Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.502
Filter
1.
Sci Rep ; 14(1): 21651, 2024 09 17.
Article in English | MEDLINE | ID: mdl-39289431

ABSTRACT

The locus coeruleus (LC), nucleus tractus solitarius (NTS), and retrotrapezoid nucleus (RTN) are critical chemosensory regions in the brainstem. In the LC, acid-sensing ion channels and proton pumps serve as H+ sensors and facilitate the transition from non-rapid eye movement (NREM) to rapid eye movement (REM) sleep. Interestingly, the potassium inward rectifier (KIR) channels in the LC, NTS, and RTN also act as H+-sensors and are a primary target for improving sleep in obstructive sleep apnea and Rett syndrome patients. However, the role of Kir channels in NREM to REM sleep transition for H+ homeostasis is not known. Male Wistar rats were surgically prepared for chronic sleep-wake recording and drug delivery into the LC, NTS, and RTN. In different animal cohorts, microinjections of the Kir channel inhibitor, barium chloride (BaCl2), at concentrations of 1 mM (low dose) and 2 mM (high dose) in the LC and RTN significantly increased wakefulness and decreased NREM sleep. However, BaCl2 microinjection into the LC notably reduced REM sleep, whereas it didn't change in the RTN-injected group. Interestingly, BaCl2 microinjections into the NTS significantly decreased wakefulness and increased the percent amount of NREM and REM sleep. Additionally, with the infusion of BaCl2 into the NTS, the mean REM sleep episode numbers significantly increased, but the length of the REM sleep episode didn't change. These findings suggest that the Kir channels in the NTS, but not in the LC and RTN, modulate state transition from NREM to REM sleep.


Subject(s)
Homeostasis , Rats, Wistar , Sleep, REM , Solitary Nucleus , Animals , Sleep, REM/physiology , Solitary Nucleus/metabolism , Solitary Nucleus/physiology , Male , Rats , Wakefulness/physiology , Potassium Channels, Inwardly Rectifying/metabolism , Barium Compounds/pharmacology , Locus Coeruleus/metabolism , Locus Coeruleus/physiology , Locus Coeruleus/drug effects , Chlorides/metabolism
2.
eNeuro ; 11(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39160074

ABSTRACT

Adaptive behavior relies on efficient cognitive control. The anterior cingulate cortex (ACC) is a key node within the executive prefrontal network. The reciprocal connectivity between the locus ceruleus (LC) and ACC is thought to support behavioral reorganization triggered by the detection of an unexpected change. We transduced LC neurons with either excitatory or inhibitory chemogenetic receptors in adult male rats and trained rats on a spatial task. Subsequently, we altered LC activity and confronted rats with an unexpected change of reward locations. In a new spatial context, rats with decreased noradrenaline (NA) in the ACC entered unbaited maze arms more persistently which was indicative of perseveration. In contrast, the suppression of the global NA transmission reduced perseveration. Neither chemogenetic manipulation nor inactivation of the ACC by muscimol affected the rate of learning, possibly due to partial virus transduction of the LC neurons and/or the compensatory engagement of other prefrontal regions. Importantly, we observed behavioral deficits in rats with LC damage caused by virus injection. The latter finding highlights the importance of careful histological assessment of virus-transduced brain tissue as inadvertent damage of the targeted cell population due to virus neurotoxicity or other factors might cause unwanted side effects. Although the specific role of ACC in the flexibility of spatial behavior has not been convincingly demonstrated, our results support the beneficial role of noradrenergic transmission for an optimal function of the ACC. Overall, our findings suggest the LC exerts the projection-specific modulation of neural circuits mediating the flexibility of spatial behavior.


Subject(s)
Gyrus Cinguli , Locus Coeruleus , Norepinephrine , Spatial Behavior , Animals , Male , Locus Coeruleus/drug effects , Locus Coeruleus/physiology , Norepinephrine/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/physiology , Spatial Behavior/physiology , Spatial Behavior/drug effects , Rats , Muscimol/pharmacology , Maze Learning/physiology , Maze Learning/drug effects , Neural Pathways/drug effects , Neural Pathways/physiology , Adrenergic Neurons/drug effects , Adrenergic Neurons/physiology
3.
Nat Commun ; 15(1): 6264, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048565

ABSTRACT

Opioid withdrawal is a liability of chronic opioid use and misuse, impacting people who use prescription or illicit opioids. Hyperactive autonomic output underlies many of the aversive withdrawal symptoms that make it difficult to discontinue chronic opioid use. The locus coeruleus (LC) is an important autonomic centre within the brain with a poorly defined role in opioid withdrawal. We show here that pannexin-1 (Panx1) channels expressed on microglia critically modulate LC activity during opioid withdrawal. Within the LC, we found that spinally projecting tyrosine hydroxylase (TH)-positive neurons (LCspinal) are hyperexcitable during morphine withdrawal, elevating cerebrospinal fluid (CSF) levels of norepinephrine. Pharmacological and chemogenetic silencing of LCspinal neurons or genetic ablation of Panx1 in microglia blunted CSF NE release, reduced LC neuron hyperexcitability, and concomitantly decreased opioid withdrawal behaviours in mice. Using probenecid as an initial lead compound, we designed a compound (EG-2184) with greater potency in blocking Panx1. Treatment with EG-2184 significantly reduced both the physical signs and conditioned place aversion caused by opioid withdrawal in mice, as well as suppressed cue-induced reinstatement of opioid seeking in rats. Together, these findings demonstrate that microglial Panx1 channels modulate LC noradrenergic circuitry during opioid withdrawal and reinstatement. Blocking Panx1 to dampen LC hyperexcitability may therefore provide a therapeutic strategy for alleviating the physical and aversive components of opioid withdrawal.


Subject(s)
Connexins , Locus Coeruleus , Nerve Tissue Proteins , Probenecid , Spinal Cord , Substance Withdrawal Syndrome , Animals , Locus Coeruleus/metabolism , Locus Coeruleus/drug effects , Connexins/metabolism , Connexins/genetics , Connexins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/drug therapy , Mice , Male , Rats , Spinal Cord/metabolism , Spinal Cord/drug effects , Probenecid/pharmacology , Morphine/pharmacology , Microglia/drug effects , Microglia/metabolism , Analgesics, Opioid/pharmacology , Norepinephrine/metabolism , Neurons/metabolism , Neurons/drug effects , Mice, Inbred C57BL , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/metabolism , Mice, Knockout
4.
Neuropharmacology ; 258: 110055, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38950692

ABSTRACT

Sleep disturbances and persistent pain conditions are public health challenges worldwide. Although it is well-known that sleep deficit increases pain sensitivity, the underlying mechanisms remain elusive. We have recently demonstrated the involvement of nucleus accumbens (NAc) and anterior cingulate cortex (ACC) in the pronociceptive effect of sleep restriction. In this study, we found that sleep restriction increases c-Fos expression in NAc and ACC, suggesting hyperactivation of these regions during prolonged wakefulness in male Wistar rats. Blocking adenosine A2A receptors in the NAc or GABAA receptors in the ventral tegmental area (VTA), dorsal raphe nucleus (DRN), or locus coeruleus (LC) effectively mitigated the pronociceptive effect of sleep restriction. In contrast, the blockade of GABAA receptors in each of these nuclei only transiently reduced carrageenan-induced hyperalgesia. Pharmacological activation of dopamine D2, serotonin 5-HT1A and noradrenaline alpha-2 receptors within the ACC also prevented the pronociceptive effect of sleep restriction. While pharmacological inhibition of these same monoaminergic receptors in the ACC restored the pronociceptive effect which had been prevented by the GABAergic disinhibition of the of the VTA, DRN or LC. Overall, these findings suggest that the pronociceptive effect of sleep restriction relies on increased adenosinergic activity on NAc, heightened GABAergic activity in VTA, DRN, and LC, and reduced inhibitory monoaminergic activity on ACC. These findings advance our understanding of the interplay between sleep and pain, shedding light on potential NAc-brainstem-ACC mechanisms that could mediate increased pain sensitivity under conditions of sleep impairment.


Subject(s)
Nucleus Accumbens , Rats, Wistar , Sleep Deprivation , Ventral Tegmental Area , Animals , Male , Sleep Deprivation/metabolism , Sleep Deprivation/physiopathology , Rats , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/drug effects , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Receptor, Adenosine A2A/metabolism , Hyperalgesia/metabolism , Dorsal Raphe Nucleus/metabolism , Dorsal Raphe Nucleus/drug effects , Gyrus Cinguli/metabolism , Gyrus Cinguli/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Brain Stem/metabolism , Brain Stem/drug effects , Locus Coeruleus/metabolism , Locus Coeruleus/drug effects , Carrageenan , Receptors, GABA-A/metabolism , Receptors, Dopamine D2/metabolism , Adenosine A2 Receptor Antagonists/pharmacology
5.
Neurobiol Dis ; 200: 106606, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39019292

ABSTRACT

The gut microbiota produces metabolites that enrich the host metabolome and play a part in host physiology, including brain functions. Yet the biological mediators of this gut-brain signal transduction remain largely unknown. In this study, the possible role of the gut microbiota metabolite indole, originating from tryptophan, was investigated. Oral administration of indole to simulate microbial overproduction of this compound in the gut consistently led to impaired locomotion and anxiety-like behaviour in both C3H/HeN and C57BL/6J mice. By employing c-Fos protein expression mapping in mice, we observed a noticeable increase in brain activation within the dorsal motor nucleus of the vagus nerve (DMX) and the locus coeruleus (LC) regions in a dose-dependent manner. Further immune co-labelling experiments elucidated that the primary cells activated within the LC were tyrosine hydroxylase positive. To delve deeper into the mechanistic aspects, we conducted chemogenetic activation experiments on LC norepinephrine neurons with two doses of clozapine N-oxide (CNO). Low dose of CNO at 0.5 mg/kg induced no change in locomotion but anxiety-like behaviour, while high dose of CNO at 2 mg/kg resulted in locomotion impairment and anxiety-like behaviour. These findings support the neuroactive roles of indole in mediating gut-brain communication. It also highlights the LC as a novel hub in the gut-brain axis, encouraging further investigations.


Subject(s)
Anxiety , Indoles , Locus Coeruleus , Mice, Inbred C57BL , Animals , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Mice , Anxiety/metabolism , Anxiety/chemically induced , Indoles/pharmacology , Male , Locomotion/drug effects , Locomotion/physiology , Clozapine/pharmacology , Clozapine/analogs & derivatives , Mice, Inbred C3H , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Brain Stem/drug effects , Brain Stem/metabolism
6.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892125

ABSTRACT

A total of 3102 neurons were recorded before and following acute and chronic methylphenidate (MPD) administration. Acute MPD exposure elicits mainly increases in neuronal and behavioral activity in dose-response characteristics. The response to chronic MPD exposure, as compared to acute 0.6, 2.5, or 10.0 mg/kg MPD administration, elicits electrophysiological and behavioral sensitization in some animals and electrophysiological and behavioral tolerance in others when the neuronal recording evaluations were performed based on the animals' behavioral responses, or amount of locomotor activity, to chronic MPD exposure. The majority of neurons recorded from those expressing behavioral sensitization responded to chronic MPD with further increases in firing rate as compared to the initial MPD responses. The majority of neurons recorded from animals expressing behavioral tolerance responded to chronic MPD with decreases in their firing rate as compared to the initial MPD exposures. Each of the six brain areas studied-the ventral tegmental area, locus coeruleus, dorsal raphe, nucleus accumbens, prefrontal cortex, and caudate nucleus (VTA, LC, DR, NAc, PFC, and CN)-responds significantly (p < 0.001) differently to MPD, suggesting that each one of the above brain areas exhibits different roles in the response to MPD. Moreover, this study demonstrates that it is essential to evaluate neuronal activity responses to psychostimulants based on the animals' behavioral responses to acute and chronic effects of the drug from several brain areas simultaneously to obtain accurate information on each area's role in response to the drug.


Subject(s)
Behavior, Animal , Caudate Nucleus , Methylphenidate , Neurons , Nucleus Accumbens , Prefrontal Cortex , Ventral Tegmental Area , Animals , Methylphenidate/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Rats , Neurons/drug effects , Neurons/physiology , Neurons/metabolism , Caudate Nucleus/drug effects , Caudate Nucleus/physiology , Caudate Nucleus/metabolism , Male , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/physiology , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Behavior, Animal/drug effects , Locus Coeruleus/drug effects , Locus Coeruleus/physiology , Rats, Sprague-Dawley , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/physiology , Dorsal Raphe Nucleus/metabolism , Central Nervous System Stimulants/pharmacology
7.
Article in English | MEDLINE | ID: mdl-38908504

ABSTRACT

CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.


Subject(s)
Carbon Dioxide , Hyperventilation , Locus Coeruleus , Norepinephrine , Animals , Locus Coeruleus/metabolism , Locus Coeruleus/drug effects , Female , Male , Norepinephrine/metabolism , Mice , Hypercapnia/metabolism , Mice, Inbred C57BL , Panic/drug effects , Panic/physiology , Disease Models, Animal , Panic Disorder/metabolism , Panic Disorder/chemically induced , Panic Disorder/physiopathology , Mice, Knockout , Sex Characteristics
8.
Int J Neuropsychopharmacol ; 27(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38833581

ABSTRACT

BACKGROUND: The NMDA antagonist S-ketamine is gaining increasing use as a rapid-acting antidepressant, although its exact mechanisms of action are still unknown. In this study, we investigated ketamine in respect to its properties toward central noradrenergic mechanisms and how they influence alertness behavior. METHODS: We investigated the influence of S-ketamine on the locus coeruleus (LC) brain network in a placebo-controlled, cross-over, 7T functional, pharmacological MRI study in 35 healthy male participants (25.1 ± 4.2 years) in conjunction with the attention network task to measure LC-related alertness behavioral changes. RESULTS: We could show that acute disruption of the LC alertness network to the thalamus by ketamine is related to a behavioral alertness reduction. CONCLUSION: The results shed new light on the neural correlates of ketamine beyond the glutamatergic system and underpin a new concept of how it may unfold its antidepressant effects.


Subject(s)
Attention , Cross-Over Studies , Ketamine , Locus Coeruleus , Magnetic Resonance Imaging , Humans , Ketamine/pharmacology , Ketamine/administration & dosage , Locus Coeruleus/drug effects , Locus Coeruleus/diagnostic imaging , Locus Coeruleus/physiology , Male , Adult , Young Adult , Attention/drug effects , Attention/physiology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Double-Blind Method , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage
9.
Brain Res ; 1839: 149040, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38815643

ABSTRACT

Traumatic brain injury (TBI) is a complex pathophysiological process that results in a variety of neurotransmitter, behavioral, and cognitive deficits. The locus coeruleus-norepinephrine (LC-NE) system is a critical regulator of arousal levels and higher executive processes affected by TBI including attention, working memory, and decision making. LC-NE axon injury and impaired signaling within the prefrontal cortex (PFC) is a potential contributor to the neuropsychiatric symptoms after single, moderate to severe TBI. The majority of TBIs are mild, yet long-term cognitive deficits and increased susceptibility for further injury can accumulate after each repetitive mild TBI. As a potential treatment for restoring cognitive function and daytime sleepiness after injury psychostimulants, including methylphenidate (MPH) that increase levels of NE within the PFC, are being prescribed "off-label". The impact of mild and repetitive mild TBI on the LC-NE system remains limited. Therefore, we determined the extent of LC-NE and arousal dysfunction and response to therapeutic doses of MPH in rats following experimentally induced single and repetitive mild TBI. Microdialysis measures of basal NE efflux from the medial PFC and arousal measures were significantly lower after repetitive mild TBI. Females showed higher baseline PFC-NE efflux than males following single and repetitive mild TBI. In response to MPH challenge, males exhibited a blunted PFC-NE response and persistent arousal levels following repetitive mild TBI. These results provide critical insight into the role of catecholamine system dysfunction associated with cognitive deficits following repeated injury, outcome differences between sex/gender, and lack of success of MPH as an adjunctive therapy to improve cognitive function following injury.


Subject(s)
Brain Concussion , Central Nervous System Stimulants , Methylphenidate , Norepinephrine , Prefrontal Cortex , Rats, Sprague-Dawley , Animals , Male , Norepinephrine/metabolism , Female , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Central Nervous System Stimulants/pharmacology , Methylphenidate/pharmacology , Brain Concussion/metabolism , Brain Concussion/physiopathology , Brain Concussion/drug therapy , Rats , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/physiopathology , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Arousal/drug effects , Arousal/physiology , Microdialysis/methods
10.
J Neurosci ; 44(29)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38744530

ABSTRACT

Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus ceruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector, which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.


Subject(s)
Locus Coeruleus , Rats, Sprague-Dawley , Receptor, Melatonin, MT1 , Sleep, REM , Animals , Male , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Locus Coeruleus/physiology , Rats , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT1/metabolism , Sleep, REM/physiology , Sleep, REM/drug effects , Norepinephrine/metabolism , Adrenergic Neurons/drug effects , Adrenergic Neurons/metabolism , Adrenergic Neurons/physiology , Neurons/metabolism , Neurons/drug effects , Neurons/physiology
11.
Sci Adv ; 10(17): eadj9581, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669335

ABSTRACT

The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.


Subject(s)
Analgesics, Opioid , Locus Coeruleus , Medulla Oblongata , Pain , Periaqueductal Gray , Locus Coeruleus/metabolism , Locus Coeruleus/drug effects , Periaqueductal Gray/metabolism , Periaqueductal Gray/drug effects , Animals , Medulla Oblongata/metabolism , Medulla Oblongata/drug effects , Pain/drug therapy , Pain/metabolism , Analgesics, Opioid/pharmacology , Male , Adrenergic Neurons/metabolism , Adrenergic Neurons/drug effects , Mice , Neural Pathways/drug effects
12.
Neuropsychopharmacology ; 49(6): 1014-1023, 2024 May.
Article in English | MEDLINE | ID: mdl-38368493

ABSTRACT

In the central nervous system, noradrenaline transmission controls the degree to which we are awake, alert, and attentive. Aberrant noradrenaline transmission is associated with pathological forms of hyper- and hypo-arousal that present in numerous neuropsychiatric disorders often associated with dysfunction in serotonin transmission. In vivo, noradrenaline regulates the release of serotonin because noradrenergic input drives the serotonin neurons to fire action potentials via activation of excitatory α1-adrenergic receptors (α1-AR). Despite the critical influence of noradrenaline on the activity of dorsal raphe serotonin neurons, the source of noradrenergic afferents has not been resolved and the presynaptic mechanisms that regulate noradrenaline-dependent synaptic transmission have not been described. Using an acute brain slice preparation from male and female mice and electrophysiological recordings from dorsal raphe serotonin neurons, we found that selective optogenetic activation of locus coeruleus terminals in the dorsal raphe was sufficient to produce an α1-AR-mediated excitatory postsynaptic current (α1-AR-EPSC). Activation of inhibitory α2-adrenergic receptors (α2-AR) with UK-14,304 eliminated the α1-AR-EPSC via presynaptic inhibition of noradrenaline release, likely via inhibition of voltage-gated calcium channels. In a subset of serotonin neurons, activation of postsynaptic α2-AR produced an outward current through activation of GIRK potassium conductance. Further, in vivo activation of α2-AR by systemic administration of clonidine reduced the expression of c-fos in the dorsal raphe serotonin neurons, indicating reduced neural activity. Thus, α2-AR are critical regulators of serotonin neuron excitability.


Subject(s)
Dorsal Raphe Nucleus , Locus Coeruleus , Receptors, Adrenergic, alpha-2 , Serotonergic Neurons , Synaptic Transmission , Animals , Dorsal Raphe Nucleus/drug effects , Dorsal Raphe Nucleus/physiology , Dorsal Raphe Nucleus/metabolism , Male , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, alpha-2/physiology , Receptors, Adrenergic, alpha-2/drug effects , Locus Coeruleus/drug effects , Locus Coeruleus/physiology , Female , Serotonergic Neurons/drug effects , Serotonergic Neurons/physiology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Mice , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Optogenetics , Adrenergic alpha-2 Receptor Agonists/pharmacology , Mice, Inbred C57BL , Norepinephrine/metabolism , Mice, Transgenic
13.
Neuropsychopharmacology ; 49(6): 915-923, 2024 May.
Article in English | MEDLINE | ID: mdl-38374364

ABSTRACT

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.


Subject(s)
Cues , Drug-Seeking Behavior , Hippocampus , Locus Coeruleus , Self Administration , Animals , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Male , Hippocampus/drug effects , Hippocampus/metabolism , Rats , Female , Drug-Seeking Behavior/drug effects , Drug-Seeking Behavior/physiology , Morphine/pharmacology , Morphine/administration & dosage , Rats, Sprague-Dawley , Neural Pathways/drug effects , Neural Pathways/physiology , Analgesics, Opioid/pharmacology , Analgesics, Opioid/administration & dosage , Opioid-Related Disorders/physiopathology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Conditioning, Operant/drug effects , Conditioning, Operant/physiology
14.
J Neurosci ; 43(13): 2338-2348, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36849414

ABSTRACT

Photoaffinity ligands are best known as tools used to identify the specific binding sites of drugs to their molecular targets. However, photoaffinity ligands have the potential to further define critical neuroanatomic targets of drug action. In the brains of WT male mice, we demonstrate the feasibility of using photoaffinity ligands in vivo to prolong anesthesia via targeted yet spatially restricted photoadduction of azi-m-propofol (aziPm), a photoreactive analog of the general anesthetic propofol. Systemic administration of aziPm with bilateral near-ultraviolet photoadduction in the rostral pons, at the border of the parabrachial nucleus and locus coeruleus, produced a 20-fold increase in the duration of sedative and hypnotic effects compared with control mice without UV illumination. Photoadduction that missed the parabrachial-coerulean complex also failed to extend the sedative or hypnotic actions of aziPm and was indistinguishable from nonadducted controls. Paralleling the prolonged behavioral and EEG consequences of on target in vivo photoadduction, we conducted electrophysiologic recordings in rostral pontine brain slices. Using neurons within the locus coeruleus to further highlight the cellular consequences of irreversible aziPm binding, we demonstrate transient slowing of spontaneous action potentials with a brief bath application of aziPm that becomes irreversible on photoadduction. Together, these findings suggest that photochemistry-based strategies are a viable new approach for probing CNS physiology and pathophysiology.SIGNIFICANCE STATEMENT Photoaffinity ligands are drugs capable of light-induced irreversible binding, which have unexploited potential to identify the neuroanatomic sites of drug action. We systemically administer a centrally acting anesthetic photoaffinity ligand in mice, conduct localized photoillumination within the brain to covalently adduct the drug at its in vivo sites of action, and successfully enrich irreversible drug binding within a restricted 250 µm radius. When photoadduction encompassed the pontine parabrachial-coerulean complex, anesthetic sedation and hypnosis was prolonged 20-fold, thus illustrating the power of in vivo photochemistry to help unravel neuronal mechanisms of drug action.


Subject(s)
Anesthetics, Intravenous , Brain , Hypnosis , Hypnotics and Sedatives , Ligands , Photoaffinity Labels , Propofol , Animals , Male , Mice , Adrenergic Neurons/drug effects , Anesthesia, Intravenous , Brain/cytology , Brain/drug effects , Brain/metabolism , Brain/radiation effects , Electrocorticography , Electroencephalography , Hypnosis/methods , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/radiation effects , Locus Coeruleus/cytology , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Locus Coeruleus/radiation effects , Mice, Inbred C57BL , Parabrachial Nucleus/drug effects , Parabrachial Nucleus/metabolism , Parabrachial Nucleus/radiation effects , Photoaffinity Labels/chemistry , Photoaffinity Labels/radiation effects , Propofol/administration & dosage , Propofol/analogs & derivatives , Propofol/pharmacology , Propofol/radiation effects , Time Factors , Ultraviolet Rays , Anesthetics, Intravenous/administration & dosage , Anesthetics, Intravenous/chemistry , Anesthetics, Intravenous/pharmacology , Anesthetics, Intravenous/radiation effects
15.
Life Sci ; 286: 120030, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34627774

ABSTRACT

AIMS: This study investigated the relationship between the analgesic efficacy of acetaminophen and the descending noradrenergic systems using rodent models of inflammatory pain. MAIN METHODS: Inflammatory pain models were established by carrageenan injection into rats' paws. The models were defined as acute (4 h after carrageenan injection), subacute (24 h after carrageenan injection), and late (1 week after carrageenan injection) phase. To evaluate intravenous acetaminophen treatment, the withdrawal threshold to mechanical stimuli was assessed simultaneously with in vivo microdialysis assay of noradrenaline levels in the locus coeruleus (LC). Further analyses were performed to observe the effect of yohimbine on the treatment and the impact of AM404 treatment, a metabolite of acetaminophen, on noradrenaline levels in the LC. KEY FINDINGS: In all phases, intravenous acetaminophen had a significant anti-hyperalgesic effect (p < 0.05). There was a significant time-dependent increase in the noradrenaline concentration within the LC (acetaminophen versus saline treatment; at 30 min, p < 0.001; 60 min, p < 0.01) in the subacute pain model, but not in the acute and late phase pain models. Intrathecal pre-injection of yohimbine attenuated the anti-hyperalgesic effect after acetaminophen injection only in the subacute model (p < 0.05). In the subacute pain model, intracerebroventricular administration of AM404 showed the same trend in noradrenaline levels as acetaminophen administration (AM404 versus vehicle group at 30 min, p < 0.001). SIGNIFICANCE: We found the descending noradrenergic inhibitory system is involved in the antinociceptive action of acetaminophen in the subacute phase of inflammatory pain.


Subject(s)
Acetaminophen/therapeutic use , Hyperalgesia/drug therapy , Inflammation/drug therapy , Norepinephrine/antagonists & inhibitors , Acetaminophen/pharmacology , Animals , Carrageenan/administration & dosage , Disease Models, Animal , Inflammation/chemically induced , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Male , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects , Spinal Cord/metabolism , Yohimbine/pharmacology
16.
Neuropharmacology ; 196: 108702, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34246685

ABSTRACT

A growing body of literature implicates noradrenergic (NE) signaling in the modulation of ethanol consumption. However, relatively few studies have detailed specific brain pathways that mediate NE-associated binge-like ethanol consumption. To begin to fill this gap in the literature, male and female C57BL6/J and TH-ires-cre mice underwent pharmacological and chemogenetic testing, respectively, in combination with "drinking in the dark" procedures to model binge-like consumption of ethanol or sucrose solutions. First, we showed that intraperitoneal administration of the NE reuptake inhibitor, reboxetine, blunted binge-like ethanol intake in C57BL6/J mice. Chemogenetic activation of locus coeruleus (LC) tyrosine hydroxylase (TH)-expressing neurons blunted binge-like ethanol intake regardless of sex. Chemogenetic activation of LC projections to the lateral hypothalamus (LH), a region implicated in ethanol consumption, blunted binge-like ethanol drinking without altering sucrose intake in ethanol-experienced or ethanol-naïve mice. In C57BL/6 J mice, LH-targeted microinfusion of an α1-adrenergic receptor (AR) agonist blunted binge-like ethanol intake across both sexes, while LH infusion of a ß-AR agonist blunted binge-like ethanol intake in females exclusively. Finally, in mice with high baseline ethanol intake both an α1- AR agonist and an α-2 AR antagonist blunted binge-like ethanol intake. The present results provide novel evidence that increased NE tone in a circuit arising from the LC and projecting to the LH reduces binge-like ethanol drinking in mice, and may represent a novel approach to treating binge or heavy drinking prior to the development of dependence. This article is part of the special Issue on "Neurocircuitry Modulating Drug and Alcohol Abuse".


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Binge Drinking/metabolism , Central Nervous System Depressants/administration & dosage , Ethanol/administration & dosage , Hypothalamic Area, Lateral/metabolism , Locus Coeruleus/metabolism , Norepinephrine/metabolism , Reboxetine/pharmacology , Adrenergic alpha-1 Receptor Agonists/pharmacology , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adrenergic beta-Agonists/pharmacology , Animals , Binge Drinking/physiopathology , Female , Hypothalamic Area, Lateral/drug effects , Hypothalamic Area, Lateral/physiopathology , Locus Coeruleus/drug effects , Locus Coeruleus/physiopathology , Male , Mice , Neural Pathways , Tyrosine 3-Monooxygenase
17.
Endocr Regul ; 55(2): 120-130, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34020528

ABSTRACT

It is apparent that the c-Fos and FosB/ΔFosB immunohistochemistry has generally become a useful tool for determining the different antipsychotic (AP) drugs activities in the brain. It is also noteworthy that there are no spatial limits, while to the extent of their identification over the whole brain axis. In addition, they can be in a parallel manner utilized in the unmasking of the brain cell phenotype character activated by APs and by this way also to identify the possible brain circuits underwent to the APs action. However, up to date, the number of APs involved in the extra-striatal studies is still limited, what prevents the possibility to fully understand their extra-striatal effects as a complex as well as differentiate their extra-striatal impact in qualitative and quantitative dimensions. Actually, it is very believable that more and more anatomical/functional knowledge might bring new insights into the APs extra-striatal actions by identifying new region-specific activities of APs as well as novel cellular targets affected by APs, which might reveal more details of their possible side effects of the extra-striatal origin.


Subject(s)
Amygdala/drug effects , Antipsychotic Agents/pharmacology , Arcuate Nucleus of Hypothalamus/drug effects , Locus Coeruleus/drug effects , Midline Thalamic Nuclei/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Amygdala/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Humans , Locus Coeruleus/metabolism , Midline Thalamic Nuclei/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
18.
Neurosci Lett ; 755: 135909, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33892002

ABSTRACT

Orexin neuropeptides are implicated in the expression of morphine dependence. Locus coeruleus (LC) nucleus is an important brain area involving in the development of withdrawal signs of morphine and contains high expression of orexin type 1 receptors (OX1Rs). Despite extensive considerations, effects of immediate inhibition of OX1Rs by a single dose administration of SB-334867 prior to the naloxone-induced activation of LC neurons remains unknown. Therefore, we examined the direct effects of OX1Rs acute blockade on the neuronal activity of the morphine-dependent rats which underwent naloxone administration. Adult male rats underwent subcutaneous administration of 10 mg/kg morphine (two times/day) for a ten-day period. On the last day of experiment, intra-cerebroventricular administration of 10 µg/µl antagonist of OX1Rs, SB-334867, was performed just before intra-peritoneal injection of 2 mg/kg naloxone. Thereafter, in vivo extracellular single unit recording was employed to evaluate the electrical activity of LC neuronal cells. The outcomes demonstrated that morphine tolerance developed following ten-day of injection. Then, naloxone administration causes hyperactivity of LC neuronal cells, whereas a single dose administration of SB-334867 prior to naloxone prevented the enhanced activity of neurons upon morphine withdrawal. Our findings indicate that increased response of LC neuronal cells to applied naloxone could be prevented by the acute inhibition of the OX1Rs just before the naloxone treatment.


Subject(s)
Locus Coeruleus/physiology , Morphine Dependence/physiopathology , Naloxone/administration & dosage , Narcotic Antagonists/administration & dosage , Orexin Receptor Antagonists/administration & dosage , Orexin Receptors/physiology , Action Potentials/drug effects , Action Potentials/physiology , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/adverse effects , Animals , Benzoxazoles/administration & dosage , Injections, Intraperitoneal , Injections, Intraventricular , Locus Coeruleus/drug effects , Male , Morphine/administration & dosage , Morphine/adverse effects , Morphine Dependence/drug therapy , Naphthyridines/administration & dosage , Neurons/drug effects , Neurons/physiology , Rats , Rats, Wistar , Urea/administration & dosage , Urea/analogs & derivatives
19.
Brain ; 144(8): 2513-2526, 2021 09 04.
Article in English | MEDLINE | ID: mdl-33783470

ABSTRACT

Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomized crossover design, 19 patients with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7 T imaging of the locus coeruleus using a neuromelanin-sensitive magnetization transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in patients with Parkinson's disease. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalized treatment approaches.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Atomoxetine Hydrochloride/pharmacology , Inhibition, Psychological , Locus Coeruleus/diagnostic imaging , Parkinson Disease/diagnostic imaging , Aged , Double-Blind Method , Female , Humans , Locus Coeruleus/drug effects , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Reaction Time/drug effects
20.
Addict Biol ; 26(5): e13037, 2021 09.
Article in English | MEDLINE | ID: mdl-33768673

ABSTRACT

The neuropeptide galanin is reported to attenuate opioid withdrawal symptoms, potentially by reducing neuronal hyperactivity in the noradrenergic locus coeruleus (LC) via galanin receptor 1 (GalR1). We evaluated this mechanism by using RNAscope in situ hybridization to characterize GalR1 mRNA distribution in the dorsal pons and to compare galanin and GalR1 mRNA expression in tyrosine hydroxylase-positive (TH+) LC cells at baseline and following chronic morphine or precipitated withdrawal. We then used genetically altered mouse lines and pharmacology to test whether noradrenergic galanin (NE-Gal) modulates withdrawal symptoms. RNAscope revealed that, while GalR1 signal was evident in the dorsal pons, 80.7% of the signal was attributable to TH- neurons outside the LC. Galanin and TH mRNA were abundant in LC cells at baseline and were further increased by withdrawal, whereas low basal GalR1 mRNA expression was unaltered by chronic morphine or withdrawal. Naloxone-precipitated withdrawal symptoms in mice lacking NE-Gal (GalcKO-Dbh ) were largely similar to WT littermates, indicating that loss of NE-Gal does not exacerbate withdrawal. Complementary experiments using NE-Gal overexpressor mice (NE-Gal OX) and systemic administration of the galanin receptor agonist galnon revealed that increasing galanin signaling also failed to alter behavioral withdrawal, while suppressing noradrenergic transmission with the alpha-2 adrenergic receptor agonist clonidine attenuated multiple symptoms. These results indicate that galanin does not acutely attenuate precipitated opioid withdrawal via an LC-specific mechanism, which has important implications for the general role of galanin in regulation of somatic and affective opioid responses and LC activity.


Subject(s)
Galanin/pharmacology , Locus Coeruleus/drug effects , Substance Withdrawal Syndrome/drug therapy , Analgesics, Opioid/pharmacology , Animals , Brain/drug effects , Female , In Situ Hybridization , Male , Mice , Morphine/pharmacology , Naloxone/pharmacology , Narcotics/pharmacology , Neurons/metabolism , Neuropeptides/pharmacology , Norepinephrine/metabolism , Opioid-Related Disorders/drug therapy , RNA, Messenger/metabolism , Receptors, Galanin/metabolism , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL