Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.565
Filter
1.
Zhonghua Bing Li Xue Za Zhi ; 53(7): 660-666, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-38955695

ABSTRACT

Objective: To investigate the clinical, pathological and immunophenotypic features, and differential diagnosis of angioimmunoblastic T-cell lymphoma (AITL) with B-cell proliferation or neoplasms. Methods: Eight qualified cases were collected from the Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China from January 2019 to July 2023. One case was diagnosed with AITL and diffuse large B-cell lymphoma (DLBCL) and the other seven cases were diagnosed with AITL and B-cell proliferation. Clinical characteristics and pathological morphology were summarized. Immunohistochemical analysis, fluorescence in situ hybridization and gene rearrangement detection were performed. Results: The patients' average age was 58 years. Five of them were male. Biopsies of the enlarged cervical lymph nodes showed structural destruction and exhibited various histologic patterns. Some cases revealed Burkitt-like morphology, a moderate tumor volume and slightly irregular nuclei. Some cases showed prominent nucleoli. High endothelial venules and expanded follicular dendritic cells were detected. Tumor cells derived from T-follicular helper (TFH) cells were positive for two or more TFH biomarkers. Nodular or diffuse patchy proliferation of B cells was noted around the tumor tissue, which was initially considered as B-cell lymphoma. All of the 8 cases showed monoclonal rearrangements of the T-cell receptor genes while 5 of them also showed clonal rearrangements of the Ig genes. Seven of the 8 cases were subject to the detection of C-MYC gene breakage and were all negative. EBV-positive cells were seen in 6 cases. Neoplastic B cells were positive for C-MYC (>40%), while proliferative B cells were negative for C-MYC (<40%). Conclusions: The histological morphology of AITL with B-cell proliferation or lymphoma may be different from AITL. An integrated analysis, incorporating clinical, morphologic, immunophenotypic, and molecular assessment, helps reach an accurate diagnosis. This group of cases demonstrated the clinical and pathological characteristics of AITL accompanied by B-cell proliferation and B-cell lymphoma. The findings suggest that C-MYC maybe a feasible indicator for distinguishing B-cell proliferation from B-cell lymphoma, and provide a simple and feasible immunohistochemical marker for the diagnosis and research of composite lymphoma.


Subject(s)
B-Lymphocytes , Cell Proliferation , Immunoblastic Lymphadenopathy , Lymphoma, Large B-Cell, Diffuse , Humans , Male , Middle Aged , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Immunoblastic Lymphadenopathy/pathology , Immunoblastic Lymphadenopathy/genetics , B-Lymphocytes/pathology , Diagnosis, Differential , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/genetics , Lymph Nodes/pathology , Female , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Aged , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/genetics
2.
Blood Cancer J ; 14(1): 105, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965209

ABSTRACT

Genetic heterogeneity and co-occurring driver mutations impact clinical outcomes in blood cancers, but predicting the emergent effect of co-occurring mutations that impact multiple complex and interacting signalling networks is challenging. Here, we used mathematical models to predict the impact of co-occurring mutations on cellular signalling and cell fates in diffuse large B cell lymphoma and multiple myeloma. Simulations predicted adverse impact on clinical prognosis when combinations of mutations induced both anti-apoptotic (AA) and pro-proliferative (PP) signalling. We integrated patient-specific mutational profiles into personalised lymphoma models, and identified patients characterised by simultaneous upregulation of anti-apoptotic and pro-proliferative (AAPP) signalling in all genomic and cell-of-origin classifications (8-25% of patients). In a discovery cohort and two validation cohorts, patients with upregulation of neither, one (AA or PP), or both (AAPP) signalling states had good, intermediate and poor prognosis respectively. Combining AAPP signalling with genetic or clinical prognostic predictors reliably stratified patients into striking prognostic categories. AAPP patients in poor prognosis genetic clusters had 7.8 months median overall survival, while patients lacking both features had 90% overall survival at 120 months in a validation cohort. Personalised computational models enable identification of novel risk-stratified patient subgroups, providing a valuable tool for future risk-adapted clinical trials.


Subject(s)
Mutation , Humans , Prognosis , Apoptosis , Male , Female , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/mortality , Cell Proliferation , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/mortality , Middle Aged , Signal Transduction , Aged , Computer Simulation
3.
BMC Cancer ; 24(1): 761, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918775

ABSTRACT

High-grade B-cell lymphoma (HGBCL), the subtype of non-Hodgkin lymphoma, to be relapsed or refractory in patients after initial therapy or salvage chemotherapy. Dual dysregulation of MYC and BCL2 is one of the important pathogenic mechanisms. Thus, combined targeting of MYC and BCL2 appears to be a promising strategy. Dihydroorotate dehydrogenase (DHODH) is the fourth rate-limiting enzyme for the de novo biosynthesis of pyrimidine. It has been shown to be a potential therapeutic target for multiple diseases. In this study, the DHODH inhibitor brequinar exhibited growth inhibition, cell cycle blockade, and apoptosis promotion in HGBCL cell lines with MYC and BCL2 rearrangements. The combination of brequinar and BCL2 inhibitors venetoclax had a synergistic inhibitory effect on the survival of DHL cells through different pathways. Venetoclax could upregulate MCL-1 and MYC expression, which has been reported as a resistance mechanism of BCL2 inhibitors. Brequinar downregulated MCL-1 and MYC, which could potentially overcome drug resistance to venetoclax in HGBCL cells. Furthermore, brequinar could downregulate a broad range of genes, including ribosome biosynthesis genes, which might contribute to its anti-tumor effects. In vivo studies demonstrated synergetic tumor growth inhibition in xenograft models with brequinar and venetoclax combination treatment. These results provide preliminary evidence for the rational combination of DHODH and BCL2 blockade in HGBCL with abnormal MYC and BCL2.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Dihydroorotate Dehydrogenase , Drug Synergism , Oxidoreductases Acting on CH-CH Group Donors , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-myc , Sulfonamides , Xenograft Model Antitumor Assays , Humans , Animals , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Mice , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Cell Line, Tumor , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/genetics , Apoptosis/drug effects , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/metabolism , Gene Rearrangement , Cell Proliferation/drug effects , Biphenyl Compounds , Quinaldines
4.
Oncoimmunology ; 13(1): 2362454, 2024.
Article in English | MEDLINE | ID: mdl-38846084

ABSTRACT

Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.


Subject(s)
Antigens, CD20 , Immunotherapy , Lymphoma, B-Cell , Rituximab , Tetraspanins , Humans , Antigens, CD20/immunology , Antigens, CD20/metabolism , Antigens, CD20/genetics , Rituximab/pharmacology , Rituximab/therapeutic use , Tetraspanins/genetics , Tetraspanins/metabolism , Cell Line, Tumor , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/drug therapy , Immunotherapy/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Vincristine/pharmacology , Vincristine/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Gene Expression Regulation, Neoplastic
5.
Adv Immunol ; 161: 127-164, 2024.
Article in English | MEDLINE | ID: mdl-38763700

ABSTRACT

Activation induced cytidine deaminase (AID) is a key element of the adaptive immune system, required for immunoglobulin isotype switching and affinity maturation of B-cells as they undergo the germinal center (GC) reaction in peripheral lymphoid tissue. The inherent DNA damaging activity of this enzyme can also have off-target effects in B-cells, producing lymphomagenic chromosomal translocations that are characteristic features of various classes of non-Hodgkin B-cell lymphoma (B-NHL), and generating oncogenic mutations, so-called aberrant somatic hypermutation (aSHM). Additionally, AID has been found to affect gene expression through demethylation as well as altered interactions between gene regulatory elements. These changes have been most thoroughly studied in B-NHL arising from GC B-cells. Here, we describe the most common classes of GC-derived B-NHL and explore the consequences of on- and off-target AID activity in B and plasma cell neoplasms. The relationships between AID expression, including effects of infection and other exposures/agents, mutagenic activity and lymphoma biology are also discussed.


Subject(s)
B-Lymphocytes , Cytidine Deaminase , Germinal Center , Lymphoma, B-Cell , Humans , Cytidine Deaminase/metabolism , Cytidine Deaminase/genetics , Germinal Center/immunology , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/immunology , Animals , B-Lymphocytes/immunology , Somatic Hypermutation, Immunoglobulin , Gene Expression Regulation, Neoplastic , Immunoglobulin Class Switching
6.
J Exp Clin Cancer Res ; 43(1): 148, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773631

ABSTRACT

BACKGROUND: Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. METHODS: To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. RESULTS: We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1wt as well as of XPO1E571K. Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. CONCLUSIONS: These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.


Subject(s)
Exportin 1 Protein , Hodgkin Disease , Karyopherins , Receptors, Cytoplasmic and Nuclear , Humans , Karyopherins/antagonists & inhibitors , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Animals , Mice , Hodgkin Disease/drug therapy , Hodgkin Disease/pathology , Hodgkin Disease/metabolism , Hodgkin Disease/genetics , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/genetics , HSP110 Heat-Shock Proteins/metabolism , HSP110 Heat-Shock Proteins/genetics , Cell Line, Tumor , Mediastinal Neoplasms/drug therapy , Mediastinal Neoplasms/metabolism , Mediastinal Neoplasms/pathology , Mediastinal Neoplasms/genetics , Xenograft Model Antitumor Assays , Triazoles/pharmacology , Triazoles/therapeutic use , Hydrazines/pharmacology , Hydrazines/therapeutic use , Female , STAT6 Transcription Factor/metabolism , Molecular Targeted Therapy
8.
Dis Model Mech ; 17(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38616733

ABSTRACT

Apoptosis is characterized by membrane blebbing and apoptotic body formation. Caspase cleavage of ROCK1 generates an active fragment that promotes actin-myosin-mediated contraction and membrane blebbing during apoptosis. Expression of caspase-resistant non-cleavable ROCK1 (Rock1 NC) prolonged survival of mice that rapidly develop B cell lymphomas due to Eµ-Myc transgene expression. Eµ-Myc; Rock1 NC mice had significantly fewer bone marrow cells relative to those in Eµ-Myc mice expressing wild-type ROCK1 (Rock1 WT), which was associated with altered cell cycle profiles. Circulating macrophage numbers were lower in Eµ-Myc; Rock1 NC mice, but there were higher levels of bone marrow macrophages, consistent with spontaneous cell death in Eµ-Myc; Rock1 NC mouse bone marrows being more inflammatory. Rock1 WT recipient mice transplanted with pre-neoplastic Eµ-Myc; Rock1 NC bone marrow cells survived longer than mice transplanted with Eµ-Myc; Rock1 WT cells, indicating that the survival benefit was intrinsic to the Eµ-Myc; Rock1 NC bone marrow cells. The results suggest that the apoptotic death of Eµ-Myc; Rock1 NC cells generates a proliferation-suppressive microenvironment in bone marrows that reduces cell numbers and prolongs B cell lymphoma mouse survival.


Subject(s)
Caspases , Lymphoma, B-Cell , Proto-Oncogene Proteins c-myc , rho-Associated Kinases , Animals , rho-Associated Kinases/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/genetics , Proto-Oncogene Proteins c-myc/metabolism , Caspases/metabolism , Macrophages/metabolism , Apoptosis , Mice , Survival Analysis , Mice, Transgenic , Bone Marrow Cells/metabolism , Mice, Inbred C57BL , Cell Cycle
9.
Med ; 5(6): 583-602.e5, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38579729

ABSTRACT

BACKGROUND: Biological heterogeneity of large B cell lymphomas (LBCLs) is poorly captured by current prognostic tools, hampering optimal treatment decisions. METHODS: We dissected the levels of 1,463 serum proteins in a uniformly treated trial cohort of 109 patients with high-risk primary LBCL (ClinicalTrials.gov: NCT01325194) and correlated the profiles with molecular data from tumor tissue and circulating tumor DNA (ctDNA) together with clinical data. FINDINGS: We discovered clinically and biologically relevant associations beyond established clinical estimates and ctDNA. We identified an inflamed serum protein profile, which reflected host response to lymphoma, associated with inflamed and exhausted tumor microenvironment features and high ctDNA burden, and translated to poor outcome. We composed an inflammation score based on the identified inflammatory proteins and used the score to predict survival in an independent LBCL trial cohort (ClinicalTrials.gov: NCT03293173). Furthermore, joint analyses with ctDNA uncovered multiple serum proteins that correlate with tumor burden. We found that SERPINA9, TACI, and TARC complement minimally invasive subtype profiling and that TACI and TARC can be used to evaluate treatment response in a subtype-dependent manner in the liquid biopsy. CONCLUSIONS: Altogether, we discovered distinct serum protein landscapes that dissect the heterogeneity of LBCLs and provide agile, minimally invasive tools for precision oncology. FUNDING: This research was funded by grants from the Research Council of Finland, Finnish Cancer Organizations, Sigrid Juselius Foundation, University of Helsinki, iCAN Digital Precision Cancer Medicine Flagship, Orion Research Foundation sr, and Helsinki University Hospital.


Subject(s)
Circulating Tumor DNA , Adult , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Blood Proteins/genetics , Blood Proteins/analysis , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Inflammation/blood , Inflammation/genetics , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/mortality , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/mortality , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Prognosis , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics
10.
Gene ; 917: 148480, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38636814

ABSTRACT

B-cell non-Hodgkins lymphomas (BCNHLs) are a category of B-cell cancers that show heterogeneity. These blood disorders are derived from different levels of B-cell maturity. Among NHL cases, ∼80-90 % are derived from B-cells. Recent studies have demonstrated that noncoding RNAs (ncRNAs) contribute to almost all parts of mechanisms and are essential in tumorigenesis, including B-cell non-Hodgkins lymphomas. The study of ncRNA dysregulations in B-cell lymphoma unravels important mysteries in lymphoma's molecular etiology. It seems also necessary for discovering novel trials as well as investigating the potential of ncRNAs as markers for their diagnosis and prognosis. In the current study, we summarize the role of ncRNAs involving miRNAs, long noncoding RNAs, as well as circular RNAs in the development or progression of BCNHLs.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma, B-Cell , Humans , Lymphoma, B-Cell/genetics , RNA, Untranslated/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Biomarkers, Tumor/genetics , RNA, Circular/genetics , Prognosis
11.
Malays J Pathol ; 46(1): 11-20, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38682841

ABSTRACT

Lymphomas are a diverse group of malignant proliferations that arise as discrete tissue masses. The most widely accepted taxonomy for lymphoma is the World Health Organization classification of tumours of haematopoietic and lymphoid tissues, the 5th edition of which was released in June 2022. Most (85% to 90%) lymphoid neoplasms are of B cell origin. Mature B-cell neoplasms are a heterogeneous group of malignancies with similar disease courses and treatment paradigms. This review focuses on the various mature B-cell lymphomas in Malaysia, including Hodgkin lymphoma. A literature search was performed in various bibliographic databases. A total of 64 papers were included in this review. We found 15 papers on Hodgkin lymphoma, 14 on follicular lymphoma, 12 on Burkitt lymphoma, 5 on mucosa-associated lymphoid tissue (MALT) lymphoma, 4 on plasmablastic lymphoma, 3 on mantle cell lymphoma, 1 each on primary mediastinal large B-cell lymphoma, B-lymphoblastic lymphoma, and 3 on other unspecified B-cell lymphomas. The site, age, distribution, prognostic markers, and the various subclassification of B cell lymphomas were studied from these papers. Prognostic genetic markers in B-cell lymphomas include C-MYC, BCL2 and BCL6 as they are the most prevalent mutations in this condition. Anecdotal outcomes range from rapid fatality to unexplained spontaneous remission. This review adds to the existing literature on lymphoma in Malaysia by compiling the evidence that may lead to further research on the diagnosis and treatment of lymphoma in Malaysia and worldwide.


Subject(s)
Biomedical Research , Lymphoma, B-Cell , Humans , Lymphoma, B-Cell/pathology , Lymphoma, B-Cell/classification , Lymphoma, B-Cell/genetics , Malaysia
13.
J Hematop ; 17(2): 51-61, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561469

ABSTRACT

MYC-rearranged B-cell lymphoma (BCL) in the pediatric/young adult (YA) age group differs substantially in disease composition from adult cohorts. However, data regarding the partner genes, concurrent rearrangements, and ultimate diagnoses in these patients is scarce compared to that in adult cohorts. We aimed to characterize the spectrum of MYC-rearranged (MYC-R) mature, aggressive BCL in the pediatric/YA population. A retrospective study of morphologic, immunophenotypic, and fluorescence in situ hybridization (FISH) results of patients age ≤ 30 years with suspected Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL) or high-grade B-cell lymphoma (HGBCL), and a MYC-R by FISH between 2013-2022 was performed. Two-hundred fifty-eight cases (129 (50%) pediatric (< 18 years) and 129 (50%) YA (18-30 years)) were included. Most MYC-R BCL in pediatric (89%) and YA (66%) cases were BL. While double-hit (DH) cytogenetics (MYC with BCL2 and/or BCL6-R, HGBCL-DH) was rare in the pediatric population (2/129, 2%), HGBCL-DH increased with age and was identified in 17/129 (13%) of YA cases. Most HGBCL-DH had MYC and BCL6-R, while BCL2-R were rare in both groups (3/258, 1%). MYC-R without an IG partner was more common in the YA group (14/116 (12%) vs 2/128 (2%), p = 0.001). The pediatric to YA transition is characterized by decreasing frequency in BL and increasing genetic heterogeneity of MYC-R BCL, with emergence of DH-BCL with MYC and BCL6-R. FISH to evaluate for BCL2 and BCL6 rearrangements is likely not warranted in the pediatric population but should continue to be applied in YA BCL.


Subject(s)
Gene Rearrangement , Proto-Oncogene Proteins c-myc , Humans , Adolescent , Child , Male , Young Adult , Adult , Female , Proto-Oncogene Proteins c-myc/genetics , Retrospective Studies , Child, Preschool , In Situ Hybridization, Fluorescence , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Burkitt Lymphoma/genetics , Burkitt Lymphoma/pathology
15.
J Clin Lab Anal ; 38(6): e25027, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38506403

ABSTRACT

BACKGROUND: Assessment of bone marrow involvement (BMI) in non-Hodgkin lymphoma (NHL) is crucial for determining patient prognosis and treatment strategy. We assessed the prognostic value of next-generation sequencing (NGS)-based immunoglobulin (Ig) gene clonality analysis as an ancillary test for BMI evaluation in NHL. METHODS: A retrospective cohort of 124 patients newly diagnosed with B-cell NHL between 2019 and 2022 was included. NGS-based Ig clonality analysis was conducted using LymphoTrak IGH FR1 Assay and IGK Assay (Invivoscribe Technologies, San Diego, CA, USA) on BM aspirate samples, and the results were compared with those of histopathological BMI (hBMI). RESULTS: Among the 124 patients, hBMI was detected in 16.9% (n = 21). The overall agreement of BMI between Ig clonality analyses and histopathological analysis for IGH, IGK, and either IGH or IGK was 86.3%, 92.7%, and 90.3%. The highest positive percent agreement was observed with clonal rearrangements of either IGH or IGK gene (90.5%), while the highest negative percent agreement was observed with clonal rearrangement of IGK gene (96.1%). For the prediction of hBMI, positive prediction value ranged between 59.1% and 80.0% and the negative prediction value ranged between 91.3% and 97.9%. CONCLUSION: NGS-based clonality analysis is an analytic platform with a substantial overall agreement with histopathological analysis. Assessment of both IGH and IGK genes for the clonal rearrangement analysis could be considered for the optimal diagnostic performance of BMI detection in B-cell NHL.


Subject(s)
Lymphoma, B-Cell , Lymphoma, Non-Hodgkin , Humans , Genes, Immunoglobulin , Bone Marrow/pathology , Retrospective Studies , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/diagnosis , Lymphoma, B-Cell/pathology , Lymphoma, Non-Hodgkin/genetics , High-Throughput Nucleotide Sequencing
16.
Cancer Cell ; 42(4): 605-622.e11, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38458188

ABSTRACT

SMARCA4 encodes one of two mutually exclusive ATPase subunits in the BRG/BRM associated factor (BAF) complex that is recruited by transcription factors (TFs) to drive chromatin accessibility and transcriptional activation. SMARCA4 is among the most recurrently mutated genes in human cancer, including ∼30% of germinal center (GC)-derived Burkitt lymphomas. In mice, GC-specific Smarca4 haploinsufficiency cooperated with MYC over-expression to drive lymphomagenesis. Furthermore, monoallelic Smarca4 deletion drove GC hyperplasia with centroblast polarization via significantly increased rates of centrocyte recycling to the dark zone. Mechanistically, Smarca4 loss reduced the activity of TFs that are activated in centrocytes to drive GC-exit, including SPI1 (PU.1), IRF family, and NF-κB. Loss of activity for these factors phenocopied aberrant BCL6 activity within murine centrocytes and human Burkitt lymphoma cells. SMARCA4 therefore facilitates chromatin accessibility for TFs that shape centrocyte trajectories, and loss of fine-control of these programs biases toward centroblast cell-fate, GC hyperplasia and lymphoma.


Subject(s)
Haploinsufficiency , Lymphoma, B-Cell , Animals , Humans , Mice , Chromatin , DNA Helicases/genetics , Hyperplasia , Lymphoma, B-Cell/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
17.
Sci Rep ; 14(1): 6764, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514636

ABSTRACT

EBV-infected lymphoma has a poor prognosis and various treatment strategies are being explored. Reports suggesting that B cell lymphoma can be induced by epigenetic regulation have piqued interest in studying mechanisms targeting epigenetic regulation. Here, we set out to identify an epigenetic regulator drug that acts synergistically with doxorubicin in EBV-positive lymphoma. We expressed the major EBV protein, LMP1, in B-cell lymphoma cell lines and used them to screen 100 epigenetic modifiers in combination with doxorubicin. The screening results identified TCP, which is an inhibitor of LSD1. Further analyses revealed that LMP1 increased the activity of LSD1 to enhance stemness ability under doxorubicin treatment, as evidenced by colony-forming and ALDEFLUOR activity assays. Quantseq 3' mRNA sequencing analysis of potential targets regulated by LSD1 in modulating stemness revealed that the LMP1-induced upregulation of CHAC2 was decreased when LSD1 was inhibited by TCP or downregulated by siRNA. We further observed that SOX2 expression was altered in response to CHAC2 expression, suggesting that stemness is regulated. Collectively, these findings suggest that LSD1 inhibitors could serve as promising therapeutic candidates for EBV-positive lymphoma, potentially reducing stemness activity when combined with conventional drugs to offer an effective treatment approach.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Humans , Herpesvirus 4, Human/genetics , Lysine/metabolism , Epigenesis, Genetic , Lymphoma/genetics , Lymphoma, B-Cell/genetics , Histone Demethylases/metabolism , Doxorubicin/pharmacology , Cell Line, Tumor
18.
Cell Rep Med ; 5(3): 101443, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38428430

ABSTRACT

Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention.


Subject(s)
Lymphoma, B-Cell , Lymphoma, Follicular , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Tumor Microenvironment/genetics , Lymphoma, B-Cell/genetics , B-Lymphocytes , Chromatin
19.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473705

ABSTRACT

Classic Hodgkin lymphoma (cHL) constitutes a B-cell neoplasm derived from germinal center lymphocytes. Despite high cure rates (80-90%) obtained with the current multiagent protocols, a significant proportion of cHL patients experience recurrences, characterized by a lower sensitivity to second-line treatments. The genomic background of chemorefractory cHL is still poorly understood, limiting personalized treatment strategies based on molecular features. In this study, using a targeted next-generation sequencing (NGS) panel specifically designed for cHL research, we compared chemosensitive and chemorefractory diagnostic tissue samples of cHL patients. Furthermore, we longitudinally examined paired diagnosis-relapsesamples of chemorefractory cHL in order to define patterns of dynamic evolution and clonal selection. Pathogenic variants in NOTCH1 and NOTCH2 genes frequently arise in cHL. Mutations in genes associated with epigenetic regulation (CREBBP and EP300) are particularly frequent in relapsed/refractory cHL. The appearance of novel clones characterized by mutations previously not identified at diagnosis is a common feature in cHL cases showing chemoresistance to frontline treatments. Our results expand current molecular and pathogenic knowledge of cHL and support the performance of molecular studies in cHL prior to the initiation of first-line therapies.


Subject(s)
Hodgkin Disease , Lymphoma, B-Cell , Humans , Hodgkin Disease/pathology , Epigenesis, Genetic , Lymphoma, B-Cell/genetics , Mutation , Germinal Center/metabolism
20.
Blood ; 143(8): 685-696, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-37976456

ABSTRACT

ABSTRACT: CD19 chimeric antigen receptor (CAR) T cells and CD20 targeting T-cell-engaging bispecific antibodies (bispecs) have been approved in B-cell non-Hodgkin lymphoma lately, heralding a new clinical setting in which patients are treated with both approaches, sequentially. The aim of our study was to investigate the selective pressure of CD19- and CD20-directed therapy on the clonal architecture in lymphoma. Using a broad analytical pipeline on 28 longitudinally collected specimen from 7 patients, we identified truncating mutations in the gene encoding CD20 conferring antigen loss in 80% of patients relapsing from CD20 bispecs. Pronounced T-cell exhaustion was identified in cases with progressive disease and retained CD20 expression. We also confirmed CD19 loss after CAR T-cell therapy and reported the case of sequential CD19 and CD20 loss. We observed branching evolution with re-emergence of CD20+ subclones at later time points and spatial heterogeneity for CD20 expression in response to targeted therapy. Our results highlight immunotherapy as not only an evolutionary bottleneck selecting for antigen loss variants but also complex evolutionary pathways underlying disease progression from these novel therapies.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Humans , Neoplasm Recurrence, Local/metabolism , T-Lymphocytes , Immunotherapy, Adoptive/methods , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/therapy , Lymphoma/metabolism , Antigens, CD19 , Receptors, Antigen, T-Cell
SELECTION OF CITATIONS
SEARCH DETAIL
...