Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.201
Filter
1.
Sci Rep ; 14(1): 17904, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095411

ABSTRACT

Seismocardiographic (SCG) signals are chest wall vibrations induced by cardiac activity and are potentially useful for cardiac monitoring and diagnosis. SCG waveform is observed to vary with respiration, but the mechanism of these changes is poorly understood as alterations in autonomic tone, lung volume, heart location and intrathoracic pressure are all varying during the respiratory cycle. Understanding SCG variability and its sources may help reduce variability and increase SCG clinical utility. This study investigated SCG variability during breath holding (BH) at two different lung volumes (i.e., end inspiration and end expiration) and five airway pressures (i.e., 0, ± 2-4, and ± 15-20 cm H2O). Variability during normal breathing was also studied with and without grouping SCG beats into two clusters of similar waveform morphologies (performed using the K-medoid algorithm in an unsupervised machine learning fashion). The study included 15 healthy subjects (11 Females and 4 males, Age: 21 ± 2 y) where SCG, ECG, and spirometry were simultaneously acquired. SCG waveform variability was calculated at each experimental state (i.e., lung volume and airway pressure). Results showed that breath holding was more effective in reducing the intra-state variability of SCG than clustering normal breathing data. For the BH states, the intra-state variability increased as the airway pressure deviated from zero. The subaudible-to-audible energy ratio of the BH states increased as the airway pressure decreased below zero which may be related to the effect of the intrathoracic pressure on cardiac afterload and blood ejection. When combining the BH waveforms at end inspiration and end expiration states (at the same airway pressures) into one group, the intra-state variability increased, which suggests that the lung volume and associated change in heart location were a significant source of variability. The linear trend between airway pressure and waveform changes was found to be statistically significant for BH at end expiration. To confirm these findings, more studies are needed with a larger number of airway pressure levels and larger number of subjects.


Subject(s)
Breath Holding , Humans , Male , Female , Young Adult , Lung/physiology , Respiration , Electrocardiography , Adult , Lung Volume Measurements , Spirometry/methods , Algorithms
2.
Respir Res ; 25(1): 264, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965590

ABSTRACT

BACKGROUND: Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS: Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS: Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS: EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION: Not applicable.


Subject(s)
Bronchoscopy , Electric Impedance , Animals , Swine , Bronchoscopy/methods , Pneumonectomy/methods , Lung/diagnostic imaging , Lung/physiopathology , Lung/surgery , Lung/physiology , Tomography/methods , Pulmonary Atelectasis/diagnostic imaging , Pulmonary Atelectasis/physiopathology , Lung Volume Measurements/methods , Time Factors
3.
PLoS One ; 19(7): e0299589, 2024.
Article in English | MEDLINE | ID: mdl-39042646

ABSTRACT

The purpose of this study was to evaluate the quantitative computed tomography (CT) volumetry and densitometry and in pediatric patients with pectus excavatum (PE). We measured pectus index (PI) and separated inspiratory and expiratory lung volumes and densities. We obtained the total lung volume (TLV) and mean lung density (MLD) during inspiration and expiration, and the ratio of end expiratory to inspiratory volume (E/I volume) and MLD (E/I density) were calculated. The difference between inspiratory and end expiratory volume (I-E volume) and MLD (I-E density) were also calculated. A total of 199 patients, including 164 PE patients and 35 controls, were included in this study. The result shows that the PE group had lower inspiratory TLV (mean, 2670.76±1364.22 ml) than the control group (3219.57±1313.87 ml; p = 0.027). In the PE group, the inspiratory (-787.21±52.27 HU vs. -804.94±63.3 HU) and expiratory MLD (-704.51±55.41 HU vs. -675.83±64.62 HU) were significantly lower than the indices obtained from the control group (p = 0.006). In addition, significantly lower values of TLV and MLD difference and higher value of TLV and MLD ratio were found in the PE group (p <0.0001). PE patients were divided into severe vs. mild groups based on the PI cutoff value of 3.5. The inspiratory MLD and TLV ratio in the severe PE group were lower than those in the mild PE group, respectively (p <0.05). In conclusion, quantitative pulmonary evaluation through CT in pediatric PE patients may provide further information in assessing the functional changes in lung parenchyma as a result of chest wall deformity.


Subject(s)
Densitometry , Funnel Chest , Lung Volume Measurements , Lung , Tomography, X-Ray Computed , Humans , Funnel Chest/diagnostic imaging , Funnel Chest/physiopathology , Male , Female , Child , Tomography, X-Ray Computed/methods , Adolescent , Densitometry/methods , Lung/diagnostic imaging , Lung/physiopathology , Lung Volume Measurements/methods , Case-Control Studies
4.
Int J Chron Obstruct Pulmon Dis ; 19: 1561-1578, 2024.
Article in English | MEDLINE | ID: mdl-38974815

ABSTRACT

Lung hyperinflation (LH) is a common clinical feature in patients with chronic obstructive pulmonary disease (COPD). It results from a combination of reduced elastic lung recoil as a consequence of irreversible destruction of lung parenchyma and expiratory airflow limitation. LH is an important determinant of morbidity and mortality in COPD, partially independent of the degree of airflow limitation. Therefore, reducing LH has become a major target in the treatment of COPD over the last decades. Advances were made in the diagnostics of LH and several effective interventions became available. Moreover, there is increasing evidence suggesting that LH is not only an isolated feature in COPD but rather part of a distinct clinical phenotype that may require a more integrated management. This narrative review focuses on the pathophysiology and adverse consequences of LH, the assessment of LH with lung function measurements and imaging techniques and highlights LH as a treatable trait in COPD. Finally, several suggestions regarding future studies in this field are made.


Subject(s)
Lung , Phenotype , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Lung/physiopathology , Predictive Value of Tests , Lung Volume Measurements , Treatment Outcome
5.
Respir Med ; 231: 107726, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38950683

ABSTRACT

BACKGROUND: Airway clearance (ACT) and lung volume recruitment (LVR) techniques are used to manage bronchial secretions, increase cough efficiency and lung/chest wall recruitment, to prevent and treat respiratory tract infections. The aim of the study was to review the prescription of ACT/LVR techniques for home use in children in France. METHODS: All the centers of the national pediatric noninvasive ventilation (NIV) network were invited to fill in an anonymous questionnaire for every child aged ≤20 years who started a treatment with an ACT/LVR device between 2022 and 2023. The devices comprised mechanical in-exsufflation (MI-E), intermittent positive pressure breathing (IPPB), intrapulmonary percussive ventilation (IPV), and/or invasive mechanical ventilation (IMV)/NIV for ACT/LVR. RESULTS: One hundred and thirty-nine patients were included by 13 centers. IPPB was started in 83 (60 %) patients, MI-E in 43 (31 %) and IPV in 30 (22 %). No patient used IMV/NIV for ACT/LVR. The devices were prescribed mainly by pediatric pulmonologists (103, 74 %). Mean age at initiation was 8.9 ± 5.6 (0.4-18.5) years old. The ACT/LVR devices were prescribed mainly in patients with neuromuscular disorders (n = 66, 47 %) and neurodisability (n = 37, 27 %). The main initiation criteria were cough assistance (81 %) and airway clearance (60 %) for MI-E, thoracic mobilization (63 %) and vital capacity (47 %) for IPPB, and airway clearance (73 %) and repeated respiratory exacerbations (57 %) for IPV. The parents were the main carers performing the treatment at home. CONCLUSIONS: IPPB was the most prescribed technique. Diseases and initiation criteria are heterogeneous, underlining the need for studies validating the indications and settings of these techniques.


Subject(s)
Noninvasive Ventilation , Humans , France , Child , Child, Preschool , Infant , Male , Adolescent , Female , Noninvasive Ventilation/methods , Noninvasive Ventilation/instrumentation , Respiratory Tract Infections/therapy , Surveys and Questionnaires , Home Care Services , Lung/physiopathology , Cough/physiopathology , Positive-Pressure Respiration/methods , Lung Volume Measurements , Respiratory Therapy/methods
6.
Trials ; 25(1): 481, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014430

ABSTRACT

BACKGROUND: In standard weaning from mechanical ventilation, a successful spontaneous breathing test (SBT) consisting of 30 min 8 cmH2O pressure-support ventilation (PSV8) without positive end-expiratory pressure (PEEP) is followed by extubation with continuous suctioning; however, these practices might promote derecruitment. Evidence supports the feasibility and safety of extubation without suctioning. Ultrasound can assess lung aeration and respiratory muscles. We hypothesize that weaning aiming to preserve lung volume can yield higher rates of successful extubation. METHODS: This multicenter superiority trial will randomly assign eligible patients to receive either standard weaning [SBT: 30-min PSV8 without PEEP followed by extubation with continuous suctioning] or lung-volume-preservation weaning [SBT: 30-min PSV8 + 5 cmH2O PEEP followed by extubation with positive pressure without suctioning]. We will compare the rates of successful extubation and reintubation, ICU and hospital stays, and ultrasound measurements of the volume of aerated lung (modified lung ultrasound score), diaphragm and intercostal muscle thickness, and thickening fraction before and after successful or failed SBT. Patients will be followed for 90 days after randomization. DISCUSSION: We aim to recruit a large sample of representative patients (N = 1600). Our study cannot elucidate the specific effects of PEEP during SBT and of positive pressure during extubation; the results will show the joint effects derived from the synergy of these two factors. Although universal ultrasound monitoring of lungs, diaphragm, and intercostal muscles throughout weaning is unfeasible, if derecruitment is a major cause of weaning failure, ultrasound may help clinicians decide about extubation in high-risk and borderline patients. TRIAL REGISTRATION: The Research Ethics Committee (CEIm) of the Fundació Unió Catalana d'Hospitals approved the study (CEI 22/67 and 23/26). Registered at ClinicalTrials.gov in August 2023. Identifier: NCT05526053.


Subject(s)
Airway Extubation , Lung , Multicenter Studies as Topic , Positive-Pressure Respiration , Ventilator Weaning , Humans , Ventilator Weaning/methods , Positive-Pressure Respiration/methods , Positive-Pressure Respiration/adverse effects , Lung/physiopathology , Lung/diagnostic imaging , Lung Volume Measurements , Ultrasonography , Treatment Outcome , Male , Time Factors , Female , Adult , Middle Aged , Respiration, Artificial/methods , Randomized Controlled Trials as Topic , Aged , Suction/methods , Equivalence Trials as Topic
7.
BMC Pulm Med ; 24(1): 298, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918752

ABSTRACT

BACKGROUND: End-expiratory lung volume (EELV) has been observed to decrease in acute respiratory distress syndrome (ARDS). Yet, research investigating EELV in patients with COVID-19 associated ARDS (CARDS) remains limited. It is unclear whether EELV could serve as a potential metric for monitoring disease progression and identifying patients with ARDS at increased risk of adverse outcomes. STUDY DESIGN AND METHODS: This retrospective study included mechanically ventilated patients diagnosed with CARDS during the initial phase of epidemic control in Shanghai. EELV was measured using the nitrogen washout-washin technique within 48 h post-intubation, followed by regular assessments every 3-4 days. Chest CT scans, performed within a 24-hour window around each EELV measurement, were analyzed using AI software. Differences in patient demographics, clinical data, respiratory mechanics, EELV, and chest CT findings were assessed using linear mixed models (LMM). RESULTS: Out of the 38 patients enrolled, 26.3% survived until discharge from the ICU. In the survivor group, EELV, EELV/predicted body weight (EELV/PBW) and EELV/predicted functional residual capacity (EELV/preFRC) were significantly higher than those in the non-survivor group (survivor group vs. non-survivor group: EELV: 1455 vs. 1162 ml, P = 0.049; EELV/PBW: 24.1 vs. 18.5 ml/kg, P = 0.011; EELV/preFRC: 0.45 vs. 0.34, P = 0.005). Follow-up assessments showed a sustained elevation of EELV/PBW and EELV/preFRC among the survivors. Additionally, EELV exhibited a positive correlation with total lung volume and residual lung volume, while demonstrating a negative correlation with lesion volume determined through chest CT scans analyzed using AI software. CONCLUSION: EELV is a useful indicator for assessing disease severity and monitoring the prognosis of patients with CARDS.


Subject(s)
COVID-19 , Lung Volume Measurements , Respiratory Distress Syndrome , Tomography, X-Ray Computed , Humans , COVID-19/complications , Retrospective Studies , Male , Female , Middle Aged , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , China , Aged , Lung Volume Measurements/methods , SARS-CoV-2 , Lung/diagnostic imaging , Lung/physiopathology , Respiration, Artificial , Adult
8.
Early Hum Dev ; 194: 106047, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851106

ABSTRACT

BACKGROUND: Neonatal chest-Xray (CXR)s are commonly performed as a first line investigation for the evaluation of respiratory complications. Although lung area derived from CXRs correlates well with functional assessments of the neonatal lung, it is not currently utilised in clinical practice, partly due to the lack of reference ranges for CXR-derived lung area in healthy neonates. Advanced MR techniques now enable direct evaluation of both fetal pulmonary volume and area. This study therefore aims to generate reference ranges for pulmonary volume and area in uncomplicated pregnancies, evaluate the correlation between prenatal pulmonary volume and area, as well as to assess the agreement between antenatal MRI-derived and neonatal CXR-derived pulmonary area in a cohort of fetuses that delivered shortly after the antenatal MRI investigation. METHODS: Fetal MRI datasets were retrospectively analysed from uncomplicated term pregnancies and a preterm cohort that delivered within 72 h of the fetal MRI. All examinations included T2 weighted single-shot turbo spin echo images in multiple planes. In-house pipelines were applied to correct for fetal motion using deformable slice-to-volume reconstruction. An MRI-derived lung area was manually segmented from the average intensity projection (AIP) images generated. Postnatal lung area in the preterm cohort was measured from neonatal CXRs within 24 h of delivery. Pearson correlation coefficient was used to correlate MRI-derived lung volume and area. A two-way absolute agreement was performed between the MRI-derived AIP lung area and CXR-derived lung area. RESULTS: Datasets from 180 controls and 10 preterm fetuses were suitable for analysis. Mean gestational age at MRI was 28.6 ± 4.2 weeks for controls and 28.7 ± 2.7 weeks for preterm neonates. MRI-derived lung area correlated strongly with lung volumes (p < 0.001). MRI-derived lung area had good agreement with the neonatal CXR-derived lung area in the preterm cohort [both lungs = 0.982]. CONCLUSION: MRI-derived pulmonary area correlates well with absolute pulmonary volume and there is good correlation between MRI-derived pulmonary area and postnatal CXR-derived lung area when delivery occurs within a few days of the MRI examination. This may indicate that fetal MRI derived lung area may prove to be useful reference ranges for pulmonary areas derived from CXRs obtained in the perinatal period.


Subject(s)
Lung , Magnetic Resonance Imaging , Humans , Lung/diagnostic imaging , Lung/embryology , Magnetic Resonance Imaging/methods , Female , Pregnancy , Infant, Newborn , Lung Volume Measurements/methods , Retrospective Studies
9.
J Assoc Physicians India ; 72(5): 29-35, 2024 May.
Article in English | MEDLINE | ID: mdl-38881107

ABSTRACT

BACKGROUND: Spirometry is used extensively, but airway oscillometry is gaining acceptance for evaluating obstructive airway disorders. Moderate persistent asthma requires daily treatment with inhaled corticosteroids (ICS). MATERIALS AND METHODS: We aimed to examine the relationship between airway oscillometry and lung volumes, which are the markers of lung physiology in obstructive airway disease and spirometry in the real-world clinical setting. A total of 72 adults with moderate persistent asthma followed up in our outpatient department from November 2021 to August 2022, and their clinical details and tests of spirometry, forced oscillation technique (FOT), and lung volumes by body plethysmography (BP) performed before and after bronchodilator administration were analyzed. RESULTS: The mean age of the study population was 40 years, and the majority (57%) were females. FOT detected airflow limitation in 12 of the 31 patients with normal spirometry. BP detected abnormalities in more patients than both spirometry and FOT (91.6 vs 73.6%, p < 0.001). Respiratory resistance 5 (R5) had a negative correlation with functional residual capacity (FRC) and total lung capacity (TLC). Reactance 5 (X5) correlated positively with inspiratory capacity (IC) and TLC and negatively with reserve volume (RV)/TLC ratio. A positive correlation was found between IC/TLC% and postbronchodilator X5 and between R5 and 19 and RV/TLC. R5 had a negative and X5 had a positive correlation with forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), FEV1/FVC, and maximal mid expiratory flow rates (MMEF). ∇X5 had a negative correlation with FEV1, MMEF, and FEV1/FVC. Spirometry detected postbronchodilator responsiveness in more patients than FOT when only the R5 criterion was used and in a comparable number when the X5 criterion was added. ∇X5 and R5-R19/R5 declined significantly after bronchodilators. CONCLUSION: We concluded that there is a moderate correlation between FOT and spirometry and lung volumes by BP. FOT and spirometry should be used together to identify airflow obstruction and postbronchodilator responsiveness in asthma. Lung volumes by BP identify more abnormalities in adults with asthma than both spirometry and FOT. Thresholds to define postbronchodilator responsiveness (PBDR) for ∇X5 and R5-R19 need to be defined.


Subject(s)
Asthma , Plethysmography, Whole Body , Spirometry , Humans , Asthma/drug therapy , Asthma/physiopathology , Asthma/diagnosis , Female , Adult , Male , Spirometry/methods , Middle Aged , Plethysmography, Whole Body/methods , Oscillometry/methods , Bronchodilator Agents/therapeutic use , Bronchodilator Agents/administration & dosage , Lung Volume Measurements/methods , Lung/physiopathology
10.
Sci Rep ; 14(1): 10594, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719953

ABSTRACT

Colorectal liver metastases (CRLM) are the predominant factor limiting survival in patients with colorectal cancer and liver resection with complete tumor removal is the best treatment option for these patients. This study examines the predictive ability of three-dimensional lung volumetry (3DLV) based on preoperative computerized tomography (CT), to predict postoperative pulmonary complications in patients undergoing major liver resection for CRLM. Patients undergoing major curative liver resection for CRLM between 2010 and 2021 with a preoperative CT scan of the thorax within 6 weeks of surgery, were included. Total lung volume (TLV) was calculated using volumetry software 3D-Slicer version 4.11.20210226 including Chest Imaging Platform extension ( http://www.slicer.org ). The area under the curve (AUC) of a receiver-operating characteristic analysis was used to define a cut-off value of TLV, for predicting the occurrence of postoperative respiratory complications. Differences between patients with TLV below and above the cut-off were examined with Chi-square or Fisher's exact test and Mann-Whitney U tests and logistic regression was used to determine independent risk factors for the development of respiratory complications. A total of 123 patients were included, of which 35 (29%) developed respiratory complications. A predictive ability of TLV regarding respiratory complications was shown (AUC 0.62, p = 0.036) and a cut-off value of 4500 cm3 was defined. Patients with TLV < 4500 cm3 were shown to suffer from significantly higher rates of respiratory complications (44% vs. 21%, p = 0.007) compared to the rest. Logistic regression analysis identified TLV < 4500 cm3 as an independent predictor for the occurrence of respiratory complications (odds ratio 3.777, 95% confidence intervals 1.488-9.588, p = 0.005). Preoperative 3DLV is a viable technique for prediction of postoperative pulmonary complications in patients undergoing major liver resection for CRLM. More studies in larger cohorts are necessary to further evaluate this technique.


Subject(s)
Colorectal Neoplasms , Hepatectomy , Liver Neoplasms , Postoperative Complications , Tomography, X-Ray Computed , Humans , Female , Male , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , Middle Aged , Liver Neoplasms/surgery , Liver Neoplasms/secondary , Aged , Hepatectomy/adverse effects , Hepatectomy/methods , Postoperative Complications/etiology , Lung/pathology , Lung/diagnostic imaging , Lung/surgery , Retrospective Studies , Imaging, Three-Dimensional , Lung Volume Measurements , Risk Factors , Preoperative Period
11.
Magn Reson Med ; 92(4): 1471-1483, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38726472

ABSTRACT

PURPOSE: To characterize the dependence of Xe-MRI gas transfer metrics upon age, sex, and lung volume in a group of healthy volunteers. METHODS: Sixty-five subjects with no history of chronic lung disease were assessed with 129Xe-MRI using a four-echo 3D radial spectroscopic imaging sequence and a dose of xenon titrated according to subject height that was inhaled from a lung volume of functional residual capacity (FRC). Imaging was repeated in 34 subjects at total lung capacity (TLC). Regional maps of the fractions of dissolved xenon in red blood cells (RBC), membrane (M), and airspace (Gas) were acquired at an isotropic resolution of 2 cm, from which global averages of the ratios RBC:M, RBC:Gas, and M:Gas were computed. RESULTS: Data from 26 males and 36 females with a median age of 43 y (range: 20-69 y) were of sufficient quality to analyze. Age (p = 0.0006) and sex (p < 0.0001) were significant predictors for RBC:M, and a linear regression showed higher values and steeper decline in males: RBC:M(Males) = -0.00362 × Age + 0.60 (p = 0.01, R2 = 0.25); RBC:M(Females) = -0.00170 × Age + 0.44 (p = 0.02, R2 = 0.15). Similarly, age and sex were significant predictors for RBC:Gas but not for M:Gas. RBC:M, M:Gas and RBC:Gas were significantly lower at TLC than at FRC (plus inhaled volume), with an average 9%, 30% and 35% decrease, respectively. CONCLUSION: Expected age and sex dependence of pulmonary function concurs with 129Xe RBC:M imaging results, demonstrating that these variables must be considered when reporting Xe-MRI metrics. Xenon doses and breathing maneuvers should be controlled due to the strong dependence of Xe-MRI metrics upon lung volume.


Subject(s)
Lung , Magnetic Resonance Imaging , Xenon Isotopes , Humans , Male , Female , Middle Aged , Adult , Magnetic Resonance Imaging/methods , Aged , Lung/diagnostic imaging , Young Adult , Pulmonary Gas Exchange , Sex Factors , Age Factors , Lung Volume Measurements , Erythrocytes
12.
Respir Care ; 69(8): 990-998, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38744475

ABSTRACT

BACKGROUND: Patients with obesity are at increased risk of postoperative pulmonary complications. CPAP has been used successfully to prevent and treat acute respiratory failure, but in many clinical scenarios, high-flow nasal cannula (HFNC) therapy is emerging as a possible alternative. We aimed to compare HFNC and CPAP in a sequential study measuring their effects on gas exchange, lung volumes, and gas distribution within the lungs measured through electrical impedance tomography (EIT). METHODS: We enrolled 15 subjects undergoing laparoscopic bariatric surgery. Postoperatively they underwent the following oxygen therapy protocol (10 min/step): baseline air-entrainment mask, HFNC at increasing (40, 60, 80, and 100 L/min) and decreasing flows (80, 60, and 40 L/min), washout air-entrainment mask and CPAP (10 cm H2O). Primary outcome was the change in end-expiratory lung impedance (ΔEELI) measured by EIT data processing. Secondary outcomes were changes of global inhomogeneity (GI) index and tidal impedance variation (TIV) measured by EIT, arterial oxygenation, carbon dioxide content, pH, respiratory frequency, and subject's comfort. RESULTS: Thirteen subjects completed the study. Compared to baseline, ΔEELI was higher during 10 cm H2O CPAP (P = .001) and HFNC 100 L/min (P = .02), as well as during decreasing flows HFNC 80, 60, and 40 L/min (P = .008, .004, and .02, respectively). GI index was lower during HFNC 100 compared to HFNC 60increasing (P = .044), HFNC 60decreasing (P = .02) HFNC 40decreasing (P = .01), and during 10 cm H2O CPAP compared to washout period (P = .01) and HFNC 40decreasing (P = .03). TIV was higher during 10 cm H2O CPAP compared to baseline (P = .008). Compared to baseline, breathing frequency was lower at HFNC 60increasing, HFNC 100, and HFNC 80decreasing (P = .01, .02, and .03, respectively). No differences were detected regarding arterial oxygenation, carbon dioxide content, pH, and subject's comfort. CONCLUSIONS: HFNC at a flow of 100 L/min induced postoperative pulmonary recruitment in bariatric subjects, with no significant differences compared to 10 cm H2O CPAP in terms of lung recruitment and ventilation distribution.


Subject(s)
Bariatric Surgery , Cannula , Continuous Positive Airway Pressure , Electric Impedance , Oxygen Inhalation Therapy , Humans , Female , Continuous Positive Airway Pressure/methods , Male , Adult , Middle Aged , Oxygen Inhalation Therapy/methods , Lung Volume Measurements , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Pulmonary Gas Exchange , Lung/physiopathology , Respiratory Insufficiency/therapy , Respiratory Insufficiency/etiology , Tidal Volume
13.
Arch Gynecol Obstet ; 310(2): 873-881, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782762

ABSTRACT

PURPOSE: To evaluate the impact of the timing of MRI on the prediction of survival and morbidity in patients with CDH, and whether serial measurements have a beneficial value. METHODS: This retrospective cohort study was conducted in two perinatal centers, in Germany and Italy. It included 354 patients with isolated CDH having at least one fetal MRI. The severity was assessed with the observed-to-expected total fetal lung volume (o/e TFLV) measured by two experienced double-blinded operators. The cohort was divided into three groups according to the gestational age (GA) at which the MRI was performed (< 27, 27-32, and > 32 weeks' gestation [WG]). The accuracy for the prediction of survival at discharge and morbidity was analyzed with receiver operating characteristic (ROC) curves. Multiple logistic regression analyses and propensity score matching examined the population for balance. The effect of repeated MRI was evaluated in ninety-seven cases. RESULTS: There were no significant differences in the prediction of survival when the o/e TFLV was measured before 27, between 27 and 32, and after 32 WG (area under the curve [AUC]: 0.77, 0.79, and 0.77, respectively). After adjustment for confounding factors, it was seen, that GA at MRI was not associated with survival at discharge, but the risk of mortality was higher with an intrathoracic liver position (adjusted odds ratio [aOR]: 0.30, 95% confidence interval [95%CI] 0.12-0.78), lower GA at birth (aOR 1.48, 95%CI 1.24-1.78) and lower o/e TFLV (aOR 1.13, 95%CI 1.06-1.20). ROC curves showed comparable prediction accuracy for the different timepoints in pregnancy for pulmonary hypertension, the need of extracorporeal membrane oxygenation, and feeding aids. Serial measurements revealed no difference in change rate of the o/e TFLV according to survival. CONCLUSION: The timing of MRI does not affect the prediction of survival rate or morbidity as the o/e TFLV does not change during pregnancy. Clinicians could choose any gestational age starting mid second trimester for the assessment of severity and counseling.


Subject(s)
Gestational Age , Hernias, Diaphragmatic, Congenital , Magnetic Resonance Imaging , Humans , Female , Pregnancy , Hernias, Diaphragmatic, Congenital/diagnostic imaging , Hernias, Diaphragmatic, Congenital/mortality , Retrospective Studies , Prenatal Diagnosis/methods , ROC Curve , Predictive Value of Tests , Adult , Time Factors , Lung Volume Measurements
14.
Clin Physiol Funct Imaging ; 44(4): 340-348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38576112

ABSTRACT

BACKGROUND: Computed tomography (CT) offers pulmonary volumetric quantification but is not commonly used in healthy individuals due to radiation concerns. Chronic airflow limitation (CAL) is one of the diagnostic criteria for chronic obstructive pulmonary disease (COPD), where early diagnosis is important. Our aim was to present reference values for chest CT volumetric and radiodensity measurements and explore their potential in detecting early signs of CAL. METHODS: From the population-based Swedish CArdioPulmonarybioImage Study (SCAPIS), 294 participants aged 50-64, were categorized into non-CAL (n = 258) and CAL (n = 36) groups based on spirometry. From inspiratory and expiratory CT images we compared lung volumes, mean lung density (MLD), percentage of low attenuation volume (LAV%) and LAV cluster volume between groups, and against reference values from static pulmonary function test (PFT). RESULTS: The CAL group exhibited larger lung volumes, higher LAV%, increased LAV cluster volume and lower MLD compared to the non-CAL group. Lung volumes significantly deviated from PFT values. Expiratory measurements yielded more reliable results for identifying CAL compared to inspiratory. Using a cut-off value of 0.6 for expiratory LAV%, we achieved sensitivity, specificity and positive/negative predictive values of 72%, 85% and 40%/96%, respectively. CONCLUSION: We present volumetric reference values from inspiratory and expiratory chest CT images for a middle-aged healthy cohort. These results are not directly comparable to those from PFTs. Measures of MLD and LAV can be valuable in the evaluation of suspected CAL. Further validation and refinement are necessary to demonstrate its potential as a decision support tool for early detection of COPD.


Subject(s)
Lung Volume Measurements , Lung , Predictive Value of Tests , Pulmonary Disease, Chronic Obstructive , Spirometry , Humans , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Male , Female , Lung/diagnostic imaging , Lung/physiopathology , Lung Volume Measurements/methods , Reproducibility of Results , Sweden , Tomography, X-Ray Computed/methods , Forced Expiratory Volume , Early Diagnosis
15.
Crit Care ; 28(1): 142, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38689313

ABSTRACT

RATIONALE: End-expiratory lung volume (EELV) is reduced in mechanically ventilated patients, especially in pathologic conditions. The resulting heterogeneous distribution of ventilation increases the risk for ventilation induced lung injury. Clinical measurement of EELV however, remains difficult. OBJECTIVE: Validation of a novel continuous capnodynamic method based on expired carbon dioxide (CO2) kinetics for measuring EELV in mechanically ventilated critically-ill patients. METHODS: Prospective study of mechanically ventilated patients scheduled for a diagnostic computed tomography exploration. Comparisons were made between absolute and corrected EELVCO2 values, the latter accounting for the amount of CO2 dissolved in lung tissue, with the reference EELV measured by computed tomography (EELVCT). Uncorrected and corrected EELVCO2 was compared with total CT volume (density compartments between - 1000 and 0 Hounsfield units (HU) and functional CT volume, including density compartments of - 1000 to - 200HU eliminating regions of increased shunt. We used comparative statistics including correlations and measurement of accuracy and precision by the Bland Altman method. MEASUREMENTS AND MAIN RESULTS: Of the 46 patients included in the final analysis, 25 had a diagnosis of ARDS (24 of which COVID-19). Both EELVCT and EELVCO2 were significantly reduced (39 and 40% respectively) when compared with theoretical values of functional residual capacity (p < 0.0001). Uncorrected EELVCO2 tended to overestimate EELVCT with a correlation r2 0.58; Bias - 285 and limits of agreement (LoA) (+ 513 to - 1083; 95% CI) ml. Agreement improved for the corrected EELVCO2 to a Bias of - 23 and LoA of (+ 763 to - 716; 95% CI) ml. The best agreement of the method was obtained by comparison of corrected EELVCO2 with functional EELVCT with a r2 of 0.59; Bias - 2.75 (+ 755 to - 761; 95% CI) ml. We did not observe major differences in the performance of the method between ARDS (most of them COVID related) and non-ARDS patients. CONCLUSION: In this first validation in critically ill patients, the capnodynamic method provided good estimates of both total and functional EELV. Bias improved after correcting EELVCO2 for extra-alveolar CO2 content when compared with CT estimated volume. If confirmed in further validations EELVCO2 may become an attractive monitoring option for continuously monitor EELV in critically ill mechanically ventilated patients. TRIAL REGISTRATION: clinicaltrials.gov (NCT04045262).


Subject(s)
Capnography , Critical Illness , Lung Volume Measurements , Humans , Male , Female , Critical Illness/therapy , Prospective Studies , Middle Aged , Aged , Lung Volume Measurements/methods , Capnography/methods , Respiration, Artificial/methods , COVID-19 , Tomography, X-Ray Computed/methods , Adult
16.
Sci Rep ; 14(1): 8119, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582758

ABSTRACT

Breathing difficulties and exertional dyspnea are frequently reported in hypermobile Ehlers-Danlos syndrome (hEDS); however, they are not clearly explained. An impaired proprioception or the addition of a cognitive task could influence ventilatory control. How can the perception of lung volume be measured? Is lung volume perception impaired in hEDS patients? Is the breathing control impaired during a cognitive task in hEDS patients? A device was developed to assess the accuracy of lung volume perception in patients with hEDS and matched control subjects. In the second step, ventilation was recorded in both groups with and without a cognitive task. Two groups of 19 subjects were included. The accuracy of lung volume perception was significantly (P < 0.01) lower at 30% of inspired vital capacity in patients with hEDS in comparison to the control group, and they showed erratic ventilation (based on spatial and temporal criteria) when performing a cognitive task. These data support the influence of the proprioceptive deficit on ventilatory control in hEDS patients. These elements may help to understand the respiratory manifestations found in hEDS. Future research should focus on this relationship between lung volume perception and ventilation, and could contribute to our understanding of other pathologies or exercise physiology.Trial registration number: ClinicalTrials.gov, NCT05000151.


Subject(s)
Ehlers-Danlos Syndrome , Humans , Ehlers-Danlos Syndrome/pathology , Lung/pathology , Dyspnea , Lung Volume Measurements , Perception
18.
Medicina (B Aires) ; 84(2): 359-363, 2024.
Article in English | MEDLINE | ID: mdl-38683525

ABSTRACT

The apnea test, employed for brain death assessment, aims to demonstrate the absence of respiratory drive due to hypercapnia. The tracheal oxygen insufflation apnea test mode (I-AT) involves disconnecting the patient from invasive mechanical ventilation (iMV) for approximately 8 minutes while maintaining oxygenation. This test supports the diagnosis of brain death based on a specified increase in PaCO2. Common complications include hypoxemia and hemodynamic instability, and lung collapse-induced reduction in end-expiratory lung volume (EELV). In our case series utilizing electrical impedance tomography (EIT), we observed that continuous positive airway pressure during the apnea test (CPAP-AT) effectively mitigated lung collapse. This resulted in improved pulmonary strain compared to the disconnection of iMV. These findings suggest the potential benefits of routine CPAP-AT, particularly for potential lung donors, emphasizing the relevance of our study in providing quantitative insights into EELV loss and its association with pulmonary strain and potential lung injury.


La prueba de apnea es una técnica diagnóstica ampliamente utilizada para la evaluación de la muerte cerebral, con el objetivo de demostrar la ausencia de impulso respiratorio debido a la hipercapnia. La variante de la prueba de apnea con insuflación de oxígeno traqueal (I-AT) implica desconectar al paciente de la ventilación mecánica invasiva (iVM) durante aproximadamente 8 minutos, manteniendo la oxigenación mediante un catéter de insuflación. Esta prueba respalda el diagnóstico de muerte cerebral cuando se determina un aumento de la PaCO 2 superior a 20 mmHg en comparación con el valor inicial o un nivel de PaCO 2 superior a 60 mmHg al final de la prueba. En nuestra serie de casos, la implementación de la tomografía de impedancia eléctrica (EIT) reveló que la prueba de apnea con presión positiva continua (CPAPAT) mitiga eficazmente el colapso pulmonar. Este enfoque resulta en una mejora en la tensión pulmonar en comparación con la desconexión de iMV, demostrando su relevancia en el contexto de potenciales donantes de pulmones.


Subject(s)
Electric Impedance , Lung Volume Measurements , Humans , Male , Female , Lung Volume Measurements/methods , Middle Aged , Apnea/physiopathology , Brain Death/physiopathology , Brain Death/diagnosis , Brain Death/diagnostic imaging , Adult , Tomography/methods , Continuous Positive Airway Pressure , Lung/diagnostic imaging , Lung/physiopathology , Aged
19.
BMJ Open Respir Res ; 11(1)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38663888

ABSTRACT

OBJECTIVE: This study aimed to investigate the utility of CT quantification of lung volume for predicting critical outcomes in COVID-19 patients. METHODS: This retrospective cohort study included 1200 hospitalised patients with COVID-19 from 4 hospitals. Lung fields were extracted using artificial intelligence-based segmentation, and the percentage of the predicted (%pred) total lung volume (TLC (%pred)) was calculated. The incidence of critical outcomes and posthospitalisation complications was compared between patients with low and high CT lung volumes classified based on the median percentage of predicted TLCct (n=600 for each). Prognostic factors for residual lung volume loss were investigated in 208 patients with COVID-19 via a follow-up CT after 3 months. RESULTS: The incidence of critical outcomes was higher in the low TLCct (%pred) group than in the high TLCct (%pred) group (14.2% vs 3.3%, p<0.0001). Multivariable analysis of previously reported factors (age, sex, body mass index and comorbidities) demonstrated that CT-derived lung volume was significantly associated with critical outcomes. The low TLCct (%pred) group exhibited a higher incidence of bacterial infection, heart failure, thromboembolism, liver dysfunction and renal dysfunction than the high TLCct (%pred) group. TLCct (%pred) at 3 months was similarly divided into two groups at the median (71.8%). Among patients with follow-up CT scans, lung volumes showed a recovery trend from the time of admission to 3 months but remained lower in critical cases at 3 months. CONCLUSION: Lower CT lung volume was associated with critical outcomes, posthospitalisation complications and slower improvement of clinical conditions in COVID-19 patients.


Subject(s)
COVID-19 , Lung Volume Measurements , Lung , SARS-CoV-2 , Tomography, X-Ray Computed , Humans , COVID-19/diagnostic imaging , COVID-19/epidemiology , Male , Female , Retrospective Studies , Aged , Middle Aged , Japan/epidemiology , Lung Volume Measurements/methods , Lung/diagnostic imaging , Prognosis , Cohort Studies , Aged, 80 and over
20.
J Pediatr Orthop ; 44(6): 366-372, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38595095

ABSTRACT

OBJECTIVE: Severe spinal deformity results in restrictive pulmonary disease from thoracic distortions and lung-volume limitations. Though spirometry and body plethysmography are widely accepted tests for pulmonary function tests (PFTs), they are time-consuming and require patient compliance. This study investigates whether surface topographic [surface topography (ST)] measurements of body volume difference (BVD) and torso volume difference between maximum inhale and exhale correlate to values determined on PFTs. METHODS: This study included patients with idiopathic scoliosis and thoracic/thoracolumbar curves ≥40 degrees. Patients received ST scans, clinical examinations, and EOS biplanar radiographs on the same day. PFTs were performed within 3 months of ST/radiographic analysis. Univariate linear regression analysis was used to examine relationships between BVD, PFT values, and mean curves. RESULTS: Sixteen patients (14.6 ± 2.2 y, 69% females) with idiopathic scoliosis and mean thoracic/thoracolumbar curves of 62 degrees ± 15˚ degrees (45 degrees to 93 degrees) were assessed. BVD displayed statistically high-positive positive correlations with forced vital capacity ( R = 0.863, P < 0.0001), forced expiratory volume in 1 second ( R = 0.870, P < 0.001), vital capacity ( R = 0.802, P < 0.0001), and TLC ( R = 0.831, P < 0.0001. Torso volume difference showed similarly high positive correlations to forced vital capacity, forced expiratory volume in 1 second, vital capacity, and TLC, but not residual volume. No correlations emerged between the mean thoracic/thoracolumbar curve and BVD or PFT values. CONCLUSION: This study strongly endorses further investigation into ST scanning as an alternative to traditional PFTs for assessing pulmonary volumes. The noncontact and noninvasive nature of ST scanning presents a valuable alternative method for analyzing thoracic volume, particularly beneficial for patients unable to cooperate with standard PFTs. LEVEL OF EVIDENCE: Level II-prognostic.


Subject(s)
Lung Volume Measurements , Respiratory Function Tests , Scoliosis , Humans , Scoliosis/physiopathology , Scoliosis/diagnostic imaging , Female , Male , Adolescent , Child , Lung Volume Measurements/methods , Lung/physiopathology , Lung/diagnostic imaging , Spirometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL