactive and non-reactive samples in column agglutination platforms and compared against established methodologies. Overall, 150 reactive and 2072 non-reactive Syphicheck assay (a modified T. pallidum particle agglutination) blood donor samples were used to evaluate the agreement rate of the developed kodecyte assay. RESULTS: From three FSL-peptide candidate constructs, one was found to be the most suitable for diagnostics. Of 150 Syphicheck assay reactive samples, 146 were TmpA-kodecyte reactive (97.3% agreement), compared with 58.0% with the rapid plasmin reagin (RPR) assay for the same samples. Against the 2072 expected syphilis non-reactive samples the agreement rate for TmpA-kodecytes was 98.8%. CONCLUSION: TmpA-kodecytes are viable for use as cost-effective serologic reagent red cells for the detection of treponemal antibodies to diagnose syphilis with a high level of specificity in blood centres. This kodecyte methodology also potentially allows for introduction of the reverse-algorithm testing into low-volume laboratories, by utilizing existing transfusion laboratory infrastructure.


Subject(s)
Antigens, Bacterial , Lipoproteins , Syphilis , Treponema pallidum , Humans , Treponema pallidum/immunology , Syphilis/diagnosis , Syphilis/blood , Lipoproteins/immunology , Antigens, Bacterial/immunology , Erythrocytes/microbiology , Agglutination Tests/methods , Syphilis Serodiagnosis/methods , Antibodies, Bacterial/blood
12.
Mol Microbiol ; 122(2): 230-242, 2024 08.
Article in English | MEDLINE | ID: mdl-38994873

ABSTRACT

Enterococcus faecalis is an opportunistic pathogen frequently causing nosocomial infections. The virulence of this organism is underpinned by its capacity to evade phagocytosis, allowing dissemination in the host. Immune evasion requires a surface polysaccharide produced by all enterococci, known as the enterococcal polysaccharide antigen (EPA). EPA consists of a cell wall-anchored rhamnose backbone substituted by strain-specific polysaccharides called 'decorations', essential for the biological activity of this polymer. However, the structural determinants required for innate immune evasion remain unknown, partly due to a lack of suitable validated assays. Here, we describe a quantitative, in vitro assay to investigate how EPA decorations alter phagocytosis. Using the E. faecalis model strain OG1RF, we demonstrate that a mutant with a deletion of the locus encoding EPA decorations can be used as a platform strain to express heterologous decorations, thereby providing an experimental system to investigate the inhibition of phagocytosis by strain-specific decorations. We show that the aggregation of cells lacking decorations is increasing phagocytosis and that this process does not involve the recognition of lipoproteins by macrophages. Collectively, our work provides novel insights into innate immune evasion by enterococci and paves the way for further studies to explore the structure/function relationship of EPA decorations.


Subject(s)
Enterococcus faecalis , Immune Evasion , Lipoproteins , Macrophages , Phagocytosis , Enterococcus faecalis/immunology , Enterococcus faecalis/metabolism , Enterococcus faecalis/genetics , Lipoproteins/metabolism , Lipoproteins/genetics , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Polysaccharides, Bacterial/metabolism , Polysaccharides, Bacterial/immunology , Humans , Antigens, Bacterial/metabolism , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Immunity, Innate , Virulence , Animals , Mice
13.
J Am Heart Assoc ; 13(15): e034770, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39082393

ABSTRACT

BACKGROUND: The capacity of high-density lipoprotein cholesterol (HDL) to acquire free cholesterol (FC) from triglyceride-rich lipoproteins during lipoprotein lipase-dependent lipolysis in a process of reverse remnant cholesterol transport, has been proposed as a key biological function of HDL particles that underlies the U-shaped relationship between HDLcholesterol and cardiovascular diseases. Although reverse remnant cholesterol transport has been evaluated in a fasting state, it has never been explored under nonfasting conditions. METHODS AND RESULTS: FC transfer was evaluated in healthy men (n=78) before and throughout the postprandial phase up to 8 hours after consumption of a test meal. Postprandially, the capacity of HDL to acquire FC increased progressively, reaching a maximal mean value of 98.5%±22.5% 6 hours after meal intake (P<0.05). Analysis of the study population according to tertiles of postprandial variation of FC transfer identified subjects exhibiting reduced capacity of HDL to acquire FC (tertile 1), those for whom the capacity of HDL to acquire FC remained unchanged (tertile 2), and subjects characterized by an enhanced FC transfer during the postprandial phase (tertile 3). Across the tertiles, we found an inverse relationship between the maximal postprandial change in FC transfer to HDL and the degree of postprandial triglyceride response. CONCLUSIONS: Healthy individuals exhibiting exacerbated postprandial triglyceride response and reduced HDL cholesterol levels feature reduced FC transfer to HDL during the postprandial state. These data suggest that to normalize postprandial triglyceride response, 2 conditions need to be fulfilled: notably elevated FC transfer to HDL in the postprandial phase and increased levels of acceptor HDL particles.


Subject(s)
Hypertriglyceridemia , Postprandial Period , Triglycerides , Humans , Male , Postprandial Period/physiology , Triglycerides/blood , Hypertriglyceridemia/blood , Adult , Lipoproteins/blood , Healthy Volunteers , Middle Aged , Cholesterol, HDL/blood , Cholesterol/blood , Young Adult , Lipoproteins, HDL/blood , Biomarkers/blood , Time Factors
14.
J Phys Chem Lett ; 15(31): 7832-7839, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39052610

ABSTRACT

Multidrug efflux pumps, especially those belonging to the class of resistance-nodulation-division (RND), are the key contributors to the rapidly growing multidrug resistance in Gram-negative bacteria. Understanding the role of efflux pumps in real-time drug transport dynamics across the complex dual-cell membrane envelope of Gram-negative bacteria is thus crucial for developing efficient antibiotics against them. Here, we employ second harmonic generation-based nonlinear spectroscopy to study the role of the tripartite efflux pump and its individual components. We systematically investigate the effect of periplasmic adaptor protein AcrA, inner membrane transporter protein AcrB, and outer membrane channel TolC on the overall drug transport in live Acr-type Escherichia coli and its mutant strain cells. Our results reveal that when one of its components is missing, the tripartite AcrAB-TolC efflux pump machinery in Escherichia coli can effectively function as a bipartite system, a fact that has never been demonstrated in live Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Proteins , Escherichia coli , Multidrug Resistance-Associated Proteins , Escherichia coli/metabolism , Escherichia coli/drug effects , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry , Multidrug Resistance-Associated Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/chemistry , Spectrum Analysis/methods , Carrier Proteins/metabolism , Carrier Proteins/chemistry , Biological Transport , Lipoproteins
15.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000067

ABSTRACT

Achieving commercially significant yields of recombinant proteins in Bacillus subtilis requires the optimization of its protein production pathway, including transcription, translation, folding, and secretion. Therefore, in this study, our aim was to maximize the secretion of a reporter α-amylase by overcoming potential bottlenecks within the secretion process one by one, using a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system. The strength of single and tandem promoters was evaluated by measuring the relative α-amylase activity of AmyQ integrated into the B. subtilis chromosome. Once a suitable promoter was selected, the expression levels of amyQ were upregulated through the iterative integration of up to six gene copies, thus boosting the α-amylase activity 20.9-fold in comparison with the strain harboring a single amyQ gene copy. Next, α-amylase secretion was further improved to a 26.4-fold increase through the overexpression of the extracellular chaperone PrsA and the signal peptide peptidase SppA. When the final expression strain was cultivated in a 3 L fermentor for 90 h, the AmyQ production was enhanced 57.9-fold. The proposed strategy allows for the development of robust marker-free plasmid-less super-secreting B. subtilis strains with industrial relevance.


Subject(s)
Bacillus subtilis , Bacterial Proteins , CRISPR-Cas Systems , alpha-Amylases , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , alpha-Amylases/genetics , alpha-Amylases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Secretory Pathway/genetics , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Gene Expression Regulation, Bacterial , Lipoproteins , Membrane Proteins
16.
Cardiovasc Diabetol ; 23(1): 272, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048982

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a cluster of medical conditions and risk factors correlating with insulin resistance that increase the risk of developing cardiometabolic health problems. The specific criteria for diagnosing MetS vary among different medical organizations but are typically based on the evaluation of abdominal obesity, high blood pressure, hyperglycemia, and dyslipidemia. A unique, quantitative and independent estimation of the risk of MetS based only on quantitative biomarkers is highly desirable for the comparison between patients and to study the individual progression of the disease in a quantitative manner. METHODS: We used NMR-based metabolomics on a large cohort of donors (n = 21,323; 37.5% female) to investigate the diagnostic value of serum or serum combined with urine to estimate the MetS risk. Specifically, we have determined 41 circulating metabolites and 112 lipoprotein classes and subclasses in serum samples and this information has been integrated with metabolic profiles extracted from urine samples. RESULTS: We have developed MetSCORE, a metabolic model of MetS that combines serum lipoprotein and metabolite information. MetSCORE discriminate patients with MetS (independently identified using the WHO criterium) from general population, with an AUROC of 0.94 (95% CI 0.920-0.952, p < 0.001). MetSCORE is also able to discriminate the intermediate phenotypes, identifying the early risk of MetS in a quantitative way and ranking individuals according to their risk of undergoing MetS (for general population) or according to the severity of the syndrome (for MetS patients). CONCLUSIONS: We believe that MetSCORE may be an insightful tool for early intervention and lifestyle modifications, potentially preventing the aggravation of metabolic syndrome.


Subject(s)
Biomarkers , Magnetic Resonance Spectroscopy , Metabolic Syndrome , Metabolomics , Predictive Value of Tests , Humans , Metabolic Syndrome/diagnosis , Metabolic Syndrome/blood , Metabolic Syndrome/epidemiology , Metabolic Syndrome/urine , Female , Male , Biomarkers/blood , Biomarkers/urine , Middle Aged , Risk Assessment , Adult , Aged , Lipoproteins/blood , Prognosis , Risk Factors , Cardiometabolic Risk Factors , Young Adult
17.
Photochem Photobiol ; 100(4): 969-979, 2024.
Article in English | MEDLINE | ID: mdl-38961565

ABSTRACT

Here, we report a novel kind of protein nanoparticles of 11 nm in size, which have a central protein core surrounded by two layers of lipid. One layer of the lipid was covalently attached to the protein, while the other layer has been physically assembled around the protein core. Particle synthesis is highly modular, while both the size and charge of the protein nanoparticles are controlled in a predictable manner. Circular dichroism studies of the conjugate showed that the protein secondary structure is retained, while biophysical characterizations indicated the particle purity, size, and charge. The conjugate had a high thermal stability to steam sterilization conditions at 121°C (17 psi). After labeling the protein core with few different fluorescent dyes, they were strongly fluorescent with the corresponding colors independent of their size, unlike quantum dots. They are readily digested by proteases, and these water-soluble, non-toxic, highly stable, biocompatible, and biodegradable conjugates are suitable for cell imaging and drug delivery applications.


Subject(s)
Fluorescent Dyes , Lipoproteins , Nanoparticles , Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Lipoproteins/chemistry , Circular Dichroism , Particle Size
18.
Appl Microbiol Biotechnol ; 108(1): 424, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037584

ABSTRACT

Leptospirosis, a neglected zoonotic disease, is caused by pathogenic spirochetes belonging to the genus Leptospira and has one of the highest morbidity and mortality rates worldwide. Vaccination stands out as one of the most effective preventive measures for susceptible populations. Within the outer membrane of Leptospira spp., we find the LIC12287, LIC11711, and LIC13259 lipoproteins. These are of interest due to their surface location and potential immunogenicity. Thorough examination revealed the conservation of these proteins among pathogenic Leptospira spp.; we mapped the distribution of T- and B-cell epitopes along their sequences and assessed the 3D structures of each protein. This information aided in selecting immunodominant regions for the development of a chimeric protein. Through gene synthesis, we successfully constructed a chimeric protein, which was subsequently expressed, purified, and characterized. Hamsters were immunized with the chimeric lipoprotein, formulated with adjuvants aluminum hydroxide, EMULSIGEN®-D, Sigma Adjuvant System®, and Montanide™ ISA206VG. Another group was vaccinated with an inactivated Escherichia coli bacterin expressing the chimeric protein. Following vaccination, hamsters were challenged with a virulent L. interrogans strain. Our evaluation of the humoral immune response revealed the production of IgG antibodies, detectable 28 days after the second dose, in contrast to pre-immune samples and control groups. This demonstrates the potential of the chimeric protein to elicit a robust humoral immune response; however, no protection against challenge was achieved. While this study provides valuable insights into the subject, further research is warranted to identify protective antigens that could be utilized in the development of a leptospirosis vaccine. KEY POINTS: • Several T- and B-cell epitopes were identified in all the three proteins. • Four different adjuvants were used in vaccine formulations. • Immunization stimulated significant levels of IgG2/3 in vaccinated animals.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Leptospirosis , Lipoproteins , Animals , Leptospirosis/prevention & control , Leptospirosis/immunology , Lipoproteins/immunology , Lipoproteins/genetics , Bacterial Vaccines/immunology , Bacterial Vaccines/genetics , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Cricetinae , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Adjuvants, Immunologic/administration & dosage , Immunoglobulin G/blood , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Leptospira interrogans/immunology , Leptospira interrogans/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Vaccination , Immunity, Humoral , Leptospira/immunology , Leptospira/genetics , Immunogenicity, Vaccine
19.
Lipids Health Dis ; 23(1): 222, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039599

ABSTRACT

BACKGROUND: Sitosterolemia, an autosomal recessive condition, is characterized by impaired metabolism of plant sterols. Clinical symptoms include skin xanthoma, premature atherosclerotic disease, arthritis, and unexplained hematological abnormalities. However, there is a dearth of studies on sitosterolemia-related brain damage. METHODS: This study focused on the family of two sitosterolemia patients who presented with severe hypercholesterolemia and xanthoma. Radiological examinations, biopsies, whole-exome sequencing (WES), and plant sterol tests were conducted. RESULTS: The index patient, a 66-year-old female, initially exhibited weakness in both lower limbs and later developed urinary and fecal incontinence. Neuroimaging showed that the falx of the brain had irregular fusiform thickening. Significant tissue edema was observed around the lesions in the bilateral frontal-parietal lobes. Pathological analysis of the biopsied brain lesion revealed extensive cholesterol crystal deposition and lymphocyte infiltration in the matrix. The index patient who experienced cerebral impairment and her sister both carried two compound heterozygous variants in ATP binding cassette transporter G5 (ABCG5). These included the nonsense variants NM_022436: c.751 C > T (p.Q251X) in exon 6 and NM_022436: c.1336 C > T (p.R446X) in exon 10. A notable increase in plant sterol levels was observed in the younger sister of the index patient. CONCLUSION: This study highlights a previously unreported neurological aspect of sitosterolemia. Imaging and pathology findings suggest that cholesterol crystals may be deposited in connective tissues such as the cerebral falx and pia mater through blood circulation.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 5 , Hypercholesterolemia , Intestinal Diseases , Lipid Metabolism, Inborn Errors , Phytosterols , Humans , Female , Phytosterols/adverse effects , Aged , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Hypercholesterolemia/complications , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/pathology , Lipid Metabolism, Inborn Errors/diagnostic imaging , Intestinal Diseases/genetics , Intestinal Diseases/pathology , Intestinal Diseases/diagnostic imaging , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics , Brain/pathology , Brain/diagnostic imaging , Exome Sequencing , Xanthomatosis/pathology , Xanthomatosis/genetics , Xanthomatosis/diagnostic imaging , Pedigree , Cholesterol/blood , Male , Sitosterols , Lipoproteins
20.
Medicine (Baltimore) ; 103(27): e38754, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968507

ABSTRACT

The current first-line treatment for atherosclerotic cardiovascular disease (ASCVD) involves the reduction of a patient's low-density lipoprotein cholesterol (LDL-C) levels through the use of lipid-lowering drugs. However, even when other risk factors such as hypertension and diabetes are effectively managed, there remains a residual cardiovascular risk in these patients despite achieving target LDL-C levels with statins and new lipid-lowering medications. This risk was previously believed to be associated with lipid components other than LDL, such as triglycerides. However, recent studies have unveiled the crucial role of remnant cholesterol (RC) in atherosclerosis, not just triglycerides. The metabolized product of triglyceride-rich lipoproteins is referred to as triglyceride-rich remnant lipoprotein particles, and its cholesterol component is known as RC. Numerous pieces of evidence from epidemiological investigations and genetic studies demonstrate that RC plays a significant role in predicting the incidence of ASCVD. As a novel marker for atherosclerosis prediction, when LDL-C is appropriately controlled, RC should be prioritized for attention and intervention among individuals at high risk of ASCVD. Therefore, reducing RC levels through the use of various lipid-lowering drugs may yield long-term benefits. Nevertheless, routine testing of RC in clinical practice remains controversial, necessitating further research on the treatment of elevated RC levels to evaluate the advantages of reducing RC in patients at high risk of ASCVD.


Subject(s)
Atherosclerosis , Cholesterol , Humans , Atherosclerosis/blood , Cholesterol/blood , Cholesterol/metabolism , Triglycerides/blood , Risk Factors , Biomarkers/blood , Cholesterol, LDL/blood , Lipoproteins/blood , Lipoproteins/metabolism , Cardiovascular Diseases/blood , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL