Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Commun Biol ; 7(1): 1030, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169207

ABSTRACT

Alcoholic liver disease (ALD) is a disease with high incidence, limited therapies, and poor prognosis. The present study aims to investigate the effect of riboflavin on ALD and explore its potential therapeutic mechanisms. C57BL/6 mice were divided into the control, alcohol, and alcohol+ riboflavin groups. 16S rRNA-seq and RNA-seq analysis were utilized to analyze the polymorphism of intestinal microbiota and the transcriptome heterogeneity respectively. KEGG and GO enrichment analysis were performed. CIBERSORTx was applied to evaluate the immune cell infiltration level. Publicly available transcriptome data of ALD was enrolled and combined with the RNA-seq data to identify the immune subtypes of ALD. Pathological and histology analysis demonstrated that riboflavin reversed the progression of ALD. 16S rRNA-seq results showed that riboflavin could regulate alcohol-induced intestinal microbiota alteration. Intestinal microbiota polymorphism analysis indicated that VLIDP may contribute to the progression of ALD. Based on the VLIDP pathway, two subtypes were identified. Immune microenvironment analysis indicated that the upregulated inflammatory factors may be important regulators of ALD. In conclusion, intestinal microbiota homeostasis was associated with the protective effect of riboflavin against ALD, which was likely mediated by modulating inflammatory cell infiltration. Riboflavin emerges as a promising therapeutic candidate for the management of ALD.


Subject(s)
Gastrointestinal Microbiome , Homeostasis , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Riboflavin , Riboflavin/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Liver Diseases, Alcoholic/microbiology , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Mice , Homeostasis/drug effects , Male , RNA, Ribosomal, 16S/genetics , Transcriptome/drug effects , Disease Models, Animal
2.
Cell Host Microbe ; 32(8): 1212-1214, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39146790

ABSTRACT

Alcohol-associated liver disease is a leading cause of chronic liver conditions, yet there are limited effective therapies. In this issue of Cell Host & Microbe, Shen et al. demonstrate that soluble dietary fiber enhances intestinal Bacteroides acidifaciens, which ameliorates alcohol-associated liver injury in mice by activating hepatic ornithine aminotransferase.


Subject(s)
Bacteroides , Liver , Animals , Mice , Liver/microbiology , Liver/metabolism , Dietary Fiber/metabolism , Humans , Liver Diseases, Alcoholic/microbiology , Liver Diseases, Alcoholic/metabolism , Gastrointestinal Microbiome
3.
Cell Biol Toxicol ; 40(1): 71, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39147926

ABSTRACT

The simultaneous abuse of alcohol-cocaine is known to cause stronger and more unpredictable cellular damage in the liver, heart, and brain. However, the mechanistic crosstalk between cocaine and alcohol in liver injury remains unclear. The findings revealed cocaine-induced liver injury and inflammation in both marmosets and mice. Of note, co-administration of cocaine and ethanol in mice causes more severe liver damage than individual treatment. The metabolomic analysis confirmed that hippuric acid (HA) is the most abundant metabolite in marmoset serum after cocaine consumption and that is formed in primary marmoset hepatocytes. HA, a metabolite of cocaine, increases mitochondrial DNA leakage and subsequently increases the production of proinflammatory factors via STING signaling in Kupffer cells (KCs). In addition, conditioned media of cocaine-treated KC induced hepatocellular necrosis via alcohol-induced TNFR1. Finally, disruption of STING signaling in vivo ameliorated co-administration of alcohol- and cocaine-induced liver damage and inflammation. These findings postulate intervention of HA-STING-TNFR1 axis as a novel strategy for treatment of alcohol- and cocaine-induced excessive liver damage.


Subject(s)
Cocaine , DNA, Mitochondrial , Hippurates , Liver Diseases, Alcoholic , Membrane Proteins , Signal Transduction , Animals , Cocaine/pharmacology , Cocaine/toxicity , Signal Transduction/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/drug effects , Mice , Hippurates/metabolism , Male , Membrane Proteins/metabolism , Hepatocytes/metabolism , Hepatocytes/drug effects , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Ethanol/toxicity , Mice, Inbred C57BL , Cocaine-Related Disorders/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism
4.
Sci Transl Med ; 16(759): eadg1915, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110779

ABSTRACT

Severe alcohol-associated hepatitis (AH) is a life-threatening form of alcohol-associated liver disease. Liver neutrophil infiltration is a hallmark of AH, yet the effects of alcohol on neutrophil functions remain elusive. Identifying therapeutic targets to reduce neutrophil-mediated liver damage is essential. Bruton's tyrosine kinase (BTK) plays an important role in neutrophil development and function; however, the role of BTK in AH is unknown. Using RNA sequencing of circulating neutrophils, we found an increase in Btk expression (P = 0.05) and phosphorylated BTK (pBTK) in patients with AH compared with healthy controls. In vitro, physiologically relevant doses of alcohol resulted in a rapid, TLR4-mediated induction of pBTK in neutrophils. In a preclinical model of AH, administration of a small-molecule BTK inhibitor (evobrutinib) or myeloid-specific Btk knockout decreased proinflammatory cytokines and attenuated neutrophil-mediated liver damage. We found that pBTK was essential for alcohol-induced bone marrow granulopoiesis and liver neutrophil infiltration. In vivo, BTK inhibition or myeloid-specific Btk knockout reduced granulopoiesis, circulating neutrophils, liver neutrophil infiltration, and liver damage in a mouse model of AH. Mechanistically, using liquid chromatography-tandem mass spectrometry, we identified CD84 as a kinase target of BTK, which is involved in granulopoiesis. In vitro, CD84 promoted alcohol-induced interleukin-1ß and tumor necrosis factor-α in primary human neutrophils, which was inhibited by CD84-blocking antibody treatment. Our findings define the role of BTK and CD84 in regulating neutrophil inflammation and granulopoiesis, with potential therapeutic implications in AH.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Liver Diseases, Alcoholic , Neutrophils , Agammaglobulinaemia Tyrosine Kinase/metabolism , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Animals , Humans , Neutrophils/metabolism , Neutrophils/drug effects , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Protein Kinase Inhibitors/pharmacology , Mice , Male , Liver/pathology , Liver/metabolism , Liver/drug effects , Granulocytes/metabolism , Granulocytes/drug effects , Mice, Inbred C57BL , Antigens, CD/metabolism , Mice, Knockout , Toll-Like Receptor 4/metabolism , Phosphorylation/drug effects
5.
Cells ; 13(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39120332

ABSTRACT

Hepatocyte organoids (HOs) have superior hepatic functions to cholangiocyte-derived organoids but suffer from shorter lifespans. To counteract this, we co-cultured pig HOs with adipose-derived mesenchymal stem cells (A-MSCs) and performed transcriptome analysis. The results revealed that A-MSCs enhanced the collagen synthesis pathways, which are crucial for maintaining the three-dimensional structure and extracellular matrix synthesis of the organoids. A-MSCs also increased the expression of liver progenitor cell markers (KRT7, SPP1, LGR5+, and TERT). To explore HOs as a liver disease model, we exposed them to alcohol to create an alcoholic liver injury (ALI) model. The co-culture of HOs with A-MSCs inhibited the apoptosis of hepatocytes and reduced lipid accumulation of HOs. Furthermore, varying ethanol concentrations (0-400 mM) and single-versus-daily exposure to HOs showed that daily exposure significantly increased the level of PLIN2, a lipid storage marker, while decreasing CYP2E1 and increasing CYP1A2 levels, suggesting that CYP1A2 may play a critical role in alcohol detoxification during short-term exposure. Moreover, daily alcohol exposure led to excessive lipid accumulation and nuclear fragmentation in HOs cultured alone. These findings indicate that HOs mimic in vivo liver regeneration, establishing them as a valuable model for studying liver diseases, such as ALI.


Subject(s)
Apoptosis , Coculture Techniques , Hepatocytes , Liver Regeneration , Mesenchymal Stem Cells , Organoids , Mesenchymal Stem Cells/metabolism , Animals , Hepatocytes/metabolism , Hepatocytes/pathology , Organoids/metabolism , Apoptosis/drug effects , Swine , Adipose Tissue/cytology , Adipose Tissue/metabolism , Ethanol , Fatty Liver/pathology , Fatty Liver/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Lipid Metabolism
6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125916

ABSTRACT

Understanding the role of iron in ethanol-derived hepatic stress could help elucidate the efficacy of dietary or clinical interventions designed to minimize liver damage from chronic alcohol consumption. We hypothesized that normal levels of iron are involved in ethanol-derived liver damage and reduced dietary iron intake would lower the damage caused by ethanol. We used a pair-fed mouse model utilizing basal Lieber-DeCarli liquid diets for 22 weeks to test this hypothesis. In our mouse model, chronic ethanol exposure led to mild hepatic stress possibly characteristic of early-stage alcoholic liver disease, seen as increases in liver-to-body weight ratios. Dietary iron restriction caused a slight decrease in non-heme iron and ferritin (FeRL) expression while it increased transferrin receptor 1 (TfR1) expression without changing ferroportin 1 (FPN1) expression. It also elevated protein lysine acetylation to a more significant level than in ethanol-fed mice under normal dietary iron conditions. Interestingly, iron restriction led to an additional reduction in nicotinamide adenine dinucleotide (NAD+) and NADH levels. Consistent with this observation, the major mitochondrial NAD+-dependent deacetylase, NAD-dependent deacetylase sirtuin-3 (SIRT3), expression was significantly reduced causing increased protein lysine acetylation in ethanol-fed mice at normal and low-iron conditions. In addition, the detection of superoxide dismutase 1 and 2 levels (SOD1 and SOD2) and oxidative phosphorylation (OXPHOS) complex activities allowed us to evaluate the changes in antioxidant and energy metabolism regulated by ethanol consumption at normal and low-iron conditions. We observed that the ethanol-fed mice had mild liver damage associated with reduced energy and antioxidant metabolism. On the other hand, iron restriction may exacerbate certain activities of ethanol further, such as increased protein lysine acetylation and reduced antioxidant metabolism. This metabolic change may prove a barrier to the effectiveness of dietary reduction of iron intake as a preventative measure in chronic alcohol consumption.


Subject(s)
Antioxidants , Energy Metabolism , Ethanol , Animals , Mice , Acetylation/drug effects , Energy Metabolism/drug effects , Antioxidants/metabolism , Male , Iron/metabolism , Superoxide Dismutase-1/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase/metabolism , Lysine/metabolism , Liver/metabolism , Liver/drug effects , Receptors, Transferrin/metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , NAD/metabolism , Ferritins/metabolism , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Oxidative Stress/drug effects , Mice, Inbred C57BL , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/etiology
7.
Int J Mol Sci ; 25(15)2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39126076

ABSTRACT

Alcoholic liver disease (ALD) is a form of hepatic inflammation. ALD is mediated by gut leakiness. This study evaluates the anti-inflammatory effects of ASCs overexpressing interferon-beta (ASC-IFN-ß) on binge alcohol-induced liver injury and intestinal permeability. In vitro, ASCs were transfected with a non-viral vector carrying the human IFN-ß gene, which promoted hepatocyte growth factor (HGF) secretion in the cells. To assess the potential effects of ASC-IFN-ß, C57BL/6 mice were treated with three oral doses of binge alcohol and were administered intraperitoneal injections of ASC-IFN-ß. Mice treated with binge alcohol and administered ASC-IFN-ß showed reduced liver injury and inflammation compared to those administered a control ASC. Analysis of intestinal tissue from ethanol-treated mice administered ASC-IFN-ß also indicated decreased inflammation. Additionally, fecal albumin, blood endotoxin, and bacterial colony levels were reduced, indicating less gut leakiness in the binge alcohol-exposed mice. Treatment with HGF, but not IFN-ß or TRAIL, mitigated the ethanol-induced down-regulation of cell death and permeability in Caco-2 cells. These results demonstrate that ASCs transfected with a non-viral vector to induce IFN-ß overexpression have protective effects against binge alcohol-mediated liver injury and gut leakiness via HGF.


Subject(s)
Ethanol , Interferon-beta , Liver Diseases, Alcoholic , Mesenchymal Stem Cells , Mice, Inbred C57BL , Permeability , Animals , Humans , Interferon-beta/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/genetics , Mice , Mesenchymal Stem Cells/metabolism , Ethanol/adverse effects , Caco-2 Cells , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/genetics , Male , Adipose Tissue/metabolism , Liver/metabolism , Liver/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology
8.
World J Gastroenterol ; 30(28): 3428-3446, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39091710

ABSTRACT

BACKGROUND: Alcohol-associated liver disease (ALD) is a leading cause of liver-related morbidity and mortality, but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis. Peroxisome proliferator activated receptor (PPAR) α and δ play a key role in lipid metabolism and intestinal barrier homeostasis, which are major contributors to the pathological progression of ALD. Meanwhile, elafibranor (EFN), which is a dual PPARα and PPARδ agonist, has reached a phase III clinical trial for the treatment of metabolic dysfunction-associated steatotic liver disease and primary biliary cholangitis. However, the benefits of EFN for ALD treatment is unknown. AIM: To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model. METHODS: ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol (EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly (1 mL/kg) for 8 weeks. EFN (3 and 10 mg/kg/day) was orally administered during the experimental period. Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis, fibrosis, and intestinal barrier integrity. The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays. RESULTS: The hepatic steatosis, apoptosis, and fibrosis in the ALD mice model were significantly attenuated by EFN treatment. EFN promoted lipolysis and ß-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells, primarily through PPARα activation. Moreover, EFN inhibited the Kupffer cell-mediated inflammatory response, with blunted hepatic exposure to lipopolysaccharide (LPS) and toll like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling. EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses. The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation. CONCLUSION: EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis, enhancing hepatocyte autophagic and antioxidant capacities, and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.


Subject(s)
Chalcones , Disease Models, Animal , Intestinal Mucosa , Liver Cirrhosis , Liver Diseases, Alcoholic , Mice, Inbred C57BL , PPAR alpha , Animals , Mice , Humans , Female , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/drug therapy , PPAR alpha/metabolism , PPAR alpha/agonists , Chalcones/pharmacology , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/prevention & control , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Caco-2 Cells , Liver/pathology , Liver/drug effects , Liver/metabolism , Ethanol/toxicity , Apoptosis/drug effects , Lipid Metabolism/drug effects , PPAR delta/agonists , PPAR delta/metabolism , Signal Transduction/drug effects , Oxidative Stress/drug effects , Propionates
9.
Cell Host Microbe ; 32(8): 1331-1346.e6, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38959900

ABSTRACT

The gut microbiota and diet-induced changes in microbiome composition have been linked to various liver diseases, although the specific microbes and mechanisms remain understudied. Alcohol-related liver disease (ALD) is one such disease with limited therapeutic options due to its complex pathogenesis. We demonstrate that a diet rich in soluble dietary fiber increases the abundance of Bacteroides acidifaciens (B. acidifaciens) and alleviates alcohol-induced liver injury in mice. B. acidifaciens treatment alone ameliorates liver injury through a bile salt hydrolase that generates unconjugated bile acids to activate intestinal farnesoid X receptor (FXR) and its downstream target, fibroblast growth factor-15 (FGF15). FGF15 promotes hepatocyte expression of ornithine aminotransferase (OAT), which facilitates the metabolism of accumulated ornithine in the liver into glutamate, thereby providing sufficient glutamate for ammonia detoxification via the glutamine synthesis pathway. Collectively, these findings uncover a potential therapeutic strategy for ALD involving dietary fiber supplementation and B. acidifaciens.


Subject(s)
Ammonia , Bacteroides , Dietary Fiber , Fibroblast Growth Factors , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Bacteroides/metabolism , Mice , Dietary Fiber/metabolism , Ammonia/metabolism , Gastrointestinal Microbiome/physiology , Fibroblast Growth Factors/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/microbiology , Male , Liver/metabolism , Hepatocytes/metabolism , Bile Acids and Salts/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Humans , Inactivation, Metabolic , Amidohydrolases
10.
J Agric Food Chem ; 72(29): 16323-16333, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990278

ABSTRACT

Abrus cantoniensis Hance is a vegetative food and can be used as a folk beverage or soup to clear liver toxins and prevent liver damage. However, the components and effects of A. cantoniensis Hance in alcohol-induced liver injury were unknown. This study aimed to obtain abundant phytochemicals from A. cantoniensis Hance and identify the potency of the isolates in preventing alcohol-induced liver injury. Alcohol-stimulated AML12 cells and Lieber-DeCarli diet-fed mice were used to establish in vitro and in vivo models, respectively. Our findings indicated that flavonoid glycosides, especially AH-15, could significantly alleviate alcohol-induced liver injury by inhibiting oxidative stress. Furthermore, we demonstrated that AH-15 inhibited ferroptosis induced by lipid peroxidation. Mechanically, we found that AH-15 regulated nuclear factor erythroid 2-related factor 2 (NRF2) expression via activation of AMP-activated protein kinase (AMPK) signaling. These results indicate that A. cantoniensis Hance is a great potential functional food for alleviating alcohol-induced liver injury.


Subject(s)
AMP-Activated Protein Kinases , Abrus , Ferroptosis , Flavonoids , Glycosides , Liver Diseases, Alcoholic , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Plant Extracts , Animals , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Mice , Glycosides/pharmacology , Glycosides/chemistry , Ferroptosis/drug effects , Flavonoids/pharmacology , Flavonoids/chemistry , Male , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/prevention & control , Abrus/chemistry , Liver/drug effects , Liver/metabolism , Oxidative Stress/drug effects , Cell Line
11.
Food Funct ; 15(16): 8356-8369, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39023014

ABSTRACT

A proteomics-based analysis of the effect of heat inactivation on the alleviation of alcoholic liver disease (ALD) using Levilactobacillus brevis PDD-2 is presented, aimed at exploring the potential and mechanisms of postbiotic elements prepared through heat inactivation in the treatment of ALD. It was found that L. brevis PDD-2 and its postbiotic (heat-inactivated L. brevis PDD-2) alleviate chronic ALD via the gut-liver axis. In particular, heat-inactivated L. brevis PDD-2 significantly increased the relative abundance of Erysipelotrichaceae and better facilitated the oxidative stress balance in the liver. The tandem mass tag (TMT)-based quantitative proteomics technique analyses revealed that heat-inactivated L. brevis PDD-2 was associated with up-regulated expression levels of proteins related to the redox system, cellular metabolism, amino acid and oligopeptide transport, and surface proteins with immunomodulatory capacity. These findings provide a theoretical basis for developing novel therapeutic strategies and lay a solid foundation for further revealing its exhaustive mechanisms.


Subject(s)
Hot Temperature , Levilactobacillus brevis , Liver Diseases, Alcoholic , Proteomics , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/microbiology , Animals , Levilactobacillus brevis/metabolism , Male , Probiotics/pharmacology , Oxidative Stress/drug effects , Mice , Liver/metabolism , Liver/drug effects , Gastrointestinal Microbiome/drug effects , Humans
12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159535, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39033850

ABSTRACT

BACKGROUND: APOH plays an essential role in lipid metabolism and the transport of lipids in the circulation. Previous studies have shown that APOH deficiency causes fatty liver and gut microbiota dysbiosis in mouse models. However, the role and potential mechanisms of APOH deficiency in the pathogenesis of alcoholic liver disease remain unclear. METHODS: C57BL/6 WT and ApoH-/- mice were used to construct the binge-on-chronic alcohol feeding model. Mouse liver transcriptome, targeted bile acid metabolome, and 16S gut bacterial taxa were assayed and analyzed. Open-source human liver transcriptome dataset was analyzed. RESULTS: ApoH-/- mice fed with alcohol showed severe hepatic steatosis. Liver RNAseq and RT-qPCR data indicated that APOH deficiency predominantly impacts hepatic lipid metabolism by disrupting de novo lipogenesis, cholesterol processing, and bile acid metabolism. A targeted bile acid metabolomics assay indicated significant changes in bile acid composition, including increased percentages of TCA in the liver and DCA in the gut of alcohol-fed ApoH-/- mice. The concentrations of CA, NorCA, and HCA in the liver were higher in ApoH-/- mice on an ethanol diet compared to the control mice (p < 0.05). Additionally, APOH deficiency altered the composition of gut flora, which correlated with changes in the liver bile acid composition in the ethanol-feeding mouse model. Finally, open-source transcript-level data from human ALD livers highlighted a remarkable link between APOH downregulation and steatohepatitis, as well as bile acid metabolism. CONCLUSION: APOH deficiency aggravates alcohol induced hepatic steatosis through the disruption of gut microbiota homeostasis and bile acid metabolism in mice.


Subject(s)
Bile Acids and Salts , Dysbiosis , Gastrointestinal Microbiome , Lipid Metabolism , Liver Diseases, Alcoholic , Animals , Humans , Male , Mice , Bile Acids and Salts/metabolism , Disease Models, Animal , Dysbiosis/metabolism , Dysbiosis/microbiology , Dysbiosis/chemically induced , Liver/metabolism , Liver/pathology , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/microbiology , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/etiology , Mice, Inbred C57BL , Mice, Knockout
13.
Toxicol Appl Pharmacol ; 490: 117041, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059505

ABSTRACT

Alcoholic liver disease (ALD) is a major cause of chronic liver injury characterized by steatosis, inflammation, and fibrosis. This study explored the hepatoprotective mechanisms of alpha-asarone in a mouse model of chronic-binge alcohol feeding. Adult male mice were randomized into control, alcohol, and alcohol plus alpha-asarone groups. Serum aminotransferases and histopathology assessed liver injury. Oxidative stress was evaluated via malondialdehyde content, glutathione, superoxide dismutase, and catalase activities. Pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 were quantified by ELISA. P53-mediated apoptosis was determined by immunohistochemistry. Key autophagy markers phospho-AMPK, AMPK, Beclin-1, LC3-I/LC3-II ratio, and LC3 were examined by immunoblotting. Alcohol administration increased serum ALT, AST and ALP, indicating hepatocellular damage. This liver dysfunction was associated with increased oxidative stress, inflammation, p53 expression and altered autophagy. Alpha-asarone treatment significantly decreased ALT, AST and ALP levels and improved histological architecture versus alcohol alone. Alpha-asarone also mitigated oxidative stress, reduced TNF-α, IL-1ß and IL-6 levels, ameliorated p53 overexpression and favorably modulated autophagy markers. Our findings demonstrate that alpha-asarone confers protective effects against ALD by enhancing antioxidant defenses, suppressing hepatic inflammation, regulating apoptotic signaling, and restoring autophagic flux. This preclinical study provides compelling evidence for the therapeutic potential of alpha-asarone in attenuating alcohol-induced liver injury and warrants further evaluation as a pharmacotherapy for ALD.


Subject(s)
Allylbenzene Derivatives , Anisoles , Apoptosis , Autophagy , Oxidative Stress , Animals , Oxidative Stress/drug effects , Allylbenzene Derivatives/pharmacology , Male , Anisoles/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Mice , Liver/drug effects , Liver/pathology , Liver/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Disease Models, Animal , Mice, Inbred C57BL , Ethanol/toxicity , Cytokines/metabolism , Antioxidants/pharmacology
15.
J Agric Food Chem ; 72(31): 17633-17648, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39051975

ABSTRACT

Dendrobium officinale polysaccharide (DP) was prepared with lactic acid bacterium fermentation to overcome the large molecular weight and complex structure of traditional DP for improving its functional activity and application range in this work. The structure was analyzed, and then the functional activity was evaluated using a mouse model of alcoholic liver damage. The monosaccharide compositions were composed of four monosaccharides: arabinose (0.13%), galactose (0.50%), glucose (24.38%), and mannose (74.98%) with a molecular weight of 2.13 kDa. The connection types of glycosidic bonds in fermented D. officinale (KFDP) were →4)-ß-D-Manp(1→, →4)-ß-Glcp(1→, ß-D-Manp(1→, and ß-D-Glcp(1→. KFDP exhibited an excellent protective effect on alcoholic-induced liver damage at a dose of 80 mg/kg compared with polysaccharide separated and purified from D. officinale without fermentation (KDP), which increased the activity of GSH, GSH-Px, and GR and decreased the content of MDA, AST, T-AOC, and ALT, as well as regulated the level of IL-6, TNF-α, and IL-1ß to maintain the normal functional structure of hepatocytes and retard the apoptosis rate of hepatocytes. The results proved that fermentation degradation is beneficial to improving the biological activity of polysaccharides. The potential mechanism of KFDP in protecting alcoholic liver damage was inhibiting the expression of miRNA-150-5p and targeting to promote the expression of Pik3r1. This study provides an important basis for the development of functional foods.


Subject(s)
Dendrobium , Fermentation , Liver Diseases, Alcoholic , Liver , Polysaccharides , Animals , Mice , Polysaccharides/chemistry , Polysaccharides/pharmacology , Polysaccharides/administration & dosage , Dendrobium/chemistry , Male , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Humans , Liver/metabolism , Liver/drug effects , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/administration & dosage , Lactobacillales/metabolism , Lactobacillales/genetics , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/administration & dosage
16.
Hepatol Commun ; 8(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39082957

ABSTRACT

BACKGROUND: Dysregulation of bile acids (BAs) has been reported in alcohol-associated liver disease. However, the causal relationship between BA dyshomeostasis and alcohol-associated liver disease remains unclear. The study aimed to determine whether correcting BA perturbation protects against alcohol-associated liver disease and elucidate the underlying mechanism. METHODS: BA sequestrant cholestyramine (CTM) was administered to C57BL/6J mice fed alcohol for 8 weeks to assess its protective effect and explore potential BA targets. The causal relationship between identified BA metabolite and cellular damage was examined in hepatocytes, with further manipulation of the detoxifying enzyme cytochrome p450 3A11. The toxicity of the BA metabolite was further validated in mice in an acute study. RESULTS: We found that CTM effectively reversed hepatic BA accumulation, leading to a reversal of alcohol-induced hepatic inflammation, cell death, endoplasmic reticulum stress, and autophagy dysfunction. Specifically, nordeoxycholic acid (NorDCA), a hydrophobic BA metabolite, was identified as predominantly upregulated by alcohol and reduced by CTM. Hepatic cytochrome p450 3A11 expression was in parallel with NorDCA levels, being upregulated by alcohol and reduced by CTM. Moreover, CTM reversed alcohol-induced gut barrier disruption and endotoxin translocation. Mechanistically, NorDCA was implicated in causing endoplasmic reticulum stress, suppressing autophagy flux, and inducing cell injury, and such deleterious effects could be mitigated by cytochrome p450 3A11 overexpression. Acute NorDCA administration in mice significantly induced hepatic inflammation and injury along with disrupting gut barrier integrity, leading to subsequent endotoxemia. CONCLUSIONS: Our study demonstrated that CTM treatment effectively reversed alcohol-induced liver injury in mice. The beneficial effects of BA sequestrant involve lowering toxic NorDCA levels. NorDCA not only worsens hepatic endoplasmic reticulum stress and inhibits autophagy but also mediates gut barrier disruption and systemic translocation of pathogen-associated molecular patterns in mice.


Subject(s)
Bile Acids and Salts , Cholestyramine Resin , Liver Diseases, Alcoholic , Mice, Inbred C57BL , Animals , Mice , Cholestyramine Resin/pharmacology , Cholestyramine Resin/therapeutic use , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/prevention & control , Male , Bile Acids and Salts/metabolism , Liver/drug effects , Liver/metabolism , Endoplasmic Reticulum Stress/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Autophagy/drug effects , Disease Models, Animal
17.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062840

ABSTRACT

Neutrophils release neutrophil extracellular traps (NETs) as a defense strategy in response to broad-spectrum infections and sterile triggers. NETs consist of a DNA scaffold decorated with antimicrobial peptides (AMPs) and enzymatically active proteases, including peptidyl arginine deiminase type 4 (PAD4). Susceptibility to infections and inflammatory dysregulation are hallmarks of alcohol-related liver disease (ALD). Sixty-two patients with ALD were prospectively recruited, and they were followed for 90 days. Twenty-four healthy volunteers served as the control group. PAD4 concentrations were quantified using immunoenzymatic ELISAs. Correlation coefficients between PAD4 blood concentrations and markers of systemic inflammation; liver dysfunction severity scores; and ALD complications were calculated. The receiver operating curves (ROCs) and their areas under the curve (AUCs) were checked in order to assess the accuracy of PAD4 expression in predicting the degree of liver failure and the development of ALD complications. Systemic concentrations of PAD4 were significantly increased in the patients with ALD in comparison with controls. PAD4 levels correlated with the standard markers of inflammation and revealed a good predictive AUC (0.76) for survival in the whole ALD group. PAD4 seems to be an inflammatory mediator and may be potentially applied as a predictor of patient survival in ALD.


Subject(s)
Biomarkers , Liver Diseases, Alcoholic , Neutrophils , Protein-Arginine Deiminase Type 4 , Humans , Protein-Arginine Deiminase Type 4/metabolism , Male , Female , Neutrophils/metabolism , Middle Aged , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/pathology , Adult , Biomarkers/blood , Extracellular Traps/metabolism , Aged , ROC Curve , Case-Control Studies
18.
Food Funct ; 15(16): 8395-8407, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39036891

ABSTRACT

Capsaicin (CAP), the active ingredient in hot chilli peppers, has anti-inflammatory and hepatoprotection effects. Acute alcoholic liver injury (AALI) is liver damage caused by acute alcohol abuse, which can lead to severe liver lesions and even be life-threatening. Pyroptosis is inflammation-related programmed cell death characterized by membrane rupture and plays a key role in AALI. The endosomal sorting complexes required for transport (ESCRT) proteins can gather at damaged areas of the membrane to facilitate the process of sealing the membrane. In this study, we found that CAP could relieve acute alcohol-induced pyroptosis of hepatocytes in vitro and in vivo. Mechanically, we found that CAP could alleviate acute alcohol-induced pyroptosis by activating the ESCRT-III-dependent membrane repair machinery. Furthermore, the data showed that CAP induced ESCRT-III protein expression by activating transient receptor potential vanilloid member 1 (TRPV1) on the cell membrane and Ca2+ influx. TRPV1 inhibitor capsazepine (CPZ) inhibited the relief effect of CAP on acute alcohol-induced pyroptosis. Overall, these results showed that CAP might activate ESCRT-III-dependent membrane repair machinery through Ca2+ influx, which is regulated by TRPV1 calcium channels, therefore mitigating acute alcohol-induced pyroptosis. Our research provides a new perspective on a naturally active food product to promote cell repair and relieve AALI.


Subject(s)
Capsaicin , Cell Membrane , Endosomal Sorting Complexes Required for Transport , Hepatocytes , Pyroptosis , TRPV Cation Channels , Pyroptosis/drug effects , Capsaicin/pharmacology , Capsaicin/analogs & derivatives , Animals , Endosomal Sorting Complexes Required for Transport/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Mice , Cell Membrane/drug effects , Cell Membrane/metabolism , TRPV Cation Channels/metabolism , Humans , Male , Mice, Inbred C57BL , Ethanol , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism
19.
Sci Rep ; 14(1): 16122, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997279

ABSTRACT

Alcoholic-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD) show a high prevalence rate worldwide. As gut microbiota represents current state of ALD and MASLD via gut-liver axis, typical characteristics of gut microbiota can be used as a potential diagnostic marker in ALD and MASLD. Machine learning (ML) algorithms improve diagnostic performance in various diseases. Using gut microbiota-based ML algorithms, we evaluated the diagnostic index for ALD and MASLD. Fecal 16S rRNA sequencing data of 263 ALD (control, elevated liver enzyme [ELE], cirrhosis, and hepatocellular carcinoma [HCC]) and 201 MASLD (control and ELE) subjects were collected. For external validation, 126 ALD and 84 MASLD subjects were recruited. Four supervised ML algorithms (support vector machine, random forest, multilevel perceptron, and convolutional neural network) were used for classification with 20, 40, 60, and 80 features, in which three nonsupervised ML algorithms (independent component analysis, principal component analysis, linear discriminant analysis, and random projection) were used for feature reduction. A total of 52 combinations of ML algorithms for each pair of subgroups were performed with 60 hyperparameter variations and Stratified ShuffleSplit tenfold cross validation. The ML models of the convolutional neural network combined with principal component analysis achieved areas under the receiver operating characteristic curve (AUCs) > 0.90. In ALD, the diagnostic AUC values of the ML strategy (vs. control) were 0.94, 0.97, and 0.96 for ELE, cirrhosis, and liver cancer, respectively. The AUC value (vs. control) for MASLD (ELE) was 0.93. In the external validation, the AUC values of ALD and MASLD (vs control) were > 0.90 and 0.88, respectively. The gut microbiota-based ML strategy can be used for the diagnosis of ALD and MASLD.ClinicalTrials.gov NCT04339725.


Subject(s)
Gastrointestinal Microbiome , Machine Learning , Humans , Male , Female , Middle Aged , Adult , Algorithms , Liver Diseases, Alcoholic/microbiology , Liver Diseases, Alcoholic/diagnosis , Liver Diseases, Alcoholic/metabolism , RNA, Ribosomal, 16S/genetics , Aged , ROC Curve , Feces/microbiology , Fatty Liver/microbiology , Fatty Liver/diagnosis , Fatty Liver/metabolism
20.
Medicine (Baltimore) ; 103(25): e38315, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905402

ABSTRACT

Gegensan (GGS) has been reported for the treatment of alcoholic liver disease (ALD), but its therapeutic mechanism is still unclear. This paper aims to determine the therapeutic mechanism and targets of action of GGS on alcoholic liver disease utilizing network pharmacology and bioinformatics. The active ingredients in GGS were screened in the literature and databases, and common targets of ALD were then obtained from public databases to construct the network diagram of traditional Chinese medicine-active ingredient targets. Based on the common targets, Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to find target enrichment pathways, and the core targets were screened out by combining differential analysis and protein-protein interaction network analysis. Molecular docking was performed to verify the binding effect between the core targets and the corresponding active ingredients. ALD and GGS have 84 common targets, corresponding to 91 active ingredients. After subsequent differential analysis and protein-protein interaction network analysis, 10 core targets were identified. Gene Ontology and KEGG enrichment analyses showed that the main BPs corresponding to the common targets included the response to lipopolysaccharide, inflammatory response, etc. The KEGG pathways involved in the regulation of the common targets included the lipid-atherosclerosis pathway and the alcoholic liver disease pathway, etc. Further molecular docking showed that the core targets CYP1A1, CYP1A2, CXCL8, ADH1C, MMP1, SERPINE1, COL1A1, APOB, MMP1, and their corresponding 4 active ingredients, Naringenin, Kaempferol, Quercetin, and Stigmasterol, have a greater docking potential. The above results suggest that GGS can regulate lipid metabolism and inflammatory response in the ALD process, and alleviate the lipid accumulation and oxidative stress caused by ethanol. This study analyzed the core targets and mechanisms of action of GGS on ALD, which provides certain theoretical support for the further development of GGS in the treatment of ALD, and provides a reference for the subsequent research on the treatment of ALD.


Subject(s)
Computational Biology , Drugs, Chinese Herbal , Liver Diseases, Alcoholic , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/metabolism , Network Pharmacology/methods , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Computational Biology/methods , Medicine, Chinese Traditional/methods , Gene Ontology
SELECTION OF CITATIONS
SEARCH DETAIL