Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.158
Filter
1.
Cancer Cell ; 42(7): 1160-1162, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981437

ABSTRACT

Cancer cells release cell-free DNA (cfDNA) and extracellular vesicles (EVs) into the bloodstream, allowing disease non-invasive monitoring. In this issue of Cancer Cell, Casanova-Salas et al. analyze cfDNA, EV-DNA, and EV-RNA in prostate cancer longitudinal cohorts treated with androgen receptor signaling inhibitors and taxanes, identifying signals reflecting tumor adaptation processes.


Subject(s)
Extracellular Vesicles , Transcriptome , Humans , Liquid Biopsy/methods , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Biomarkers, Tumor/genetics
2.
Cancer Cell ; 42(7): 1301-1312.e7, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981440

ABSTRACT

Extracellular vesicles (EVs) secreted by tumors are abundant in plasma, but their potential for interrogating the molecular features of tumors through multi-omic profiling remains widely unexplored. Genomic and transcriptomic profiling of circulating EV-DNA and EV-RNA isolated from in vitro and in vivo models of metastatic prostate cancer (mPC) reveal a high contribution of tumor material to EV-loaded DNA/RNA, validating the findings in two cohorts of longitudinal plasma samples collected from patients during androgen receptor signaling inhibitor (ARSI) or taxane-based therapy. EV-DNA genomic features recapitulate matched-patient biopsies and circulating tumor DNA (ctDNA) and associate with clinical progression. We develop a novel approach to enable transcriptomic profiling of EV-RNA (RExCuE). We report how the transcriptome of circulating EVs is enriched for tumor-associated transcripts, captures certain patient and tumor features, and reflects on-therapy tumor adaptation changes. Altogether, we show that EV profiling enables longitudinal transcriptomic and genomic profiling of mPC in liquid biopsy.


Subject(s)
Extracellular Vesicles , Genomics , Prostatic Neoplasms , Transcriptome , Male , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/blood , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Genomics/methods , Animals , Gene Expression Profiling/methods , Neoplasm Metastasis , Mice , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Liquid Biopsy/methods , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000483

ABSTRACT

Gastric cancer is the fifth most common disease in the world and the fourth most common cause of death. It is diagnosed through esophagogastroduodenoscopy with biopsy; however, there are limitations in finding lesions in the early stages. Recently, research has been actively conducted to use liquid biopsy to diagnose various cancers, including gastric cancer. Various substances derived from cancer are reflected in the blood. By analyzing these substances, it was expected that not only the presence or absence of cancer but also the type of cancer can be diagnosed. However, the amount of these substances is extremely small, and even these have various variables depending on the characteristics of the individual or the characteristics of the cancer. To overcome these, we collected methylated DNA fragments using MeDIP and compared them with normal plasma to characterize gastric cancer tissue or patients' plasma. We attempted to diagnose gastric cancer using the characteristics of cancer reflected in the blood through the cancer tissue and patients' plasma. As a result, we confirmed that the consistency of common methylated fragments between tissue and plasma was approximately 41.2% and we found the possibility of diagnosing and characterizing cancer using the characteristics of the fragments through SFR and 5'end-motif analysis.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , DNA Methylation , Stomach Neoplasms , Stomach Neoplasms/blood , Stomach Neoplasms/genetics , Stomach Neoplasms/diagnosis , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Male , Female , Liquid Biopsy/methods , Middle Aged , Aged
4.
J Extracell Vesicles ; 13(7): e12470, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001700

ABSTRACT

Extracellular vesicles (EVs) have emerged as a promising tool for clinical liquid biopsy. However, the identification of EVs derived from blood samples is hindered by the presence of abundant plasma proteins, which impairs the downstream biochemical analysis of EV-associated proteins and nucleic acids. Here, we employed optimized asymmetric flow field-flow fractionation (AF4) combined with density cushion ultracentrifugation (UC) to obtain high-purity and intact EVs with very low lipoprotein contamination from human plasma and serum. Further proteomic analysis revealed more than 1000 EV-associated proteins, a large proportion of which has not been previously reported. Specifically, we found that cell-line-derived EV markers are incompatible with the identification of plasma-EVs and proposed that the proteins MYCT1, TSPAN14, MPIG6B and MYADM, as well as the traditional EV markers CD63 and CD147, are plasma-EV markers. Benefiting from the high-purity of EVs, we conducted comprehensive miRNA profiling of plasma EVs and nanosized particles (NPs), as well as compared plasma- and serum-derived EVs, which provides a valuable resource for the EV research community. Overall, our findings provide a comprehensive assessment of human blood EVs as a basis for clinical biopsy applications.


Subject(s)
Extracellular Vesicles , Ultracentrifugation , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Ultracentrifugation/methods , Proteomics/methods , MicroRNAs/blood , Fractionation, Field Flow/methods , Biomarkers/blood , Liquid Biopsy/methods , Centrifugation, Density Gradient/methods
5.
J Pak Med Assoc ; 74(6): 1194-1196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38949002

ABSTRACT

Liquid biopsy has multiple benefits and is used extensively in other fields of oncology, but its role in neuro-oncology has been limited so far. Multiple tumour-derived materials like circulating tumour cells (CTCs), tumour-educated platelets (TEPs), cell-free DNA (cfDNA), circulating tumour DNA (ctDNA), and miRNA are studied in CSF, blood (plasma, serum) or urine. Large and complex amounts of data from liquid biopsy can be simplified by machine learning using various algorithms. By using this technique, we can diagnose brain tumours and differentiate low versus highgrade glioma and true progression from pseudo-progression. The potential of liquid biopsy in brain tumours has not been extensively studied, but it has a bright future in the coming years. Here, we present a literature review on the role of machine learning in liquid biopsy of brain tumours.


Subject(s)
Brain Neoplasms , Machine Learning , Neoplastic Cells, Circulating , Humans , Liquid Biopsy/methods , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Circulating Tumor DNA/blood , Glioma/pathology , Glioma/diagnosis , Biomarkers, Tumor/blood , MicroRNAs/blood
6.
World J Gastroenterol ; 30(24): 3048-3051, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983962

ABSTRACT

In the last decade, several studies have explored various modalities and strategies for colorectal cancer (CRC) screening, taking into account epidemiological data, individual characteristics, and socioeconomic factors. In this editorial, we comment further on a retrospective study by Agatsuma et al published in the recent issue of the World Journal of Gastroenterology. Our focus is on screening trends, particularly in relation to efforts to improve the currently suboptimal uptake among the general population worldwide, aiming to enhance early diagnosis rates of CRC. There is a need to raise awareness through health edu-cation programs and to consider the use of readily available, non-invasive screening methods. These strategies are crucial for attracting screen-eligible populations to participate in first-line screening, especially those in high- or average-risk groups and in regions with limited resources. Liquid biopsies and biomarkers represent rapidly evolving trends in screening and diagnosis; however, their clinical relevance has yet to be standardized.


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Humans , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/epidemiology , Early Detection of Cancer/methods , Early Detection of Cancer/statistics & numerical data , Colonoscopy/methods , Mass Screening/methods , Mass Screening/standards , Biomarkers, Tumor/analysis , Occult Blood , Liquid Biopsy/methods , Risk Factors
7.
Front Immunol ; 15: 1401852, 2024.
Article in English | MEDLINE | ID: mdl-38994350

ABSTRACT

Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.


Subject(s)
Biomarkers, Tumor , Exosomes , Neoplasms , Humans , Exosomes/metabolism , Exosomes/immunology , Neoplasms/therapy , Neoplasms/immunology , Animals , Immunotherapy/methods , Liquid Biopsy/methods
8.
J Exp Clin Cancer Res ; 43(1): 184, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956619

ABSTRACT

Hodgkin lymphoma (HL) represents a neoplasm primarily affecting adolescents and young adults, necessitating the development of precise diagnostic and monitoring tools. Specifically, classical Hodgkin lymphoma (cHL), comprising 90% of cases, necessitating tailored treatments to minimize late toxicities. Although positron emission tomography/computed tomography (PET/CT) has enhanced response assessment, its limitations underscore the urgency for more reliable progression predictive tools. Genomic characterisation of rare Hodgkin Reed-Sternberg (HRS) cells is challenging but essential. Recent studies employ single-cell molecular analyses, mass cytometry, and Next-Generation Sequencing (NGS) to unveil mutational landscapes. The integration of liquid biopsies, particularly circulating tumor DNA (ctDNA), extracellular vesicles (EVs), miRNAs and cytokines, emerge as groundbreaking approaches. Recent studies demonstrate ctDNA's potential in assessing therapy responses and predicting relapses in HL. Despite cHL-specific ctDNA applications being relatively unexplored, studies emphasize its value in monitoring treatment outcomes. Overall, this review underscores the imperative role of liquid biopsies in advancing HL diagnosis and monitoring.


Subject(s)
Hodgkin Disease , Humans , Hodgkin Disease/genetics , Hodgkin Disease/diagnosis , Hodgkin Disease/pathology , Liquid Biopsy/methods , Circulating Tumor DNA/genetics , Biomarkers, Tumor
9.
J Exp Clin Cancer Res ; 43(1): 182, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951853

ABSTRACT

BACKGROUND: During targeted treatment, HER2-positive breast cancers invariably lose HER2 DNA amplification. In contrast, and interestingly, HER2 proteins may be either lost or gained. To longitudinally and systematically appreciate complex/discordant changes in HER2 DNA/protein stoichiometry, HER2 DNA copy numbers and soluble blood proteins (aHER2/sHER2) were tested in parallel, non-invasively (by liquid biopsy), and in two-dimensions, hence HER2-2D. METHODS: aHER2 and sHER2 were assessed by digital PCR and ELISA before and after standard-of-care treatment of advanced HER2-positive breast cancer patients (n=37) with the antibody-drug conjugate (ADC) Trastuzumab-emtansine (T-DM1). RESULTS: As expected, aHER2 was invariably suppressed by T-DM1, but this loss was surprisingly mirrored by sHER2 gain, sometimes of considerable entity, in most (30/37; 81%) patients. This unorthodox split in HER2 oncogenic dosage was supported by reciprocal aHER2/sHER2 kinetics in two representative cases, and an immunohistochemistry-high status despite copy-number-neutrality in 4/5 available post-T-DM1 tumor re-biopsies from sHER2-gain patients. Moreover, sHER2 was preferentially released by dying breast cancer cell lines treated in vitro by T-DM1. Finally, sHER2 gain was associated with a longer PFS than sHER2 loss (mean PFS 282 vs 133 days, 95% CI [210-354] vs [56-209], log-rank test p=0.047), particularly when cases (n=11) developing circulating HER2-bypass alterations during T-DM1 treatment were excluded (mean PFS 349 vs 139 days, 95% CI [255-444] vs [45-232], log-rank test p=0.009). CONCLUSIONS: HER2 gain is adaptively selected in tumor tissues and recapitulated in blood by sHER2 gain. Possibly, an increased oncogenic dosage is beneficial to the tumor during anti-HER2 treatment with naked antibodies, but favorable to the host during treatment with a strongly cytotoxic ADC such as T-DM1. In the latter case, HER2-gain tumors may be kept transiently in check until alternative oncogenic drivers, revealed by liquid biopsy, bypass HER2. Whichever the interpretation, HER2-2D might help to tailor/prioritize anti-HER2 treatments, particularly ADCs active on aHER2-low/sHER2-low tumors. TRIAL REGISTRATION: NCT05735392 retrospectively registered on January 31, 2023 https://www. CLINICALTRIALS: gov/search?term=NCT05735392.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , Liquid Biopsy/methods , Middle Aged , Ado-Trastuzumab Emtansine/therapeutic use , Aged , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Adult , Biomarkers, Tumor
10.
Clin Epigenetics ; 16(1): 87, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970137

ABSTRACT

Pediatric central nervous system tumors remain challenging to diagnose. Imaging approaches do not provide sufficient detail to discriminate between different tumor types, while the histopathological examination of tumor tissue shows high inter-observer variability. Recent studies have demonstrated the accurate classification of central nervous system tumors based on the DNA methylation profile of a tumor biopsy. However, a brain biopsy holds significant risk of bleeding and damaging the surrounding tissues. Liquid biopsy approaches analyzing circulating tumor DNA show high potential as an alternative and less invasive tool to study the DNA methylation pattern of tumors. Here, we explore the potential of classifying pediatric brain tumors based on methylation profiling of the circulating cell-free DNA (cfDNA) in cerebrospinal fluid (CSF). For this proof-of-concept study, we collected cerebrospinal fluid samples from 19 pediatric brain cancer patients via a ventricular drain placed for reasons of increased intracranial pressure. Analyses on the cfDNA showed high variability of cfDNA quantities across patients ranging from levels below the limit of quantification to 40 ng cfDNA per milliliter of CSF. Classification based on methylation profiling of cfDNA from CSF was correct for 7 out of 20 samples in our cohort. Accurate results were mostly observed in samples of high quality, more specifically those with limited high molecular weight DNA contamination. Interestingly, we show that centrifugation of the CSF prior to processing increases the fraction of fragmented cfDNA to high molecular weight DNA. In addition, classification was mostly correct for samples with high tumoral cfDNA fraction as estimated by computational deconvolution (> 40%). In summary, analysis of cfDNA in the CSF shows potential as a tool for diagnosing pediatric nervous system tumors especially in patients with high levels of tumoral cfDNA in the CSF. Further optimization of the collection procedure, experimental workflow and bioinformatic approach is required to also allow classification for patients with low tumoral fractions in the CSF.


Subject(s)
Cell-Free Nucleic Acids , Central Nervous System Neoplasms , Circulating Tumor DNA , DNA Methylation , Humans , DNA Methylation/genetics , Child , Male , Female , Child, Preschool , Liquid Biopsy/methods , Circulating Tumor DNA/cerebrospinal fluid , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Cell-Free Nucleic Acids/cerebrospinal fluid , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/cerebrospinal fluid , Central Nervous System Neoplasms/diagnosis , Adolescent , Infant , Biomarkers, Tumor/cerebrospinal fluid , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Brain Neoplasms/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/cerebrospinal fluid , Proof of Concept Study
11.
Sci Rep ; 14(1): 15786, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982214

ABSTRACT

Malignant melanoma (MM) is known for its abundance of genetic alterations and a tendency for rapid metastasizing. Identification of novel plasma biomarkers may enhance non-invasive diagnostics and disease monitoring. Initially, we examined copy number variations (CNV) in CDK genes (CDKN2A, CDKN2B, CDK4) using MLPA (gDNA) and ddPCR (ctDNA) analysis. Subsequently, low-coverage whole genome sequencing (lcWGS) was used to identify the most common CNV in plasma samples, followed by ddPCR verification of chosen biomarkers. CNV alterations in CDK genes were identified in 33.3% of FFPE samples (Clark IV, V only). Detection of the same genes in MM plasma showed no significance, neither compared to healthy plasmas nor between pre- versus post-surgery plasma. Sequencing data showed the most common CNV occurring in 6q27, 4p16.1, 10p15.3, 10q22.3, 13q34, 18q23, 20q11.21-q13.12 and 22q13.33. CNV in four chosen genes (KIF25, E2F1, DIP2C and TFG) were verified by ddPCR using 2 models of interpretation. Model 1 was concordant with lcWGS results in 54% of samples, for model 2 it was 46%. Although CDK genes have not been proven to be suitable CNV liquid biopsy biomarkers, lcWGS defined the most frequently affected chromosomal regions by CNV. Among chosen genes, DIP2C demonstrated a potential for further analysis.


Subject(s)
Biomarkers, Tumor , DNA Copy Number Variations , Melanoma , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/diagnosis , Liquid Biopsy/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Male , Female , Middle Aged , Aged , Adult , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/blood , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase 4/genetics , Aged, 80 and over , Whole Genome Sequencing/methods , Cyclin-Dependent Kinase Inhibitor p15/genetics
12.
Nanoscale ; 16(25): 11879-11913, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38845582

ABSTRACT

Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present significant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable, lack the molecular specificity necessary for precise disease characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and cost-effectiveness, holds great potential for transformative advancements in early detection and understanding the biochemical changes associated with NDs and TBI. Recent developments in Raman enhancement technologies and advanced data analysis methods have enhanced the applicability of RS in probing the intricate molecular signatures within biological fluids, offering new insights into disease pathology. This review explores the growing role of RS as a promising and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic tool.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Humans , Liquid Biopsy/methods , Brain Diseases/diagnosis , Brain Diseases/pathology , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/diagnostic imaging , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Brain/pathology , Brain/metabolism , Brain/diagnostic imaging
13.
Melanoma Res ; 34(4): 285-295, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38847739

ABSTRACT

Uveal melanoma is the most common intraocular tumor in adults. Our group has previously developed a human uveal melanoma animal model; however, adverse effects caused by the immunosuppressive agent, cyclosporine A, prevented animals from surviving more than 12 weeks. In this study, we tested multiple cyclosporine A doses over an extended disease course up to 20 weeks, providing complete clinical imaging of intraocular tumors, histopathological analysis and liquid biopsy biomarker analysis. Twenty albino rabbits were divided into four groups with different daily cyclosporine A schedules (0-10 mg/kg) and inoculated with human uveal melanoma cell lines, 92.1 or MP41, into the suprachoroidal space. Rabbits were monitored with fundoscopy, ultrasound and optical coherence tomography. Intraocular tumors (macroscopic or microscopic) were detected in all study animals. Tumor size and growth were correlated to cyclosporine A dose, with tumors regressing when cyclosporine A was arrested. All tumors expressed HMB-45 and MelanA; however, tumor size, pigmentation and cell morphology differed in 92.1 vs. MP41 tumors. Finally, across all groups, circulating tumor DNA from plasma and aqueous humor was detected earlier than tumor detection by imaging and correlated to tumor growth. In conclusion, using three clinically relevant imaging modalities (fundoscopy, ultrasonography and optical coherence tomography) and liquid biopsy, we were successfully able to monitor tumor progression in our rabbit xenograft model of human uveal melanoma.


Subject(s)
Melanoma , Uveal Neoplasms , Animals , Uveal Neoplasms/pathology , Rabbits , Melanoma/pathology , Humans , Liquid Biopsy/methods , Disease Models, Animal , Xenograft Model Antitumor Assays , Cell Line, Tumor
14.
J Exp Clin Cancer Res ; 43(1): 181, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937855

ABSTRACT

BACKGROUND: This study aimed to develop a novel six-gene expression biomarker panel to enhance the early detection and risk stratification of peritoneal recurrence and micrometastasis in locally advanced gastric cancer (LAGC). METHODS: We used genome-wide transcriptome profiling and rigorous bioinformatics to identify a six-gene expression biomarker panel. This panel was validated across multiple clinical cohorts using both tissue and liquid biopsy samples to predict peritoneal recurrence and micrometastasis in patients with LAGC. RESULTS: Through genome-wide expression profiling, we identified six mRNAs and developed a risk prediction model using 196 samples from a surgical specimen training cohort. This model, incorporating a 6-mRNA panel with clinical features, demonstrated high predictive accuracy for peritoneal recurrence in gastric cancer patients, with an AUC of 0.966 (95% CI: 0.944-0.988). Transitioning from invasive surgical or endoscopic biopsy to noninvasive liquid biopsy, the model retained its predictive efficacy (AUC = 0.963; 95% CI: 0.926-1.000). Additionally, the 6-mRNA panel effectively differentiated patients with or without peritoneal metastasis in 95 peripheral blood specimens (AUC = 0.970; 95% CI: 0.936-1.000) and identified peritoneal micrometastases with a high efficiency (AUC = 0.941; 95% CI: 0.874-1.000). CONCLUSIONS: Our study provides a novel gene expression biomarker panel that significantly enhances early detection of peritoneal recurrence and micrometastasis in patients with LAGC. The RSA model's predictive capability offers a promising tool for tailored treatment strategies, underscoring the importance of integrating molecular biomarkers with clinical parameters in precision oncology.


Subject(s)
Biomarkers, Tumor , Gene Expression Profiling , Neoplasm Micrometastasis , Neoplasm Recurrence, Local , Peritoneal Neoplasms , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Liquid Biopsy/methods , Female , Neoplasm Micrometastasis/genetics , Male , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Biomarkers, Tumor/genetics , Gene Expression Profiling/methods , Middle Aged , Transcriptome , Aged
15.
Cell Rep Methods ; 4(6): 100793, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38866008

ABSTRACT

Plasma cell-free DNA (cfDNA) fragmentation patterns are emerging directions in cancer liquid biopsy with high translational significance. Conventionally, the cfDNA sequencing reads are aligned to a reference genome to extract their fragmentomic features. In this study, through cfDNA fragmentomics profiling using different reference genomes on the same datasets in parallel, we report systematic biases in such conventional reference-based approaches. The biases in cfDNA fragmentomic features vary among races in a sample-dependent manner and therefore might adversely affect the performances of cancer diagnosis assays across multiple clinical centers. In addition, to circumvent the analytical biases, we develop Freefly, a reference-free approach for cfDNA fragmentomics profiling. Freefly runs ∼60-fold faster than the conventional reference-based approach while generating highly consistent results. Moreover, cfDNA fragmentomic features reported by Freefly can be directly used for cancer diagnosis. Hence, Freefly possesses translational merit toward the rapid and unbiased measurement of cfDNA fragmentomics.


Subject(s)
Cell-Free Nucleic Acids , Humans , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/blood , Neoplasms/genetics , Neoplasms/blood , Neoplasms/diagnosis , Sequence Analysis, DNA/methods , Liquid Biopsy/methods , Bias , High-Throughput Nucleotide Sequencing/methods
16.
PLoS One ; 19(6): e0305050, 2024.
Article in English | MEDLINE | ID: mdl-38861540

ABSTRACT

OBJECTIVE: Circular RNA SLC26A4 (circSLC26A4) functions as an oncogene in the initiation and progression of cervical cancer (CC). However, the clinical role of plasma exosomal circSLC26A4 in CC is poorly known. This study aims to develop an accurate diagnostic method based on circulating exosomal circSLC26A4. METHODS: In this study, exosomal circSLC26A4 derived from CC cell lines (CaSki, SiHa, and HeLa) and human cervical epithelial cells (HcerEpic) was measured and compared using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Additionally, 56 volunteers, including 18 CC patients, 18 cervical high-grade squamous intraepithelial lesion (HSIL) patients, and 20 healthy volunteers, were enrolled. qRT-PCR was also performed to measure the plasma exosomal circSLC26A4 levels in all participants. RESULTS: The exosomal circSLC26A4 expression level derived from CC cells was significantly elevated compared to it derived from HcerEpic cells. Plasma exosomal circSLC26A4 levels in CC patients were significantly higher than in healthy women and HSIL patients (P < 0.05). In addition, high plasma exosomal circSLC26A4 expression was positively associated with lymph node metastasis and FIGO stage (all P < 0.05). However, no significant correlation was found between plasma exosomal circSLC26A4 expression and age, intravascular cancerous embolus, and perineural invasion (P > 0.05). CONCLUSIONS: The high exosomal circSLC26A4 expression is closely related to the occurrence of CC. Plasma exosomal circSLC26A4 can be used as a diagnostic marker for CC.


Subject(s)
Biomarkers, Tumor , Exosomes , RNA, Circular , Uterine Cervical Neoplasms , Adult , Female , Humans , Middle Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Case-Control Studies , Cell Line, Tumor , Exosomes/metabolism , Exosomes/genetics , Liquid Biopsy/methods , RNA, Circular/blood , RNA, Circular/genetics , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/blood , Uterine Cervical Neoplasms/genetics
18.
Arch Biochem Biophys ; 758: 110066, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906310

ABSTRACT

Now, genomics forms the core of the precision medicine concept. Comprehensive investigations of tumor genomes have made it possible to characterize tumors at the molecular level and, specifically, to identify the fundamental processes that cause condition. A variety of kinds of tumors have seen better outcomes for patients as a result of the development of novel medicines to tackle these genetic-driving processes. Since therapy may exert selective pressure on cancers, non-invasive methods such as liquid biopsies can provide the opportunity for rich reservoirs of crucial and real-time genetic data. Liquid biopsies depend on the identification of circulating cells from tumors, circulating tumor DNA (ctDNA), RNA, proteins, lipids, and metabolites found in patient biofluids, as well as cell-free DNA (cfDNA), which exists in those with cancer. Although it is theoretically possible to examine biological fluids other than plasma, such as pleural fluid, urine, saliva, stool, cerebrospinal fluid, and ascites, we will limit our discussion to blood and solely cfDNA here for the sake of conciseness. Yet, the pace of wider clinical acceptance has been gradual, partly due to the increased difficulty of choosing the best analysis for the given clinical issue, interpreting the findings, and delaying proof of value from clinical trials. Our goal in this review is to discuss the current clinical value of ctDNA in cancers and how clinical oncology systems might incorporate procedures for ctDNA testing.


Subject(s)
Circulating Tumor DNA , Neoplasms , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Neoplasms/blood , Neoplasms/genetics , Neoplasms/drug therapy , Liquid Biopsy/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Precision Medicine/methods
19.
Front Immunol ; 15: 1414737, 2024.
Article in English | MEDLINE | ID: mdl-38938562

ABSTRACT

This report details a case of pancreatic cancer with liver metastasis that exhibited a positive immune response to personalized immunization therapy. Our study involved the identification of neoantigens and their corresponding immunogenic peptides using an in-house bioinformatic pipeline. This process included the identification of somatic mutations through DNA/RNA sequencing of solid tumor tissue and blood liquid biopsy. Computational prediction techniques were then employed to identify novel epitopes, followed by the design and manufacture of patient-specific immunization peptides. In combination with standard-of-care chemotherapy, the patient received a sequence of 5 biweekly prime injections followed by 2 boost injections 2 and 5 months later. The peptides were emulsified in Montanide and the injection-site was conditioned with nivolumab and imiquimod. The combined regimen of peptide immunization and chemotherapy resulted in a notable decline in CA19-9 tumor marker levels following both prime and boost applications. Subsequent MRI assessments revealed a reduction in the size of liver metastases several months post-immunization initiation. Importantly, the patient showed and improved overall survival and reported an improved quality of life without experiencing significant treatment-related adverse effects. This case underscores the potential benefits of personalized peptide-based immunization as an adjunctive therapy in the treatment of advanced pancreatic cancer, showcasing promising outcomes in tumor marker reduction, tumor shrinkage, and enhanced patient well-being.


Subject(s)
Antigens, Neoplasm , Pancreatic Neoplasms , Precision Medicine , Humans , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Antigens, Neoplasm/immunology , Liquid Biopsy/methods , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/therapeutic use , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Liver Neoplasms/immunology , Male , Peptides/immunology , Peptides/administration & dosage , Middle Aged , Vaccines, Subunit/administration & dosage , Immunization , Female , Biomarkers, Tumor
20.
Front Immunol ; 15: 1252258, 2024.
Article in English | MEDLINE | ID: mdl-38938565

ABSTRACT

This study discusses the importance of minimal residual disease (MRD) detection in acute myeloid leukemia (AML) patients using liquid biopsy and next-generation sequencing (NGS). AML prognosis is based on various factors, including genetic alterations. NGS has revealed the molecular complexity of AML and helped refine risk stratification and personalized therapies. The long-term survival rates for AML patients are low, and MRD assessment is crucial in predicting prognosis. Currently, the most common methods for MRD detection are flow cytometry and quantitative PCR, but NGS is being incorporated into clinical practice due to its ability to detect genomic aberrations in the majority of AML patients. Typically, bone marrow samples are used for MRD assessment, but using peripheral blood samples or liquid biopsies would be less invasive. Leukemia originates in the bone marrow, along with the cfDNA obtained from peripheral blood. This study aimed to assess the utility of cell-free DNA (cfDNA) from peripheral blood samples for MRD detection in AML patients. A cohort of 20 AML patients was analyzed using NGS, and a correlation between MRD assessment by cfDNA and circulating tumor cells (CTCs) in paired samples was observed. Furthermore, a higher tumor signal was detected in cfDNA compared to CTCs, indicating greater sensitivity. Challenges for the application of liquid biopsy in MRD assessment were discussed, including the selection of appropriate markers and the sensitivity of certain markers. This study emphasizes the potential of liquid biopsy using cfDNA for MRD detection in AML patients and highlights the need for further research in this area.


Subject(s)
High-Throughput Nucleotide Sequencing , Leukemia, Myeloid, Acute , Neoplasm, Residual , Neoplastic Cells, Circulating , Neoplasm, Residual/diagnosis , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/blood , Neoplastic Cells, Circulating/pathology , Male , Female , Middle Aged , Liquid Biopsy/methods , Adult , Biomarkers, Tumor/blood , Aged , Prognosis , Cell-Free Nucleic Acids/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...