Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.835
Filter
1.
AAPS PharmSciTech ; 25(6): 150, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954161

ABSTRACT

Nintedanib, a primary treatment for lung fibrosis, has gathered substantial attention due to its multifaceted potential. A tyrosine kinase inhibitor, nintedanib, inhibits multiple signalling receptors, including endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor (FGFR) and ultimately inhibits fibroblast proliferation and differentiation. Therefore, nintedanib has been studied widely for other ailments like cancers and hepatic fibrosis, apart from lung disorders. Commercially, nintedanib is available as soft gelatin capsules for treatment against idiopathic pulmonary fibrosis. Since it has very low oral bioavailability (4.7%), high doses of a drug, such as 100-150 mg, are administered, which can cause problems of gastrointestinal irritation and hepatotoxicity. The article begins with exploring the mechanism of action of nintedanib, elucidating its complex interactions within cellular pathways that govern fibrotic processes. It also emphasizes the pharmacokinetics of nintedanib, clinical trial insights, and the limitations of conventional formulations. The article mainly focuses on the emerging landscape of nanoparticle-based carriers such as hybrid liposome-exosome, nano liquid crystals, discoidal polymeric, and magnetic systems, offering promising avenues to optimize drug targeting, address its efficacy issues and minimise adverse effects. However, none of these delivery systems are commercialised, and further research is required to ensure safety and effectiveness in clinical settings. Yet, as research progresses, these advanced delivery systems promise to revolutionise the treatment landscape for various fibrotic disorders and cancers, potentially improving patient outcomes and quality of life.


Subject(s)
Drug Delivery Systems , Indoles , Humans , Indoles/administration & dosage , Indoles/pharmacokinetics , Drug Delivery Systems/methods , Animals , Lung Diseases/drug therapy , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism
2.
BMJ Case Rep ; 17(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38901853

ABSTRACT

A man in his 40s with end-stage kidney disease due to IgA nephropathy and receiving peritoneal dialysis presented with a 1-week history of breathlessness, cough and nosebleeds. CT scan of the chest revealed ground glass changes while blood tests indicated elevated inflammatory markers and a negative vasculitis screen. This included negative ANCA and anti-GBM antibodies. Initial treatment for suspected atypical pneumonia with antibiotics yielded no clinical improvement.Over the course of the admission, his symptoms progressively worsened, leading to oxygen dependency with a FiO2 of 40% and episodes of haemoptysis. Suspicions of pulmonary vasculitis arose due to clinical deterioration, prompting consultation with a tertiary vasculitis centre. It was subsequently concluded that the clinical and radiological findings correlated with ANCA-negative pulmonary vasculitis or a rare case of IgA-associated pulmonary capillaritis. Treatment with methylprednisolone and rituximab led to significant improvement, allowing rapid oxygen withdrawal. The patient was discharged with a tapering prednisolone regimen.


Subject(s)
Antibodies, Antineutrophil Cytoplasmic , Humans , Male , Antibodies, Antineutrophil Cytoplasmic/blood , Adult , Rituximab/therapeutic use , Vasculitis/diagnosis , Vasculitis/drug therapy , Methylprednisolone/therapeutic use , Methylprednisolone/administration & dosage , Diagnosis, Differential , Tomography, X-Ray Computed , Kidney Failure, Chronic/complications , Lung Diseases/diagnosis , Lung Diseases/drug therapy , Lung Diseases/diagnostic imaging , Immunoglobulin A/blood
3.
J Infect Dev Ctries ; 18(5): 751-760, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38865399

ABSTRACT

INTRODUCTION: Although nontuberculous mycobacterial (NTM) infection is a common cause of pulmonary disease worldwide, few studies have focused on epidemiological and therapeutic factors related to NTM cases in Anhui Province, China. This retrospective study aimed to identify aetiological and clinical factors, and treatment outcomes of patients with NTM pulmonary disease (NTMPD) in Anhui. METHODOLOGY: Retrospective clinical data obtained from medical records of NTMPD patients seeking care at Anhui Chest Hospital from July 2019 to June 2022 were analyzed. Treatment outcomes were compared between two patient groups: one receiving a standardised NTM treatment regimen and the other receiving precision treatment regimens. RESULTS: Genotypic analysis of 672 clinical NTMPD-associated isolates revealed that most were Mycobacterium intracellulare, while drug-susceptibility test results demonstrated diverse antibiotic resistance profiles for these isolates. Cough was the most common symptom for 101 NTMPD patients. After patients of both groups received treatment, symptoms improved, sputum culture conversion was observed for some patients, imaging findings stabilised; however, no statistically significant intergroup differences in treatment outcomes were found. CONCLUSIONS: In this study, M. intracellulare was the predominant NTM species identified in isolates obtained from NTMPD patients. Drug resistance profiles of our patient isolates were complex, highlighting the need for administration of timely, more effective, standardised treatments for patients with NTMPD in Anhui Province, China.


Subject(s)
Anti-Bacterial Agents , Mycobacterium Infections, Nontuberculous , Humans , China/epidemiology , Retrospective Studies , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/epidemiology , Male , Female , Middle Aged , Aged , Anti-Bacterial Agents/therapeutic use , Treatment Outcome , Nontuberculous Mycobacteria/isolation & purification , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/genetics , Adult , Microbial Sensitivity Tests , Lung Diseases/microbiology , Lung Diseases/drug therapy , Lung Diseases/epidemiology , Sputum/microbiology
4.
BMJ Case Rep ; 17(6)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937263

ABSTRACT

In this paper, we report the case of a boy in early childhood who presented with iron-deficiency anaemia, initially thought to be nutritional, who had a subsequent diagnosis of idiopathic pulmonary haemosiderosis (IPH). This is a slowly progressive and life-threatening disorder and is of paramount importance that this is identified early and treated appropriately. His first chest CT was not typical for IPH, and this appearance should be highlighted (small cystic changes alone initially). He also had focal disease, which allowed us to make the diagnosis using CT-guided biopsy. During his treatment, he experienced an uncommon side effect to a commonly prescribed medication (bradycardia with methylprednisolone). Since starting azathioprine as a steroid-sparing agent, he has been doing well.


Subject(s)
Hemosiderosis, Pulmonary , Hemosiderosis , Lung Diseases , Tomography, X-Ray Computed , Humans , Hemosiderosis/diagnosis , Hemosiderosis/drug therapy , Male , Lung Diseases/diagnostic imaging , Lung Diseases/diagnosis , Lung Diseases/drug therapy , Anemia, Iron-Deficiency/etiology , Anemia, Iron-Deficiency/drug therapy , Azathioprine/therapeutic use , Diagnosis, Differential , Methylprednisolone/therapeutic use , Methylprednisolone/administration & dosage
5.
Drug Discov Today ; 29(7): 104019, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729235

ABSTRACT

Inhalation drug delivery is superior for local lung disease therapy. However, there are several unique absorption barriers for inhaled drugs to overcome, including limited drug deposition at the target site, mucociliary clearance, pulmonary macrophage phagocytosis, and systemic exposure. Moreover, the respiratory disease state can affect or even destroy the physiology of the lung, thus influencing the in vivo fate of inhaled particles compared with that in healthy lungs. Nevertheless, limited information is available on this effect. Thus, in this review, we present pathological changes of the lung microenvironment under varied respiratory diseases and their influence on the in vivo fate of inhaled particles; such insights could provide a basis for rational inhalation particle design based on specific disease states.


Subject(s)
Lung Diseases , Lung , Humans , Administration, Inhalation , Animals , Lung Diseases/drug therapy , Lung Diseases/pathology , Lung/metabolism , Drug Delivery Systems , Cellular Microenvironment , Mucociliary Clearance
6.
Orphanet J Rare Dis ; 19(1): 185, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698461

ABSTRACT

BACKGROUND: Cryoglobulinemia with pulmonary involvement is rare, and its characteristics, radiological findings, and outcomes are still poorly understood. METHODS: Ten patients with pulmonary involvement of 491 cryoglobulinemia patients at Peking Union Medical College Hospital were enrolled in this retrospective study. We analyzed the characteristics, radiological features and management of pulmonary involvement patients, and compared with those of non-pulmonary involvement with cryoglobulinemia. RESULTS: The 10 patients with pulmonary involvement (2 males; median age, 53 years) included three patients with type I cryoglobulinemia and seven patients with mixed cryoglobulinemia. All of 10 patients were IgM isotype cryoglobulinemia. All type I patients were secondary to B-cell non-Hodgkin lymphoma. Four mixed patients were essential, and the remaining patients were secondary to infections (n = 2) and systemic lupus erythematosus (n = 1), respectively. Six patients had additional affected organs, including skin (60%), kidney (50%), peripheral nerves (30%), joints (20%), and heart (20%). The pulmonary symptoms included dyspnea (50%), dry cough (30%), chest tightness (30%), and hemoptysis (10%). Chest computed tomography (CT) showed diffuse ground-glass opacity (80%), nodules (40%), pleural effusions (30%), and reticulation (20%). Two patients experienced life-threatening diffuse alveolar hemorrhage. Five patients received corticosteroid-based regimens, and four received rituximab-based regimens. All patients on rituximab-based regimens achieved clinical remission. The estimated two-year overall survival (OS) was 40%. Patients with pulmonary involvement had significantly worse OS and progression-free survival than non-pulmonary involvement patients of cryoglobulinemia (P < 0.0001). CONCLUSIONS: A diagnosis of pulmonary involvement should be highly suspected for patients with cryoglobulinemia and chest CT-indicated infiltrates without other explanations. Patients with pulmonary involvement had a poor prognosis. Rituximab-based treatment may improve the outcome.


Subject(s)
Cryoglobulinemia , Humans , Cryoglobulinemia/pathology , Cryoglobulinemia/diagnostic imaging , Cryoglobulinemia/complications , Male , Middle Aged , Female , Retrospective Studies , Aged , Adult , Tomography, X-Ray Computed , Lung Diseases/diagnostic imaging , Lung Diseases/pathology , Lung Diseases/drug therapy , Lung/diagnostic imaging , Lung/pathology
8.
BMC Microbiol ; 24(1): 172, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760693

ABSTRACT

BACKGROUND: We evaluated whether the sputum bacterial microbiome differs between nontuberculous mycobacteria pulmonary disease (NTM-PD) patients with stable disease not requiring antibiotic treatment and those requiring antibiotics. METHODS: We collected sputum samples from 21 clinically stable NTM-PD patients (stable group) and 14 NTM-PD patients needing antibiotic treatment (treatment group). We also obtained 13 follow-up samples from the stable group. We analyzed the 48 samples using 16S rRNA gene sequencing (V3-V4 region) and compared the groups. RESULTS: In the linear discriminant analysis effect size (LEfSe) analysis, the species Porphyromonas pasteri, Haemophilus parahaemolyticus, Prevotella nanceiensis, and Gemella haemolysans were significantly more prevalent in the sputum of the stable group compared to the treatment group. No taxa showed significant differences in alpha-/beta-diversity or LEfSe between the 21 baseline and 13 follow-up sputum samples in the stable group. In the stable group, the genus Bergeyella and species Prevotella oris were less common in patients who achieved spontaneous culture conversion (n = 9) compared to those with persistent NTM positivity (n = 12) (effect size 3.04, p = 0.039 for Bergeyella; effect size 3.64, p = 0.033 for P. oris). In the treatment group, H. parainfluenzae was more common in patients with treatment success (n = 7) than in treatment-refractory patients (n = 7) (effect size 4.74, p = 0.013). CONCLUSIONS: Our study identified distinct bacterial taxa in the sputum of NTM-PD patients based on disease status. These results suggest the presence of a microbial environment that helps maintain disease stability.


Subject(s)
Microbiota , Mycobacterium Infections, Nontuberculous , RNA, Ribosomal, 16S , Sputum , Humans , Sputum/microbiology , Male , Female , Microbiota/genetics , Microbiota/drug effects , Aged , Mycobacterium Infections, Nontuberculous/microbiology , Mycobacterium Infections, Nontuberculous/drug therapy , RNA, Ribosomal, 16S/genetics , Middle Aged , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Nontuberculous Mycobacteria/isolation & purification , Nontuberculous Mycobacteria/genetics , Nontuberculous Mycobacteria/classification , Nontuberculous Mycobacteria/drug effects , DNA, Bacterial/genetics , Lung Diseases/microbiology , Lung Diseases/drug therapy
9.
J Ethnopharmacol ; 331: 118288, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38705426

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) Xiaoer-Feire-Qing granules (XEFRQ) has been used to treat pyretic pulmonary syndrome (PPS) in children for many years. The function of the lungs is considered to be closely related to the large intestine in TCM. PURPOSE: We aimed to investigate the effects of XEFRQ on PPS and the underlying mechanisms via network pharmacology and animal experiments. METHODS: The TCMSP platform was used to identify the ingredients and potential targets of XEFRQ. The GeneCards, OMIM, and TTD databases were used to predict PPS-associated targets. Cytoscape 3.9.1 was employed to construct the protein-protein interaction network, and target prediction was performed by GO and KEGG analyses. For the animal experiment, a PPS model was constructed by three cycles of nasal drip of Streptococcus pneumoniae (STP; 0.5 mL/kg). The animals were randomly divided into the following four groups according to their weight (n = 10 rats per group): the blank group, the model group, the XEFRQ-L (16.3 g/kg) group, and the XEFRQ-H (56.6 g/kg) group. Rats in the blank group and the model group were given 0.5% CMC-Na by gavage. The general conditions of the rats were observed, and their food-intake, body weight, and body temperature were recorded for 14 days. After the intervention of 14 days, serum was collected to detect inflammatory cytokines (TNF-α, IL-1ß, and PGE2) and neurotransmitters (5-HT, SP, and VIP). H&E staining was used to observe the pathological morphology of lung and colon tissue. AQP3 expression was detected by Western blot. In addition, the gut microbiota in cecal content samples were analyzed by 16S rDNA high-throughput sequencing. RESULTS: Our network analysis revealed that XEFRQ may alleviate PPS injury by affecting the levels of inflammatory cytokines and neurotransmitters and mitigating STP-induced PPS.In vivo validation experiments revealed that XEFRQ improved STP-induced PPS and reduced the expression of inflammatory cytokines and neurotransmitters. Notably, XEFRQ significantly decreased the protein expression levels of AQP3, which was associated with dry stool. Our gut microbiota analysis revealed that the relative abundance of [Eubacterium]_ruminantium_group, Colidextribacter, Romboutsia, and Oscillibacter was decreased, which means XEFRQ exerts therapeutic effects against PPS associated with these bacteria. CONCLUSION: Our results demonstrate that XEFRQ alleviates PPS by affecting the lungs and intestines, further guiding its clinical application.


Subject(s)
Drugs, Chinese Herbal , Lung , Network Pharmacology , Rats, Sprague-Dawley , Streptococcus pneumoniae , Animals , Drugs, Chinese Herbal/pharmacology , Lung/drug effects , Lung/microbiology , Lung/pathology , Lung/metabolism , Male , Streptococcus pneumoniae/drug effects , Rats , Cytokines/metabolism , Disease Models, Animal , Protein Interaction Maps , Intestines/drug effects , Intestines/microbiology , Fever/drug therapy , Gastrointestinal Microbiome/drug effects , Lung Diseases/drug therapy , Lung Diseases/microbiology
10.
Chem Biol Interact ; 395: 111009, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38641145

ABSTRACT

The escalating prevalence of lung diseases underscores the need for innovative therapies. Dysbiosis in human body microbiome has emerged as a significant factor in these diseases, indicating a potential role for synbiotics in restoring microbial equilibrium. However, effective delivery of synbiotics to the target site remains challenging. Here, we aim to explore suitable nanoparticles for encapsulating synbiotics tailored for applications in lung diseases. Nanoencapsulation has emerged as a prominent strategy to address the delivery challenges of synbiotics in this context. Through a comprehensive review, we assess the potential of nanoparticles in facilitating synbiotic delivery and their structural adaptability for this purpose. Our review reveals that nanoparticles such as nanocellulose, starch, and chitosan exhibit high potential for synbiotic encapsulation. These offer flexibility in structure design and synthesis, making them promising candidates for addressing delivery challenges in lung diseases. Furthermore, our analysis highlights that synbiotics, when compared to probiotics alone, demonstrate superior anti-inflammatory, antioxidant, antibacterial and anticancer activities. This review underscores the promising role of nanoparticle-encapsulated synbiotics as a targeted and effective therapeutic approach for lung diseases, contributing valuable insights into the potential of nanomedicine in revolutionizing treatment strategies for respiratory conditions, ultimately paving the way for future advancements in this field.


Subject(s)
Lung Diseases , Synbiotics , Humans , Lung Diseases/drug therapy , Nanostructures/chemistry , Lung/drug effects , Lung/pathology , Animals , Nanoparticles/chemistry
11.
Cochrane Database Syst Rev ; 4: CD003214, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38591664

ABSTRACT

BACKGROUND: Chronic lung disease (CLD) occurs frequently in preterm infants and is associated with respiratory morbidity. Bronchodilators have the potential effect of dilating small airways with muscle hypertrophy. Increased compliance and tidal volume, and decreased airway resistance, have been documented with the use of bronchodilators in infants with CLD. Therefore, bronchodilators are widely considered to have a role in the prevention and treatment of CLD, but there remains uncertainty as to whether they improve clinical outcomes. This is an update of the 2016 Cochrane review. OBJECTIVES: To determine the effect of inhaled bronchodilators given as prophylaxis or as treatment for chronic lung disease (CLD) on mortality and other complications of preterm birth in infants at risk for or identified as having CLD. SEARCH METHODS: An Information Specialist searched CENTRAL, MEDLINE, Embase, CINAHL and three trials registers from 2016 to May 2023. In addition, the review authors undertook reference checking, citation searching and contact with trial authors to identify additional studies. SELECTION CRITERIA: We included randomised and quasi-randomised controlled trials involving preterm infants less than 32 weeks old that compared bronchodilators to no intervention or placebo. CLD was defined as oxygen dependency at 28 days of life or at 36 weeks' postmenstrual age. Initiation of bronchodilator therapy for the prevention of CLD had to occur within two weeks of birth. Treatment of infants with CLD had to be initiated before discharge from the neonatal unit. The intervention had to include administration of a bronchodilator by nebulisation or metered dose inhaler. The comparator was no intervention or placebo. DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. Critical outcomes included: mortality within the trial period; CLD (defined as oxygen dependency at 28 days of life or at 36 weeks' postmenstrual age); adverse effects of bronchodilators, including hypokalaemia (low potassium levels in the blood), tachycardia, cardiac arrhythmia, tremor, hypertension and hyperglycaemia (high blood sugar); and pneumothorax. We used the GRADE approach to assess the certainty of the evidence for each outcome. MAIN RESULTS: We included two randomised controlled trials in this review update. Only one trial provided useable outcome data. This trial was conducted in six neonatal intensive care units in France and Portugal, and involved 173 participants with a gestational age of less than 31 weeks. The infants in the intervention group received salbutamol for the prevention of CLD. The evidence suggests that salbutamol may result in little to no difference in mortality (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.50 to 2.31; risk difference (RD) 0.01, 95% CI -0.09 to 0.11; low-certainty evidence) or CLD at 28 days (RR 1.03, 95% CI 0.78 to 1.37; RD 0.02, 95% CI -0.13 to 0.17; low-certainty evidence), when compared to placebo. The evidence is very uncertain about the effect of salbutamol on pneumothorax. The one trial with usable data reported that there were no relevant differences between groups, without providing the number of events (very low-certainty evidence). Investigators in this study did not report if side effects occurred. We found no eligible trials that evaluated the use of bronchodilator therapy for the treatment of infants with CLD. We identified no ongoing studies. AUTHORS' CONCLUSIONS: Low-certainty evidence from one trial showed that inhaled bronchodilator prophylaxis may result in little or no difference in the incidence of mortality or CLD in preterm infants, when compared to placebo. The evidence is very uncertain about the effect of salbutamol on pneumothorax, and neither included study reported on the incidence of serious adverse effects. We identified no trials that studied the use of bronchodilator therapy for the treatment of CLD. Additional clinical trials are necessary to assess the role of bronchodilator agents in the prophylaxis or treatment of CLD. Researchers studying the effects of inhaled bronchodilators in preterm infants should include relevant clinical outcomes in addition to pulmonary mechanical outcomes.


Subject(s)
Infant, Premature, Diseases , Lung Diseases , Pneumothorax , Premature Birth , Infant , Female , Infant, Newborn , Humans , Infant, Premature , Bronchodilator Agents/therapeutic use , Chronic Disease , Infant, Premature, Diseases/drug therapy , Infant, Premature, Diseases/prevention & control , Albuterol/therapeutic use , Lung Diseases/drug therapy , Lung Diseases/prevention & control , Oxygen
12.
J Immunotoxicol ; 21(1): 2332172, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38563602

ABSTRACT

Efficacious therapeutic options capable of resolving inflammatory lung disease associated with environmental and occupational exposures are lacking. This study sought to determine the preclinical therapeutic potential of lung-delivered recombinant interleukin (IL)-10 therapy following acute organic dust exposure in mice. Here, C57BL/6J mice were intratracheally instilled with swine confinement organic dust extract (ODE) (12.5%, 25%, 50% concentrations) with IL-10 (1 µg) treatment or vehicle control intratracheally-administered three times: 5 hr post-exposure and then daily for 2 days. The results showed that IL-10 treatment reduced ODE (25%)-induced weight loss by 66% and 46% at Day 1 and Day 2 post-exposure, respectively. IL-10 treatment reduced ODE (25%, 50%)-induced lung levels of TNFα (-76%, -83% [reduction], respectively), neutrophil chemoattractant CXCL1 (-51%, -60%), and lavage fluid IL-6 (-84%, -89%). IL-10 treatment reduced ODE (25%, 50%)-induced lung neutrophils (-49%, -70%) and recruited CD11cintCD11b+ monocyte-macrophages (-49%, -70%). IL-10 therapy reduced ODE-associated expression of antigen presentation (MHC Class II, CD80, CD86) and inflammatory (Ly6C) markers and increased anti-inflammatory CD206 expression on CD11cintCD11b+ cells. ODE (12.5%, 25%)-induced lung pathology was also reduced with IL-10 therapy. In conclusion, the studies here showed that short-term, lung-delivered IL-10 treatment induced a beneficial response in reducing inflammatory consequences (that were also associated with striking reduction in recruited monocyte-macrophages) following acute complex organic dust exposure.


Subject(s)
Lung Diseases , Pneumonia , Animals , Mice , Swine , Interleukin-10/metabolism , Mice, Inbred C57BL , Pneumonia/drug therapy , Lung/pathology , Lung Diseases/chemically induced , Lung Diseases/drug therapy , Dust
13.
Ugeskr Laeger ; 186(14)2024 Apr 01.
Article in Danish | MEDLINE | ID: mdl-38606709

ABSTRACT

This review focuses on the treatment of nontuberculous pulmonary disease caused by Mycobacterium avium complex and M. abscessus. It covers treatment indications, antibiotic choice, resistance and side effects. Treatment of nontuberculous pulmonary disease is complex, lengthy, and fraught with side effects. Increased attention on this disease is needed in order to alleviate the severe consequences of this growing disease. Cooperation between pulmonologists and infectious disease specialists is needed to ensure uniform treatment, and to account for the heterogeneity seen in patients and mycobacteria alike.


Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Pneumonia , Humans , Nontuberculous Mycobacteria , Mycobacterium Infections, Nontuberculous/drug therapy , Lung Diseases/drug therapy , Lung Diseases/microbiology , Anti-Bacterial Agents/therapeutic use
14.
Adv Rheumatol ; 64(1): 20, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491558

ABSTRACT

OBJECTIVES: The impact of rheumatoid arthritis (RA) on nontuberculous mycobacterial pulmonary disease (NTM-PD) has not been well established. In this study, we investigated the clinical course of NTM-PD in patients with RA and the impact of RA on the prognosis of NTM-PD. METHODS: We analyzed patients who developed NTM-PD after being diagnosed with RA from January 2004 to August 2023 at a tertiary referral hospital in South Korea. The patient's baseline characteristics, clinical course, and prognosis were evaluated. An optimal matching analysis was performed to measure the impact of RA on the risk of mortality. RESULTS: During the study period, 18 patients with RA [median age, 68 years; interquartile range (IQR) 59-73; female, 88.9%] developed NTM-PD. The median interval between RA diagnosis and subsequent NTM-PD development was 14.8 years (IQR, 8.6-19.5). At a median of 30 months (IQR, 27-105) after NTM-PD diagnosis, 10 of 18 (55.6%) patients received anti-mycobacterial treatment for NTM-PD and 5 (50.0%) patients achieved microbiological cure. When matched to patients with NTM-PD but without RA, patients with both RA and NTM-PD had a higher risk of mortality (adjusted hazard ratio, 8.14; 95% confidence interval, 2.43-27.2). CONCLUSION: NTM-PD occurring after RA is associated with a higher risk of mortality than NTM-PD in the absence of RA.


Subject(s)
Arthritis, Rheumatoid , Lung Diseases , Mycobacterium Infections, Nontuberculous , Humans , Female , Aged , Mycobacterium Infections, Nontuberculous/complications , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/diagnosis , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Prognosis , Lung Diseases/drug therapy , Lung Diseases/etiology , Disease Progression
15.
Diagn Microbiol Infect Dis ; 109(2): 116254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38492490

ABSTRACT

The prevalence of Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) is increasing worldwide. The advancement in molecular diagnostic technology has greatly promoted the rapid diagnosis of NTM-PD clinically, and the pathogenic strains can be identified to the species level through molecular typing, which provides a reliable basis for treatment. In addition to the well-known PCR and mNGS methods, there are numerous alternative methods to identify NTM to the species level. The treatment of NTM-PD remains a challenging problem. Although clinical guidelines outline several treatment options for common NTM species infections, in most cases, the therapeutic outcomes of these drugs for NTM-PD often fall short of expectations. At present, the focus of research is to find more effective and more tolerable NTM-PD therapeutic drugs and regimens. In this paper, the latest diagnostic techniques, therapeutic drugs and methods, and prevention of NTM-PD are reviewed.


Subject(s)
Mycobacterium Infections, Nontuberculous , Nontuberculous Mycobacteria , Humans , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria/genetics , Nontuberculous Mycobacteria/drug effects , Nontuberculous Mycobacteria/isolation & purification , Nontuberculous Mycobacteria/classification , Anti-Bacterial Agents/therapeutic use , Lung Diseases/diagnosis , Lung Diseases/microbiology , Lung Diseases/drug therapy , Molecular Diagnostic Techniques/methods
16.
Ann Clin Microbiol Antimicrob ; 23(1): 25, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500139

ABSTRACT

BACKGROUND: Mycobacterium avium complex (MAC) is a group of slow-growing mycobacteria that includes Mycobacterium avium and Mycobacterium intracellulare. MAC pulmonary disease (MAC-PD) poses a threat to immunocompromised individuals and those with structural pulmonary diseases worldwide. The standard treatment regimen for MAC-PD includes a macrolide in combination with rifampicin and ethambutol. However, the treatment failure and disease recurrence rates after successful treatment remain high. RESULTS: In the present study, we investigated the unique characteristics of small colony variants (SCVs) isolated from patients with MAC-PD. Furthermore, revertant (RVT) phenotype, emerged from the SCVs after prolonged incubation on 7H10 agar. We observed that SCVs exhibited slower growth rates than wild-type (WT) strains but had higher minimum inhibitory concentrations (MICs) against multiple antibiotics. However, some antibiotics showed low MICs for the WT, SCVs, and RVT phenotypes. Additionally, the genotypes were identical among SCVs, WT, and RVT. Based on the MIC data, we conducted time-kill kinetic experiments using various antibiotic combinations. The response to antibiotics varied among the phenotypes, with RVT being the most susceptible, WT showing intermediate susceptibility, and SCVs displaying the lowest susceptibility. CONCLUSIONS: In conclusion, the emergence of the SCVs phenotype represents a survival strategy adopted by MAC to adapt to hostile environments and persist during infection within the host. Additionally, combining the current drugs in the treatment regimen with additional drugs that promote the conversion of SCVs to RVT may offer a promising strategy to improve the clinical outcomes of patients with refractory MAC-PD.


Subject(s)
Lung Diseases , Mycobacterium avium-intracellulare Infection , Humans , Mycobacterium avium Complex/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mycobacterium avium-intracellulare Infection/drug therapy , Mycobacterium avium-intracellulare Infection/microbiology , Lung Diseases/drug therapy , Lung Diseases/microbiology , Ethambutol/pharmacology , Ethambutol/therapeutic use
17.
J Korean Med Sci ; 39(11): e107, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38529577

ABSTRACT

BACKGROUND: Pulmonary nocardiosis is a rare opportunistic infection with occasional systemic dissemination. This study aimed to investigate the computed tomography (CT) findings and prognosis of pulmonary nocardiosis associated with dissemination. METHODS: We conducted a retrospective analysis of patients diagnosed with pulmonary nocardiosis between March 2001 and September 2023. We reviewed the chest CT findings and categorized them based on the dominant CT findings as consolidation, nodules and/or masses, consolidation with multiple nodules, and nodular bronchiectasis. We compared chest CT findings between localized and disseminated pulmonary nocardiosis and identified significant prognostic factors associated with 12-month mortality using multivariate Cox regression analysis. RESULTS: Pulmonary nocardiosis was diagnosed in 75 patients, of whom 14 (18.7%) had dissemination, including involvement of the brain in 9 (64.3%) cases, soft tissue in 3 (21.4%) cases and positive blood cultures in 3 (21.4%) cases. Disseminated pulmonary nocardiosis showed a higher frequency of cavitation (64.3% vs. 32.8%, P = 0.029) and pleural effusion (64.3% vs. 29.5%, P = 0.014) compared to localized infection. The 12-month mortality rate was 25.3%. The presence of dissemination was not a significant prognostic factor (hazard ratio [HR], 0.80; confidence interval [CI], 0.23-2.75; P = 0.724). Malignancy (HR, 9.73; CI, 2.32-40.72; P = 0.002), use of steroid medication (HR, 3.72; CI, 1.33-10.38; P = 0.012), and a CT pattern of consolidation with multiple nodules (HR, 4.99; CI, 1.41-17.70; P = 0.013) were associated with higher mortality rates. CONCLUSION: Pulmonary nocardiosis with dissemination showed more frequent cavitation and pleural effusion compared to cases without dissemination, but dissemination alone did not affect the mortality rate of pulmonary nocardiosis.


Subject(s)
Lung Diseases , Nocardia Infections , Pleural Effusion , Adult , Humans , Lung Diseases/diagnostic imaging , Lung Diseases/drug therapy , Nocardia Infections/diagnosis , Nocardia Infections/drug therapy , Retrospective Studies , Tomography, X-Ray Computed
18.
Respir Res ; 25(1): 137, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521949

ABSTRACT

Publications utilizing precision cut lung slices (PCLS) steadily increased from the 1970's, with a significant increase in 2010, to tripling by 2023. PCLS have been used to study a vast array of pulmonary diseases and exposures to pathogens and toxicants to understand pathogenesis of disease but also to examine basic cellular mechanisms that underly lung biology. This Special Issue will highlight new, exciting, and novel research using PCLS, while acknowledging the substantial fund of knowledge that has been gained using this platform.


Subject(s)
Lung Diseases , Lung , Humans , Lung/pathology , Lung Diseases/diagnosis , Lung Diseases/drug therapy , Lung Diseases/pathology , Organ Culture Techniques
19.
Respir Res ; 25(1): 123, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468274

ABSTRACT

BACKGROUND: Treatment of Mycobacterium avium complex pulmonary disease (MAC-PD) involves prolonged courses of multiple antibiotics that are variably tolerated and commonly cause adverse drug reactions (ADR). The purpose of this retrospective, single-center study was to identify demographic and disease-related variables associated with significant ADRs among patients treated with antibiotics against MAC-PD. METHODS: We reviewed all patients treated with antibiotic therapy for MAC-PD at a single center from 2000 to 2021. Patients were included if they met diagnostic criteria for MAC-PD, were prescribed targeted antibiotic therapy for any length of time and had their treatment course documented in their health record. We compared patients who completed antibiotics as originally prescribed (tolerant) with those whose antibiotic treatment course was modified or terminated secondary to an ADR (intolerant). RESULTS: Over the study period, 235 patients were prescribed antibiotic treatment with their clinical course documented in our center's electronic health record, and 246 treatment courses were analyzed. One hundred forty-three (57%) tolerated therapy versus 108 (43%) experienced ADRs. Among the 108 intolerant courses, 67 (63%) required treatment modification and 49 (46%) required premature treatment termination. Treatment intolerance was associated more frequently with smear positive sputum cultures (34% vs. 20%, p = 0.009), a higher Charlson Comorbidity Index (CCI) (4 vs. 6, p = 0.007), and existing liver disease (7% vs. 1%, p = 0.03). There was no between-group difference in BMI (21 vs. 22), fibrocavitary disease (24 vs. 19%), or macrolide sensitivity (94 vs. 80%). The use of daily therapy was not associated with intolerance (77 vs. 79%). Intolerant patients were more likely to be culture positive after 6 months of treatment (44 vs. 25%). CONCLUSIONS: Patients prescribed antibiotic therapy for MAC-PD are more likely to experience ADRs if they have smear positive sputum cultures at diagnosis, a higher CCI, or existing liver disease. Our study's rate of early treatment cessation due to ADR's was similar to that of other studies (20%) but is the first of its kind to evaluate patient and disease factors associated with ADR's. A systematic approach to classifying and addressing ADRs for patients undergoing treatment for MAC-PD is an area for further investigation.


Subject(s)
Liver Diseases , Lung Diseases , Mycobacterium avium-intracellulare Infection , Humans , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection/diagnosis , Mycobacterium avium-intracellulare Infection/drug therapy , Mycobacterium avium-intracellulare Infection/microbiology , Retrospective Studies , Drug Therapy, Combination , Anti-Bacterial Agents/adverse effects , Lung Diseases/diagnosis , Lung Diseases/drug therapy , Lung Diseases/epidemiology
20.
Eur Respir Rev ; 33(171)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38417971

ABSTRACT

Respiratory viral infections are a major public health problem, with much of their morbidity and mortality due to post-viral lung diseases that progress and persist after the active infection is cleared. This paradigm is implicated in the most common forms of chronic lung disease, such as asthma and COPD, as well as other virus-linked diseases including progressive and long-term coronavirus disease 2019. Despite the impact of these diseases, there is a lack of small-molecule drugs available that can precisely modify this type of disease process. Here we will review current progress in understanding the pathogenesis of post-viral and related lung disease with characteristic remodelling phenotypes. We will also develop how this data leads to mitogen-activated protein kinase (MAPK) in general and MAPK13 in particular as key druggable targets in this pathway. We will also explore recent advances and predict the future breakthroughs in structure-based drug design that will provide new MAPK inhibitors as drug candidates for clinical applications. Each of these developments point to a more effective approach to treating the distinct epithelial and immune cell based mechanisms, which better account for the morbidity and mortality of post-viral and related types of lung disease. This progress is vital given the growing prevalence of respiratory viruses and other inhaled agents that trigger stereotyped progression to acute illness and chronic disease.


Subject(s)
Asthma , Lung Diseases , Virus Diseases , Viruses , Humans , Mitogen-Activated Protein Kinases/pharmacology , Lung Diseases/drug therapy , Lung , Virus Diseases/drug therapy , Drug Discovery
SELECTION OF CITATIONS
SEARCH DETAIL
...