Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.336
Filter
1.
Cells ; 13(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39329765

ABSTRACT

Spinal cord injury (SCI) triggers microglial/monocytes activation with distinct pro-inflammatory or inflammation-resolving phenotypes, which potentiate tissue damage or facilitate functional repair, respectively. The major integrin Mac-1 (CD11b/CD18), a heterodimer consisting of CD11b and CD18 chains, is expressed in multiple immune cells of the myeloid lineage. Here, we examined the effects of CD11b gene ablation in neuroinflammation and functional outcomes after SCI. qPCR analysis of C57BL/6 female mice showed upregulation of CD11b mRNA starting from 1 d after injury, which persisted up to 28 d. CD11b knockout (KO) mice and their wildtype littermates were subjected to moderate SCI. At 1 d post-injury, qPCR showed increased expression of genes involved with inflammation-resolving processes in CD11b KO mice. Flow cytometry analysis of CD45intLy6C-CX3CR1+ microglia, CD45hiLy6C+Ly6G- monocytes, and CD45hiLy6C+Ly6G+ neutrophils revealed significantly reduced cell counts as well as reactive oxygen species (ROS) production in CD11b KO mice at d3 post-injury. Further examination with NanoString and RNA-seq showed upregulation of pro-inflammatory genes, but downregulation of the ROS pathway. Importantly, CD11b KO mice exhibited significantly improved locomotor function, reduced cutaneous mechanical/thermal hypersensitivity, and limited tissue damage at 8 weeks post-injury. Collectively, our data suggest an important role for CD11b in regulating tissue inflammation and functional outcome following SCI.


Subject(s)
CD11b Antigen , Recovery of Function , Spinal Cord Injuries , Animals , Female , Mice , CD11b Antigen/metabolism , Disease Models, Animal , Inflammation/pathology , Macrophage-1 Antigen/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Spinal Cord Injuries/genetics
2.
Mol Biol Cell ; 35(10): br18, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39167496

ABSTRACT

All immune cells must transit from the blood to distal sites such as the lymph nodes, bone marrow, or sites of infection. Blood borne monocytes traffic to the site of inflammation by adhering to the endothelial surface and migrating along endothelial intracellular adhesion molecule 1 (ICAM-1) by their ligand's macrophage 1 antigen (Mac-1) and lymphocyte functional antigen 1 (LFA-1) to transmigrate through the endothelium. Poor patient prognoses in chronic inflammation and tumors have been attributed to the hyper recruitment of certain types of macrophages. Therefore, targeting the binding of ICAM-1 to its respective ligands provides a novel approach to targeting the recruitment of macrophages. To that end, we determined whether the loss of Mac-1 expression could induce this upstream migration behavior by using blocking antibodies against Mac-1 to examine the effects of hydrodynamic flow on the migration of the human macrophage cell line U-937 on ICAM-1 surfaces. Blocking Mac-1 on U-937 cells led to upstream migration against the direction of shear flow on ICAM-1 surfaces. In sum, the ability of macrophages to migrate upstream when Mac-1 is blocked represents a new avenue to precisely control the differentiation, migration, and trafficking of macrophages.


Subject(s)
Cell Movement , Intercellular Adhesion Molecule-1 , Macrophage-1 Antigen , Macrophages , Humans , Intercellular Adhesion Molecule-1/metabolism , Macrophages/metabolism , Macrophage-1 Antigen/metabolism , U937 Cells , Cell Adhesion/physiology , Monocytes/metabolism
3.
Glia ; 72(10): 1874-1892, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38946065

ABSTRACT

Microglia continuously remodel synapses, which are embedded in the extracellular matrix (ECM). However, the mechanisms, which govern this process remain elusive. To investigate the influence of the neural ECM in synaptic remodeling by microglia, we disrupted ECM integrity by injection of chondroitinase ABC (ChABC) into the retrosplenial cortex of healthy adult mice. Using in vivo two-photon microscopy we found that ChABC treatment increased microglial branching complexity and ECM phagocytic capacity and decreased spine elimination rate under basal conditions. Moreover, ECM attenuation largely prevented synaptic remodeling following synaptic stress induced by photodamage of single synaptic elements. These changes were associated with less stable and smaller microglial contacts at the synaptic damage sites, diminished deposition of calreticulin and complement proteins C1q and C3 at synapses and impaired expression of microglial CR3 receptor. Thus, our findings provide novel insights into the function of the neural ECM in deposition of complement proteins and synaptic remodeling by microglia.


Subject(s)
Chondroitin ABC Lyase , Complement C1q , Extracellular Matrix , Mice, Inbred C57BL , Microglia , Synapses , Animals , Microglia/metabolism , Microglia/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Synapses/metabolism , Synapses/drug effects , Synapses/physiology , Complement C1q/metabolism , Chondroitin ABC Lyase/pharmacology , Mice , Neuronal Plasticity/physiology , Neuronal Plasticity/drug effects , Complement C3/metabolism , Calreticulin/metabolism , Male , Phagocytosis/physiology , Phagocytosis/drug effects , Mice, Transgenic , Macrophage-1 Antigen/metabolism
4.
Open Biol ; 14(5): 230315, 2024 May.
Article in English | MEDLINE | ID: mdl-38806144

ABSTRACT

Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata ß-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata ß-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata ß-glucan to CR3. Our data suggest that C. glabrata ß-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.


Subject(s)
Candida glabrata , Dendritic Cells , Macrophage-1 Antigen , T-Lymphocytes, Regulatory , beta-Glucans , Candida glabrata/metabolism , Candida glabrata/pathogenicity , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , beta-Glucans/metabolism , beta-Glucans/pharmacology , Animals , Macrophage-1 Antigen/metabolism , Mice , Lectins, C-Type/metabolism , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism , Mice, Inbred C57BL
5.
FEBS J ; 291(15): 3499-3520, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38715400

ABSTRACT

Tauopathies exhibit a characteristic accumulation of misfolded tau aggregates in the brain. Tau pathology shows disease-specific spatiotemporal propagation through intercellular transmission, which is closely correlated with the progression of clinical manifestations. Therefore, identifying molecular mechanisms that prevent tau propagation is critical for developing therapeutic strategies for tauopathies. The various innate immune receptors, such as complement receptor 3 (CR3) and complement receptor 4 (CR4), have been reported to play a critical role in the clearance of various extracellular toxic molecules by microglia. However, their role in tau clearance has not been studied yet. In the present study, we investigated the role of CR3 and CR4 in regulating extracellular tau clearance. We found that CR4 selectively binds to tau fibrils but not to tau monomers, whereas CR3 does not bind to either of them. Inhibiting CR4, but not CR3, significantly reduces the uptake of tau fibrils by BV2 cells and primary microglia. By contrast, inhibiting CR4 has no effect on the uptake of tau monomers by BV2 cells. Furthermore, inhibiting CR4 suppresses the clearance of extracellular tau fibrils, leading to more seed-competent tau fibrils remaining in the extracellular space relative to control samples. We also provide evidence that the expression of CR4 is upregulated in the brains of human Alzheimer's disease patients and the PS19 mouse model of tauopathy. Taken together, our data strongly support that CR4 is a previously undescribed receptor for the clearance of tau fibrils in microglia and may represent a novel therapeutic target for tauopathy.


Subject(s)
Microglia , tau Proteins , Microglia/metabolism , Microglia/pathology , tau Proteins/metabolism , tau Proteins/genetics , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Tauopathies/metabolism , Tauopathies/pathology , Tauopathies/genetics , Macrophage-1 Antigen/metabolism , Macrophage-1 Antigen/genetics , Brain/metabolism , Brain/pathology , Male
6.
Structure ; 32(8): 1184-1196.e4, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38729161

ABSTRACT

The integrin Mac-1 (αMß2, CD11b/CD18, CR3) is an adhesion receptor expressed on macrophages and neutrophils. Mac-1 is also a promiscuous integrin that binds a diverse set of ligands through its αMI-domain. However, the binding mechanism of most ligands remains unclear. We have characterized the interaction of αMI-domain with the cytokine pleiotrophin (PTN), a protein known to bind αMI-domain and induce Mac-1-mediated cell adhesion and migration. Our data show that PTN's N-terminal domain binds a unique site near the N- and C-termini of the αMI-domain using a metal-independent mechanism. However, a stronger interaction is achieved when an acidic amino acid in a zwitterionic motif in PTN's C-terminal domain chelates the divalent cation in the metal ion-dependent adhesion site of active αMI-domain. These results indicate that αMI-domain can bind ligands using multiple mechanisms and that the active αMI-domain has a preference for motifs containing both positively and negatively charged amino acids.


Subject(s)
Carrier Proteins , Cytokines , Macrophage-1 Antigen , Protein Binding , Cytokines/metabolism , Cytokines/chemistry , Humans , Carrier Proteins/metabolism , Carrier Proteins/chemistry , Binding Sites , Macrophage-1 Antigen/metabolism , Macrophage-1 Antigen/chemistry , Models, Molecular , Protein Domains , Crystallography, X-Ray
7.
Front Immunol ; 15: 1344761, 2024.
Article in English | MEDLINE | ID: mdl-38487529

ABSTRACT

Background: The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method: We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results: Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion: Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.


Subject(s)
Neutrophils , src-Family Kinases , Humans , Neutrophils/metabolism , src-Family Kinases/metabolism , Fibronectins/metabolism , CD18 Antigens/metabolism , Cell Adhesion , Actins/metabolism , Phosphoproteins/metabolism , Macrophage-1 Antigen/metabolism
8.
FEBS Open Bio ; 14(4): 574-583, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360057

ABSTRACT

Acute lung injury (ALI), which occurs in association with sepsis, trauma, and coronavirus disease 2019 (COVID-19), is a serious clinical condition with high mortality. Excessive platelet-leukocyte aggregate (PLA) formation promotes neutrophil extracellular trap (NET) release and thrombosis, which are involved in various diseases, including ALI. Macrophage-1 antigen (Mac-1, CD11b/CD18), which is expressed on the surface of leukocytes, is known to promote NET formation. This study aimed to elucidate the role of Mac-1 in extracellular histone-induced ALI. Exogenous histones were administered to Mac-1-deficient mice and wild-type (WT) mice with or without neutrophil or platelet depletion, and several parameters were investigated 1 h after histone injection. Depletion of neutrophils or platelets improved survival time and macroscopic and microscopic properties of lung tissues, and decreased platelet-leukocyte formation and plasma myeloperoxidase levels. These improvements were also observed in Mac-1-/- mice. NET formation in Mac-1-/- bone marrow neutrophils (BMNs) was significantly lower than that in WT BMNs. In conclusion, our findings suggest that Mac-1 is associated with exacerbation of histone-induced ALI and the promotion of NET formation in the presence of activated platelets.


Subject(s)
Acute Lung Injury , Extracellular Traps , Animals , Mice , Extracellular Traps/metabolism , Macrophage-1 Antigen/metabolism , Histones , Neutrophils/metabolism
9.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Article in English | MEDLINE | ID: mdl-38205640

ABSTRACT

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Subject(s)
Acute Lung Injury , Macrophage-1 Antigen , Animals , Mice , Acute Lung Injury/genetics , Acute Lung Injury/metabolism , Cell Adhesion , Disulfides , Intercellular Adhesion Molecule-1/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/metabolism , Neutrophil Infiltration , Neutrophils/metabolism , Sulfhydryl Compounds/metabolism
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167048, 2024 03.
Article in English | MEDLINE | ID: mdl-38296117

ABSTRACT

Persistent pressure overload commonly leads to pathological cardiac hypertrophy and remodeling, ultimately leading to heart failure (HF). Cardiac remodeling is associated with the involvement of immune cells and the inflammatory response in pathogenesis. The macrophage-1 antigen (Mac-1) is specifically expressed on leukocytes and regulates their migration and polarization. Nonetheless, the involvement of Mac-1 in cardiac remodeling and HF caused by pressure overload has not been determined. The Mac-1-knockout (KO) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) for 6 weeks. Echocardiography and pressure-volume loop assessments were used to evaluate cardiac function, and cardiac remodeling and macrophage infiltration and polarization were estimated by histopathology and molecular techniques. The findings of our study demonstrated that Mac-1 expression was markedly increased in hearts subjected to TAC treatment. Moreover, compared with WT mice, Mac-1-KO mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress and apoptosis. The potential positive impacts may be linked to the inhibition of macrophage infiltration and M1 polarization via reductions in NF-kB and STAT1 expression and upregulation of STAT6. In conclusion, this research reveals a new function of Mac-1 deficiency in reducing pathological cardiac remodeling and HF caused by pressure overload. Additionally, inhibiting Mac-1 could be a potential treatment option for patients with HF in a clinical setting.


Subject(s)
Heart Failure , Macrophage-1 Antigen , Humans , Mice , Animals , Macrophage-1 Antigen/metabolism , Ventricular Remodeling/genetics , Signal Transduction , Heart Failure/metabolism , Cardiomegaly/metabolism , Mice, Knockout , Macrophages/metabolism
11.
Int J Radiat Oncol Biol Phys ; 119(3): 912-923, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38142839

ABSTRACT

PURPOSE: Cranial irradiation induces healthy tissue damage that can lead to neurocognitive complications, negatively affecting patient quality of life. One damage indicator associated with cognitive impairment is loss of neuronal spine density. We previously demonstrated that irradiation-mediated spine loss is microglial complement receptor 3 (CR3) and sex dependent. We hypothesized that these changes are associated with late-delayed cognitive deficits and amenable to pharmacologic intervention. METHODS AND MATERIALS: Our model of cranial irradiation (acute, 10 Gy gamma) used male and female CR3-wild type and CR3-deficient Thy-1 YFP mice of C57BL/6 background. Forty-five days after irradiation and behavioral testing, we quantified spine density and markers of microglial reactivity in the hippocampal dentate gyrus. In a separate experiment, male Thy-1 YFP C57BL/6 mice were treated with leukadherin-1, a modulator of CR3 function. RESULTS: We found that male mice demonstrate irradiation-mediated spine loss and cognitive deficits but that female and CR3 knockout mice do not. These changes were associated with greater reactivity of microglia in male mice. Pharmacologic manipulation of CR3 with LA1 prevented spine loss and cognitive deficits in irradiated male mice. CONCLUSIONS: This work improves our understanding of irradiation-mediated mechanisms and sex dependent responses and may help identify novel therapeutics to reduce irradiation-induced cognitive decline and improve patient quality of life.


Subject(s)
Cognitive Dysfunction , Cranial Irradiation , Dendritic Spines , Mice, Inbred C57BL , Microglia , Animals , Male , Female , Mice , Dendritic Spines/drug effects , Dendritic Spines/radiation effects , Cranial Irradiation/adverse effects , Microglia/drug effects , Microglia/radiation effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/prevention & control , Macrophage-1 Antigen/metabolism , Mice, Knockout , Dentate Gyrus/drug effects , Dentate Gyrus/radiation effects , Sex Factors , Organic Chemicals
12.
Biomolecules ; 13(10)2023 10 06.
Article in English | MEDLINE | ID: mdl-37892170

ABSTRACT

The ß2 integrin CD11b/CD18, also known as complement receptor 3 (CR3), and the moonlighting protein aminopeptidase N (CD13), are two myeloid immune receptors with overlapping activities: adhesion, migration, phagocytosis of opsonized particles, and respiratory burst induction. Given their common functions, shared physical location, and the fact that some receptors can activate a selection of integrins, we hypothesized that CD13 could induce CR3 activation through an inside-out signaling mechanism and possibly have an influence on its membrane expression. We revealed that crosslinking CD13 on the surface of human macrophages not only activates CR3 but also influences its membrane expression. Both phenomena are affected by inhibitors of Src, PLCγ, Syk, and actin polymerization. Additionally, after only 10 min at 37 °C, cells with crosslinked CD13 start secreting pro-inflammatory cytokines like interferons type 1 and 2, IL-12p70, and IL-17a. We integrated our data with a bioinformatic analysis to confirm the connection between these receptors and to suggest the signaling cascade linking them. Our findings expand the list of features of CD13 by adding the activation of a different receptor via inside-out signaling. This opens the possibility of studying the joint contribution of CD13 and CR3 in contexts where either receptor has a recognized role, such as the progression of some leukemias.


Subject(s)
CD13 Antigens , CD18 Antigens , Integrins , Humans , CD18 Antigens/metabolism , Macrophage-1 Antigen/metabolism , Phagocytosis/physiology
13.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220247, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37778386

ABSTRACT

Neutrophil adhesion to endothelia, entry into tissues and chemotaxis constitute essential steps in the immune response to infections that drive inflammation. Neutrophils bind to other cells and migrate via adhesion receptors, notably the αMß2 integrin dimer (also called Mac-1, CR3 or CD11b/CD18). Here, the response of neutrophils to integrin engagement was examined by monitoring the activity of peptidylarginine deiminase 4 (PAD4). Histone H3 deimination was strongly stimulated by manganese, an integrin-activating divalent cation, even in the absence of additional inflammatory stimuli. Manganese-induced cell attachment resulted in neutrophil swarm formation that paralleled histone deimination, whereas antibodies that impair integrin binding prevented both cell adhesion and histone deimination. Manganese treatment led to putative deimination of profilin, a protein that functions as an actin-organizing hub, as detected by two-dimensional gel electrophoresis and citrulline immunoblotting. Cl-amidine, a covalent inhibitor of PAD4, and GSK484, a specific PAD4 inhibitor, blocked profilin deimination. Neutrophil migration toward leukotriene B4 and toward synovial fluid from a rheumatoid arthritis patient were inhibited by chloramidine, thus supporting the contribution of deimination to chemotaxis. The data, based on a simplified system for integrin activation, imply a mechanism whereby integrin attachment coordinates neutrophil responses to inflammation and orchestrates deimination of nuclear and cytoskeletal proteins. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Subject(s)
Histones , Neutrophils , Humans , Histones/metabolism , Citrullination , Profilins/metabolism , Integrins/metabolism , Manganese/metabolism , Macrophage-1 Antigen/genetics , Macrophage-1 Antigen/metabolism , Inflammation/metabolism
14.
Front Cell Infect Microbiol ; 13: 1217103, 2023.
Article in English | MEDLINE | ID: mdl-37868353

ABSTRACT

The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Peritonitis , Animals , Mice , Anti-Bacterial Agents/pharmacology , Platelet Factor 4/chemistry , Platelet Factor 4/metabolism , Staphylococcus aureus/metabolism , Disease Models, Animal , Phagocytosis , Macrophage-1 Antigen/metabolism , Immunologic Factors , Peritonitis/drug therapy
15.
Autoimmun Rev ; 22(10): 103414, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37619906

ABSTRACT

Type 1 diabetes (T1D) develops due to autoimmune targeting of the pancreatic islet ß-cells. Clinical symptoms arise from reduced insulin in circulation. The molecular events and interactions between discrete immune cell populations, infiltration of such leukocytes into pancreatic and islet tissue, and selective targeting of the islet ß-cells during autoimmunity and graft rejection are not entirely understood. One protein central to antigen presentation, priming of immune cells, trafficking of leukocytes, and vital for leukocyte effector function is the intercellular adhesion molecule-1 (ICAM-1). The gene encoding ICAM-1 is transcriptionally regulated and rapidly responsive (i.e., within hours) to pro-inflammatory cytokines. ICAM-1 is a transmembrane protein that can be glycosylated; its presence on the cell surface provides co-stimulatory functions for immune cell activation and stabilization of cell-cell contacts. ICAM-1 interacts with the ß2-integrins, CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1), which are present on discrete immune cell populations. A whole-body ICAM-1 deletion protects NOD mice from diabetes onset, strongly implicating this protein in autoimmune responses. Since several different cell types express ICAM-1, its biology is fundamentally essential for various physiological and pathological outcomes. Herein, we review the role of ICAM-1 during both autoimmunity and islet graft rejection to understand the mechanism(s) leading to islet ß-cell death and dysfunction that results in insufficient circulating quantities of insulin to control glucose homeostasis.


Subject(s)
Autoimmunity , Graft Rejection , Intercellular Adhesion Molecule-1 , Islets of Langerhans , Animals , Humans , Mice , Insulins , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Islets of Langerhans/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophage-1 Antigen/metabolism , Mice, Inbred NOD
16.
J Chem Inf Model ; 63(12): 3878-3891, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37310029

ABSTRACT

Integrins are a family of α/ß heterodimeric cell surface adhesion receptors which are capable of transmitting signals bidirectionally across membranes. They are known for their therapeutic potential in a wide range of diseases. However, the development of integrin-targeting medications has been impacted by unexpected downstream effects including unwanted agonist-like effects. Allosteric modulation of integrins is a promising approach to potentially overcome these limitations. Applying mixed-solvent molecular dynamics (MD) simulations to integrins, the current study uncovers hitherto unknown allosteric sites within the integrin α I domains of LFA-1 (αLß2; CD11a/CD18), VLA-1 (α1ß1; CD49a/CD29), and Mac-1 (αMß2, CD11b/CD18). We show that these pockets are putatively accessible to small-molecule modulators. The findings reported here may provide opportunities for the design of novel allosteric integrin inhibitors lacking the unwanted agonism observed with earlier as well as current integrin-targeting drugs.


Subject(s)
CD18 Antigens , Molecular Dynamics Simulation , CD18 Antigens/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophage-1 Antigen/metabolism , Receptors, Cell Surface
17.
J Immunol ; 211(1): 103-117, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37195185

ABSTRACT

Recruited neutrophils are among the first phagocytic cells to interact with the phagosomal pathogen Leishmania following inoculation into the mammalian dermis. Analysis of Leishmania-infected neutrophils has revealed alterations in neutrophil viability, suggesting that the parasite can both induce or inhibit apoptosis. In this study, we demonstrate that entry of Leishmania major into murine neutrophils is dependent on the neutrophil surface receptor CD11b (CR3/Mac-1) and is enhanced by parasite opsonization with C3. Infected neutrophils underwent robust NADPH oxidase isoform 2 (NOX2)-dependent respiratory burst based on detection of reactive oxygen species within the phagolysosome but largely failed to eliminate the metacyclic promastigote life cycle stage of the parasite. Infected neutrophils displayed an "apoptotic" phosphatidylserine (PS)-positive phenotype, which was induced by both live and fixed parasites but not latex beads, suggesting that PS expression was parasite specific but does not require active infection. In addition, neutrophils from parasite/neutrophil coculture had increased viability, decreased caspase 3, 8, and 9 gene expression, and reduced protein levels of both the pro and cleaved forms of the classical apoptosis-inducing executioner caspase, Caspase 3. Our data suggest that CD11b-mediated Leishmania internalization initiates respiratory burst and PS externalization, followed by a reduction in both the production and cleavage of caspase 3, resulting in a phenotypic state of "stalled apoptosis."


Subject(s)
Leishmania major , Parasites , Animals , Mice , Apoptosis , Caspase 3/metabolism , Leishmania major/metabolism , Macrophage-1 Antigen/metabolism , Mammals/metabolism , Neutrophils/metabolism , Parasites/metabolism , Respiratory Burst
18.
Stem Cell Reports ; 18(3): 736-748, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36868231

ABSTRACT

Mouse hematopoietic stem cells (HSCs) have been extensively defined both molecularly and functionally at steady state, while regenerative stress induces immunophenotypical changes that limit high purity isolation and analysis. It is therefore important to identify markers that specifically label activated HSCs to gain further knowledge about their molecular and functional properties. Here, we assessed the expression of macrophage-1 antigen (MAC-1) on HSCs during regeneration following transplantation and observed a transient increase in MAC-1 expression during the early reconstitution phase. Serial transplantation experiments demonstrated that reconstitution potential was highly enriched in the MAC-1+ portion of the HSC pool. Moreover, in contrast to previous reports, we found that MAC-1 expression inversely correlates with cell cycling, and global transcriptome analysis showed that regenerating MAC-1+ HSCs share molecular features with stem cells with low mitotic history. Taken together, our results suggest that MAC-1 expression marks predominantly quiescent and functionally superior HSCs during early regeneration.


Subject(s)
Hematopoiesis , Macrophage-1 Antigen , Mice , Animals , Macrophage-1 Antigen/metabolism , Hematopoietic Stem Cells/metabolism , Cell Division , Cell Cycle
19.
J Leukoc Biol ; 114(1): 1-20, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36882066

ABSTRACT

CR3 (CD11b/CD18; αmß2 integrin) is a conserved phagocytic receptor. The active conformation of CR3 binds the iC3b fragment of complement C3 as well as many host and microbial ligands, leading to actin-dependent phagocytosis. There are conflicting reports about how CR3 engagement affects the fate of phagocytosed substrates. Using imaging flow cytometry, we confirmed that binding and internalization of iC3b-opsonized polystyrene beads by primary human neutrophils was CR3-dependent. iC3b-opsonized beads did not stimulate neutrophil reactive oxygen species, and most beads were found in primary granule-negative phagosomes. Similarly, Neisseria gonorrhoeae that does not express phase-variable Opa proteins suppresses neutrophil reactive oxygen species and delays phagolysosome formation. Here, binding and internalization of Opa-deleted (Δopa) N. gonorrhoeae by adherent human neutrophils was inhibited using blocking antibodies against CR3 and by adding neutrophil inhibitory factor, which targets the CD11b I-domain. No detectable C3 was deposited on N. gonorrhoeae in the presence of neutrophils alone. Conversely, overexpressing CD11b in HL-60 promyelocytes enhanced Δopa N. gonorrhoeae phagocytosis, which required the CD11b I-domain. Phagocytosis of N. gonorrhoeae was also inhibited in mouse neutrophils that were CD11b-deficient or treated with anti-CD11b. Phorbol ester treatment upregulated surface CR3 on neutrophils in suspension, enabling CR3-dependent phagocytosis of Δopa N. gonorrhoeae. Neutrophils exposed to Δopa N. gonorrhoeae had limited phosphorylation of Erk1/2, p38, and JNK. Neutrophil phagocytosis of unopsonized Mycobacterium smegmatis, which also resides in immature phagosomes, was CR3-dependent and did not elicit reactive oxygen species. We suggest that CR3-mediated phagocytosis is a silent mode of entry into neutrophils, which is appropriated by diverse pathogens to subvert phagocytic killing.


Subject(s)
Neutrophils , Phagocytosis , Mice , Animals , Humans , Reactive Oxygen Species/metabolism , Macrophage-1 Antigen/metabolism , Complement C3b/metabolism , Receptors, Complement/metabolism
20.
J Biol Chem ; 299(4): 103024, 2023 04.
Article in English | MEDLINE | ID: mdl-36796515

ABSTRACT

CD47 is a ubiquitously expressed cell surface integrin-associated protein. Recently, we have demonstrated that integrin Mac-1 (αMß2, CD11b/CD18, CR3), the major adhesion receptor on the surface of myeloid cells, can be coprecipitated with CD47. However, the molecular basis for the CD47-Mac-1 interaction and its functional consequences remain unclear. Here, we demonstrated that CD47 regulates macrophage functions directly interacting with Mac-1. In particular, adhesion, spreading, migration, phagocytosis, and fusion of CD47-deficient macrophages were significantly decreased. We validated the functional link between CD47 and Mac-1 by coimmunoprecipitation analysis using various Mac-1-expressing cells. In HEK293 cells expressing individual αM and ß2 integrin subunits, CD47 was found to bind both subunits. Interestingly, a higher amount of CD47 was recovered with the free ß2 subunit than in the complex with the whole integrin. Furthermore, activating Mac-1-expressing HEK293 cells with phorbol 12-myristate 13-acetate (PMA), Mn2+, and activating antibody MEM48 increased the amount of CD47 in complex with Mac-1, suggesting CD47 has a greater affinity for the extended integrin conformation. Notably, on the surface of cells lacking CD47, fewer Mac-1 molecules could convert into an extended conformation in response to activation. Additionally, we identified the binding site in CD47 for Mac-1 in its constituent IgV domain. The complementary binding sites for CD47 in Mac-1 were localized in integrin epidermal growth factor-like domains 3 and 4 of the ß2 and calf-1 and calf-2 domains of the αM subunits. These results indicate that Mac-1 forms a lateral complex with CD47, which regulates essential macrophage functions by stabilizing the extended integrin conformation.


Subject(s)
CD47 Antigen , Macrophage-1 Antigen , Humans , CD18 Antigens/metabolism , CD47 Antigen/genetics , Cell Adhesion/physiology , HEK293 Cells , Macrophage-1 Antigen/metabolism , Macrophages/metabolism , CD11b Antigen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL