Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.632
Filter
1.
BMC Med Genomics ; 17(1): 250, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39394151

ABSTRACT

Congenital long QT syndrome (LQTS) is a genetic heart disorder, which may lead to life-threatening arrhythmias, especially in children. Here, we reported two children who were initially misdiagnosed with epilepsy and experienced Torsades de Pointes (TdP) cardiac electrical storm (ES). Through whole exome sequencing (WES), we identified two Potassium voltage-gated channel subfamily H member 2 (KCHN2) mutations (c.1841 C > T and c.1838 C > T) respectively in a 6-year-old boy and a 13-year-old girl. Clinical data indicated that the QT interval was significantly prolonged, the T-wave pattern of chest V5-V6 leads and limb leads were inverted. Our study suggests that patients with epilepsy, especially those refractory epilepsy with atypical features, need comprehensive evaluation of cardiovascular function. KCNH2 mutation in pore region, QT interval prolongation and T wave inversion are high risk factors for ES. For LQT2 patients with ES, Nadolol and left cardiac sympathetic denervation are indicated, sometimes with an ICD.


Subject(s)
ERG1 Potassium Channel , Mutation , Torsades de Pointes , Humans , Child , Female , Male , Torsades de Pointes/genetics , ERG1 Potassium Channel/genetics , Adolescent , Long QT Syndrome/genetics , Exome Sequencing , Electrocardiography
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(10): 1218-1224, 2024 Oct 10.
Article in Chinese | MEDLINE | ID: mdl-39344617

ABSTRACT

OBJETIVE: To explore the clinical and genetic etiology of a Chinese pedigree affected with type 2 Long QT syndrome (LQTS). METHODS: A pedigree with type 2 LQTS presented at Fuwai Central China Cardiovascular Hospital on August 23, 2019 was selected as the study subject. Peripheral blood samples were collected from the proband and her parents. Following extraction of genomic DNA, whole exome sequencing (WES) was carried out for the proband, and candidate variant was screened through functional annotation and protein-protein interaction (PPI) analysis. Sanger sequencing was conducted to verify the pathogenicity of candidate variant. This study was approved by the Fuwai Central China Cardiovascular Hospital (Ethics No. 2019-15). RESULTS: WES revealed that the proband has harbored a missense variant of the KCNH2 gene, namely c.1478A>G (p.Tyr493Cys), which was confirmed by Sanger sequencing to have inherited from her father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as likely pathogenic (PM2_supporting+PM5+PP3+PP4). CONCLUSION: The KCNH2 gene c.1478A>G (p.Tyr493Cys) variant probably underlay the type 2 LQTS in this pedigree.


Subject(s)
ERG1 Potassium Channel , Long QT Syndrome , Pedigree , Humans , ERG1 Potassium Channel/genetics , Long QT Syndrome/genetics , Female , Male , Mutation, Missense , Asian People/genetics , Adult , China , Exome Sequencing , Genetic Testing , East Asian People
4.
J Cell Mol Med ; 28(18): e70094, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39317949

ABSTRACT

Cancer is the leading public health problem worldwide. However, the side effects accompanying anti-cancer therapies, particularly those pertaining to cardiotoxicity and adverse cardiac events, have been the hindrances to treatment progress. Long QT syndrome (LQTS) is one of the major clinic manifestations of the anti-cancer drug associated cardiac dysfunction. Therefore, elucidating the relationship between the LQTS and cancer is urgently needed. Transcriptomic sequencing data and clinic information of 10,531 patients diagnosed with 33 types of cancer was acquired from TCGA database. A pan-cancer applicative gene prognostic model was constructed based on the LQTS gene signatures. Meanwhile, transcriptome data and clinical information from various cancer types were collected from the GEO database to validate the robustness of the prognostic model. Furthermore, the expression level of transcriptomes and multiple clinical features were integrated to construct a Nomo chart to optimize the prognosis model. The ssGSEA analysis was employed to analysis the correlation between the LQTS gene signatures, clinic features and cancer associated signalling pathways. Our findings revealed that patients with lower LQTS gene signatures enrichment levels exhibit a poorer prognosis. The correlation of enrichment levels with the typical pathways was observed in multiple cancers. Then, based on the 17 LQTS gene signatures, we construct a prognostic model through the machine-learning approaches. The results obtained from the validation datasets and training datasets indicated that our prognostic model can effectively predict patient outcomes across diverse cancer types. Finally, we integrated this model with clinical features into a nomogram, demonstrating its potential as a valuable prognostic tool for cancer patients. Our study sheds light on the intricate relationship between LQTS and cancer pathways. A LQTS feature based clinic decision tool was developed aiming to enhance precision treatment of cancer.


Subject(s)
Long QT Syndrome , Neoplasms , Humans , Long QT Syndrome/genetics , Neoplasms/genetics , Prognosis , Transcriptome/genetics , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Databases, Genetic , Computational Biology/methods , Biomarkers, Tumor/genetics , Nomograms , Machine Learning
5.
Nat Commun ; 15(1): 7507, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209900

ABSTRACT

Rare genetic diseases are typically studied in referral populations, resulting in underdiagnosis and biased assessment of penetrance and phenotype. To address this, we develop a generalizable method of genotype inference based on distant relatedness and deploy this to identify undiagnosed Type 5 Long QT Syndrome (LQT5) rare variant carriers in a non-referral population. We identify 9 LQT5 families referred to a single specialty clinic, each carrying p.Asp76Asn, the most common LQT5 variant. We uncover recent common ancestry and a single shared haplotype among probands. Application to a non-referral population of 69,819 BioVU biobank subjects identifies 22 additional subjects sharing this haplotype, which we confirm to carry p.Asp76Asn. Referral and non-referral carriers have prolonged QT interval corrected for heart rate (QTc) compared to controls, and, among carriers, the QTc polygenic score is independently associated with QTc prolongation. Thus, our innovative analysis of shared chromosomal segments identifies undiagnosed cases of genetic disease and refines the understanding of LQT5 penetrance and phenotype.


Subject(s)
Biological Specimen Banks , Haplotypes , Long QT Syndrome , Humans , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Female , Male , Adult , Penetrance , Middle Aged , Phenotype , Pedigree , Genetic Predisposition to Disease , Genotype , Electrocardiography
8.
Eur Heart J ; 45(36): 3751-3763, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39115049

ABSTRACT

BACKGROUND AND AIMS: Type 1 long QT syndrome (LQT1) is caused by pathogenic variants in the KCNQ1-encoded Kv7.1 potassium channels, which pathologically prolong ventricular action potential duration (APD). Herein, the pathologic phenotype in transgenic LQT1 rabbits is rescued using a novel KCNQ1 suppression-replacement (SupRep) gene therapy. METHODS: KCNQ1-SupRep gene therapy was developed by combining into a single construct a KCNQ1 shRNA (suppression) and an shRNA-immune KCNQ1 cDNA (replacement), packaged into adeno-associated virus serotype 9, and delivered in vivo via an intra-aortic root injection (1E10 vg/kg). To ascertain the efficacy of SupRep, 12-lead electrocardiograms were assessed in adult LQT1 and wild-type (WT) rabbits and patch-clamp experiments were performed on isolated ventricular cardiomyocytes. RESULTS: KCNQ1-SupRep treatment of LQT1 rabbits resulted in significant shortening of the pathologically prolonged QT index (QTi) towards WT levels. Ventricular cardiomyocytes isolated from treated LQT1 rabbits demonstrated pronounced shortening of APD compared to LQT1 controls, leading to levels similar to WT (LQT1-UT vs. LQT1-SupRep, P < .0001, LQT1-SupRep vs. WT, P = ns). Under ß-adrenergic stimulation with isoproterenol, SupRep-treated rabbits demonstrated a WT-like physiological QTi and APD90 behaviour. CONCLUSIONS: This study provides the first animal-model, proof-of-concept gene therapy for correction of LQT1. In LQT1 rabbits, treatment with KCNQ1-SupRep gene therapy normalized the clinical QTi and cellular APD90 to near WT levels both at baseline and after isoproterenol. If similar QT/APD correction can be achieved with intravenous administration of KCNQ1-SupRep gene therapy in LQT1 rabbits, these encouraging data should compel continued development of this gene therapy for patients with LQT1.


Subject(s)
Genetic Therapy , KCNQ1 Potassium Channel , Myocytes, Cardiac , Romano-Ward Syndrome , Animals , Rabbits , KCNQ1 Potassium Channel/genetics , Genetic Therapy/methods , Romano-Ward Syndrome/genetics , Romano-Ward Syndrome/therapy , Animals, Genetically Modified , Action Potentials , Electrocardiography , RNA, Small Interfering/genetics , Long QT Syndrome/genetics , Long QT Syndrome/therapy , Disease Models, Animal
9.
Biochim Biophys Acta Biomembr ; 1866(7): 184377, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39103068

ABSTRACT

KCNQ1, also known as Kv7.1, is a voltage gated potassium channel that associates with the KCNE protein family. Mutations in this protein has been found to cause a variety of diseases including Long QT syndrome, a type of cardiac arrhythmia where the QT interval observed on an electrocardiogram is longer than normal. This condition is often aggravated during strenuous exercise and can cause fainting spells or sudden death. KCNE1 is an ancillary protein that interacts with KCNQ1 in the membrane at varying molar ratios. This interaction allows for the flow of potassium ions to be modulated to facilitate repolarization of the heart. The interaction between these two proteins has been studied previously with cysteine crosslinking and electrophysiology. In this study, electron paramagnetic resonance (EPR) spectroscopy line shape analysis in tandem with site directed spin labeling (SDSL) was used to observe changes in side chain dynamics as KCNE1 interacts with KCNQ1. KCNE1 was labeled at different sites that were found to interact with KCNQ1 based on previous literature, along with sites outside of that range as a control. Once labeled KCNE1 was incorporated into vesicles, KCNQ1 (helices S1-S6) was titrated into the vesicles. The line shape differences observed upon addition of KCNQ1 are indicative of an interaction between the two proteins. This method provides a first look at the interactions between KCNE1 and KCNQ1 from a dynamics perspective using the full transmembrane portion of KCNQ1.


Subject(s)
KCNQ1 Potassium Channel , Potassium Channels, Voltage-Gated , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/chemistry , KCNQ1 Potassium Channel/metabolism , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/chemistry , Electron Spin Resonance Spectroscopy/methods , Protein Binding , Humans , Animals , Long QT Syndrome/metabolism , Long QT Syndrome/genetics
10.
Circ Res ; 135(7): 722-738, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39166328

ABSTRACT

BACKGROUND: The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which ß-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS: Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS: By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS: Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Induced Pluripotent Stem Cells , KCNQ1 Potassium Channel , Humans , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphorylation , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Induced Pluripotent Stem Cells/metabolism , Romano-Ward Syndrome/genetics , Romano-Ward Syndrome/metabolism , Cyclic AMP/metabolism , Myocytes, Cardiac/metabolism , Mutation , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , HEK293 Cells , Potassium Channels, Voltage-Gated
11.
Circulation ; 150(15): 1199-1210, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39155863

ABSTRACT

BACKGROUND: Calmodulinopathies are rare inherited arrhythmia syndromes caused by dominant heterozygous variants in CALM1, CALM2, or CALM3, which each encode the identical CaM (calmodulin) protein. We hypothesized that antisense oligonucleotide (ASO)-mediated depletion of an affected calmodulin gene would ameliorate disease manifestations, whereas the other 2 calmodulin genes would preserve CaM level and function. METHODS: We tested this hypothesis using human induced pluripotent stem cell-derived cardiomyocyte and mouse models of CALM1 pathogenic variants. RESULTS: Human CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes exhibited prolonged action potentials, modeling congenital long QT syndrome. CALM1 knockout or CALM1-depleting ASOs did not alter CaM protein level and normalized repolarization duration of CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes. Similarly, an ASO targeting murine Calm1 depleted Calm1 transcript without affecting CaM protein level. This ASO alleviated drug-induced bidirectional ventricular tachycardia in Calm1N98S/+ mice without a deleterious effect on cardiac electrical or contractile function. CONCLUSIONS: These results provide proof of concept that ASOs targeting individual calmodulin genes are potentially effective and safe therapies for calmodulinopathies.


Subject(s)
Calmodulin , Myocytes, Cardiac , Oligonucleotides, Antisense , Animals , Calmodulin/genetics , Calmodulin/metabolism , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/pharmacology , Humans , Myocytes, Cardiac/metabolism , Mice , Induced Pluripotent Stem Cells/metabolism , Long QT Syndrome/genetics , Long QT Syndrome/drug therapy , Long QT Syndrome/therapy , Long QT Syndrome/physiopathology , Disease Models, Animal , Action Potentials/drug effects , Mice, Knockout , Genetic Therapy/methods
12.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(7): 777-783, 2024 Jul 24.
Article in Chinese | MEDLINE | ID: mdl-39019826

ABSTRACT

Objective: To explore the genetic background and clinical features of patients with long QT syndrome type 3 (LQT3). Methods: This retrospective cohort included patients diagnosed with LQT3 at the Department of Cardiology, Renmin Hospital of Wuhan University from January 1998 to December 2022. Patients were categorized into compound type group and single type group based on the presence of a single SCN5A mutation. The two groups were followed up and the differences in baseline characteristics, electrocardiograms, and clinical events between the two groups and probands were compared. Kaplan-Meier curves were used for survival analysis, and the log-rank test was employed to compare the event-free survival rates of first cardiac events between the groups and probands. Results: A total of 97 LQT3 patients were enrolled, including 59 probands. The age at diagnosis was (23.45±19.86) years, with 46 patients (47.4%) being male. Among them, 89 patients were classified as single type group, while 8 patients were classified as compound type group. Genetic testing identified 49 SCN5A mutations, with missense mutations being the majority (91.8%), primarily located in transmembrane regions (40.8%, n=20), interdomain linker regions (28.6%, n=14), and C-terminus (22.4%, n=11). The first cardiac event occurred in 44 patients (45.4%), with an onset age of (13.82±12.50) years. The main trigger was identified as rest or sleep (54.5%, n=24). Compared with patients in single type group, patients in compound type group were younger at diagnosis ((10.35±10.28) years vs. (24.63±20.13) years, P=0.040), had a significantly higher proportion of syncope (87.5% (7/8) vs. 33.7% (30/89), P=0.009), aborted cardiac arrest (62.5% (5/8) vs. 11.2% (10/89), P=0.001), and a lower incidence of event-free survival rates of first cardiac events (12.5% (1/8) vs.58.4% (52/89), log-rank P=0.001). The probands in compound type group had a significantly higher proportion of aborted cardiac arrest comparing to probands in single type group (62.5% (5/8) vs. 17.6% (9/51), P=0.020), while the difference in the incidence rate of event-free survival rates of first cardiac events between the probands in two groups was not statistically significant (12.5% (1/8) vs. 39.2% (20/51), log-rank P=0.08). Conclusion: Compound type LQT3 patients are not uncommon. Such patients are diagnosed at a younger age and exhibit more severe phenotypes, requiring close follow-up and proactive intervention strategies.


Subject(s)
Long QT Syndrome , Mutation , NAV1.5 Voltage-Gated Sodium Channel , Humans , Male , Female , Long QT Syndrome/genetics , Retrospective Studies , Adult , Young Adult , Adolescent , Child , NAV1.5 Voltage-Gated Sodium Channel/genetics , Middle Aged , Child, Preschool , Electrocardiography , Cardiac Conduction System Disease
13.
PLoS One ; 19(7): e0305248, 2024.
Article in English | MEDLINE | ID: mdl-38968219

ABSTRACT

Long QT Syndrome type 8 (LQT8) is a cardiac arrhythmic disorder associated with Timothy Syndrome, stemming from mutations in the CACNA1C gene, particularly the G406R mutation. While prior studies hint at CACNA1C mutations' role in ventricular arrhythmia genesis, the mechanisms, especially in G406R presence, are not fully understood. This computational study explores how the G406R mutation, causing increased transmural dispersion of repolarization, induces and sustains reentrant ventricular arrhythmias. Using three-dimensional numerical simulations on an idealized left-ventricular model, integrating the Bidomain equations with the ten Tusscher-Panfilov ionic model, we observe that G406R mutation with 11% and 50% heterozygosis significantly increases transmural dispersion of repolarization. During S1-S4 stimulation protocols, these gradients facilitate conduction blocks, triggering reentrant ventricular tachycardia. Sustained reentry pathways occur only with G406R mutation at 50% heterozygosis, while neglecting transmural heterogeneities of action potential duration prevents stable reentry, regardless of G406R mutation presence.


Subject(s)
Action Potentials , Calcium Channels, L-Type , Computer Simulation , Long QT Syndrome , Syndactyly , Humans , Long QT Syndrome/genetics , Long QT Syndrome/physiopathology , Calcium Channels, L-Type/genetics , Syndactyly/genetics , Syndactyly/physiopathology , Mutation , Autistic Disorder/genetics , Autistic Disorder/physiopathology , Heart Ventricles/physiopathology , Models, Cardiovascular , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/physiopathology
14.
Inn Med (Heidelb) ; 65(8): 787-797, 2024 Aug.
Article in German | MEDLINE | ID: mdl-38977442

ABSTRACT

Genetic arrhythmia disorders are rare diseases; however, they are a common cause of sudden cardiac death in children, adolescents, and young adults. In principle, a distinction can be made between channelopathies and cardiomyopathies in the context of genetic diseases. This paper focuses on the channelopathies long and short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia (CPVT). Early diagnosis of these diseases is essential, as drug therapy, behavioral measures, and if necessary, implantation of a cardioverter defibrillator can significantly improve the prognosis and quality of life of patients. This paper highlights the pathophysiological and genetic basis of these channelopathies, describes their clinical manifestations, and comments on the principles of diagnosis, risk stratification and therapy.


Subject(s)
Arrhythmias, Cardiac , Brugada Syndrome , Channelopathies , Humans , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/therapy , Arrhythmias, Cardiac/physiopathology , Channelopathies/genetics , Channelopathies/diagnosis , Channelopathies/therapy , Brugada Syndrome/genetics , Brugada Syndrome/diagnosis , Brugada Syndrome/physiopathology , Brugada Syndrome/therapy , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/therapy , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/physiopathology , Adolescent , Child , Long QT Syndrome/genetics , Long QT Syndrome/diagnosis , Long QT Syndrome/therapy , Long QT Syndrome/physiopathology , Death, Sudden, Cardiac/prevention & control , Death, Sudden, Cardiac/etiology , Adult , Defibrillators, Implantable , Electrocardiography
15.
J Biol Chem ; 300(8): 107526, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960041

ABSTRACT

The human ether-a-go-go-related gene (hERG) encodes the Kv11.1 (or hERG) channel that conducts the rapidly activating delayed rectifier potassium current (IKr). Naturally occurring mutations in hERG impair the channel function and cause long QT syndrome type 2. Many missense hERG mutations lead to a lack of channel expression on the cell surface, representing a major mechanism for the loss-of-function of mutant channels. While it is generally thought that a trafficking defect underlies the lack of channel expression on the cell surface, in the present study, we demonstrate that the trafficking defective mutant hERG G601S can reach the plasma membrane but is unstable and quickly degrades, which is akin to WT hERG channels under low K+ conditions. We previously showed that serine (S) residue at 624 in the innermost position of the selectivity filter of hERG is involved in hERG membrane stability such that substitution of serine 624 with threonine (S624T) enhances hERG stability and renders hERG insensitive to low K+ culture. Here, we report that the intragenic addition of S624T substitution to trafficking defective hERG mutants G601S, N470D, and P596R led to a complete rescue of the function of these otherwise loss-of-function mutant channels to a level similar to the WT channel, representing the most effective rescue means for the function of mutant hERG channels. These findings not only provide novel insights into hERG mutation-mediated channel dysfunction but also point to the critical role of S624 in hERG stability on the plasma membrane.


Subject(s)
Cell Membrane , ERG1 Potassium Channel , Long QT Syndrome , Humans , Long QT Syndrome/metabolism , Long QT Syndrome/genetics , Cell Membrane/metabolism , ERG1 Potassium Channel/metabolism , ERG1 Potassium Channel/genetics , HEK293 Cells , Mutation, Missense , Protein Stability , Ether-A-Go-Go Potassium Channels/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Protein Transport , Amino Acid Substitution , Animals
16.
Stem Cell Res ; 80: 103513, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39079396

ABSTRACT

Timothy syndrome, an extremely rare disease, is closely associated with a mutation in CACNA1C gene, which encodes the cardiac L-type voltage-gated calcium channel (Cav1.2). In this study, we generated a human induced pluripotent stem cell (iPSC) line from a Timothy syndrome infant carrying heterozygous CACNA1C mutation (transcript variant NM_000719.7c.1216G>A: p.G406R). The generated iPSC line showed typical stem cell morphology, positively expressed pluripotency and proliferation markers, normal karyotype, and trilineage differentiation potential. Therefore, this patient-specific iPSC can be of great significance in investigating the mechanisms underlying Timothy syndrome, and hence establishing effective intervention strategies.


Subject(s)
Autistic Disorder , Calcium Channels, L-Type , Heterozygote , Induced Pluripotent Stem Cells , Long QT Syndrome , Syndactyly , Humans , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Induced Pluripotent Stem Cells/metabolism , Syndactyly/genetics , Syndactyly/pathology , Long QT Syndrome/genetics , Long QT Syndrome/pathology , Long QT Syndrome/metabolism , Autistic Disorder/genetics , Autistic Disorder/pathology , Mutation , Cell Line , Cell Differentiation , Infant
17.
Stem Cell Res ; 79: 103496, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018827

ABSTRACT

The KCNQ1 gene encodes a voltage-gated potassium channel required for cardiac action potentials. Mutations in this gene have been associated with hereditary long QT syndrome 1, Jervell and Lange-Nielsen syndromes, and familial atrial fibrillation. The NM_000218.3(KCNQ1): c.604 + 2T > C mutation has been categorized as the causative variant leading to LQT1. In this study, we generated a KCNQ1 (c.644 + 2T > C) mutation human embryonic stem cell line WAe009-A-1L based on CRISPR base editing system. WAe009-A-1L cell has the potential to differentiate cardiomyocytes and would be used as an in vitro disease model for mechanism exploration and drug screening.


Subject(s)
Gene Editing , Human Embryonic Stem Cells , KCNQ1 Potassium Channel , Mutation , Humans , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Gene Editing/methods , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Cell Line , CRISPR-Cas Systems , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Cell Differentiation , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
20.
SELECTION OF CITATIONS
SEARCH DETAIL