Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.681
Filter
1.
Hum Brain Mapp ; 45(10): e26775, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38970249

ABSTRACT

Visual entrainment is a powerful and widely used research tool to study visual information processing in the brain. While many entrainment studies have focused on frequencies around 14-16 Hz, there is renewed interest in understanding visual entrainment at higher frequencies (e.g., gamma-band entrainment). Notably, recent groundbreaking studies have demonstrated that gamma-band visual entrainment at 40 Hz may have therapeutic effects in the context of Alzheimer's disease (AD) by stimulating specific neural ensembles, which utilize GABAergic signaling. Despite such promising findings, few studies have investigated the optimal parameters for gamma-band visual entrainment. Herein, we examined whether visual stimulation at 32, 40, or 48 Hz produces optimal visual entrainment responses using high-density magnetoencephalography (MEG). Our results indicated strong entrainment responses localizing to the primary visual cortex in each condition. Entrainment responses were stronger for 32 and 40 Hz relative to 48 Hz, indicating more robust synchronization of neural ensembles at these lower gamma-band frequencies. In addition, 32 and 40 Hz entrainment responses showed typical patterns of habituation across trials, but this effect was absent for 48 Hz. Finally, connectivity between visual cortex and parietal and prefrontal cortices tended to be strongest for 40 relative to 32 and 48 Hz entrainment. These results suggest that neural ensembles in the visual cortex may resonate at around 32 and 40 Hz and thus entrain more readily to photic stimulation at these frequencies. Emerging AD therapies, which have focused on 40 Hz entrainment to date, may be more effective at lower relative to higher gamma frequencies, although additional work in clinical populations is needed to confirm these findings. PRACTITIONER POINTS: Gamma-band visual entrainment has emerged as a therapeutic approach for eliminating amyloid in Alzheimer's disease, but its optimal parameters are unknown. We found stronger entrainment at 32 and 40 Hz compared to 48 Hz, suggesting neural ensembles prefer to resonate around these relatively lower gamma-band frequencies. These findings may inform the development and refinement of innovative AD therapies and the study of GABAergic visual cortical functions.


Subject(s)
Gamma Rhythm , Magnetoencephalography , Photic Stimulation , Visual Cortex , Humans , Gamma Rhythm/physiology , Male , Female , Photic Stimulation/methods , Adult , Visual Cortex/physiology , Young Adult , Visual Perception/physiology
2.
Elife ; 122024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017666

ABSTRACT

Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.


Subject(s)
Alpha Rhythm , Attention , Magnetic Resonance Imaging , Humans , Attention/physiology , Male , Female , Adult , Alpha Rhythm/physiology , Young Adult , Magnetoencephalography , Thalamus/physiology , Thalamus/diagnostic imaging , Brain/physiology , Brain/diagnostic imaging , Basal Ganglia/physiology , Functional Laterality/physiology
3.
Elife ; 122024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968325

ABSTRACT

Humans can read and comprehend text rapidly, implying that readers might process multiple words per fixation. However, the extent to which parafoveal words are previewed and integrated into the evolving sentence context remains disputed. We investigated parafoveal processing during natural reading by recording brain activity and eye movements using MEG and an eye tracker while participants silently read one-line sentences. The sentences contained an unpredictable target word that was either congruent or incongruent with the sentence context. To measure parafoveal processing, we flickered the target words at 60 Hz and measured the resulting brain responses (i.e. Rapid Invisible Frequency Tagging, RIFT) during fixations on the pre-target words. Our results revealed a significantly weaker tagging response for target words that were incongruent with the previous context compared to congruent ones, even within 100ms of fixating the word immediately preceding the target. This reduction in the RIFT response was also found to be predictive of individual reading speed. We conclude that semantic information is not only extracted from the parafovea but can also be integrated with the previous context before the word is fixated. This early and extensive parafoveal processing supports the rapid word processing required for natural reading. Our study suggests that theoretical frameworks of natural reading should incorporate the concept of deep parafoveal processing.


Subject(s)
Eye Movements , Reading , Semantics , Humans , Female , Male , Adult , Young Adult , Eye Movements/physiology , Fovea Centralis/physiology , Fixation, Ocular/physiology , Magnetoencephalography , Brain/physiology , Comprehension/physiology
4.
Hum Brain Mapp ; 45(11): e26787, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39023178

ABSTRACT

Regular cannabis use is associated with cortex-wide changes in spontaneous and oscillatory activity, although the functional significance of such changes remains unclear. We hypothesized that regular cannabis use would suppress spontaneous gamma activity in regions serving cognitive control and scale with task performance. Participants (34 cannabis users, 33 nonusers) underwent an interview regarding their substance use history and completed the Eriksen flanker task during magnetoencephalography (MEG). MEG data were imaged in the time-frequency domain and virtual sensors were extracted from the peak voxels of the grand-averaged oscillatory interference maps to quantify spontaneous gamma activity during the pre-stimulus baseline period. We then assessed group-level differences in spontaneous and oscillatory gamma activity, and their relationship with task performance and cannabis use metrics. Both groups exhibited a significant behavioral flanker interference effect, with slower responses during incongruent relative to congruent trials. Mixed-model ANOVAs indicated significant gamma-frequency neural interference effects in the left frontal eye fields (FEF) and left temporoparietal junction (TPJ). Further, a group-by-condition interaction was detected in the left FEF, with nonusers exhibiting stronger gamma oscillations during incongruent relative to congruent trials and cannabis users showing no difference. In addition, spontaneous gamma activity was sharply suppressed in cannabis users relative to nonusers in the left FEF and TPJ. Finally, spontaneous gamma activity in the left FEF and TPJ was associated with task performance across all participants, and greater cannabis use was associated with weaker spontaneous gamma activity in the left TPJ of the cannabis users. Regular cannabis use was associated with weaker spontaneous gamma in the TPJ and FEF. Further, the degree of use may be proportionally related to the degree of suppression in spontaneous activity in the left TPJ.


Subject(s)
Cognition , Gamma Rhythm , Magnetoencephalography , Humans , Male , Female , Adult , Young Adult , Gamma Rhythm/physiology , Cognition/physiology , Brain Mapping , Neuropsychological Tests , Brain/physiopathology , Brain/diagnostic imaging , Marijuana Use
5.
Hum Brain Mapp ; 45(10): e26782, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38989630

ABSTRACT

This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer's disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the 'quality' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of 'reliability' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.


Subject(s)
Alzheimer Disease , Magnetoencephalography , Humans , Magnetoencephalography/methods , Magnetoencephalography/standards , Reproducibility of Results , Alzheimer Disease/physiopathology , Male , Female , Aged , Models, Neurological , Bayes Theorem
6.
Article in English | MEDLINE | ID: mdl-38976470

ABSTRACT

The process of reconstructing underlying cortical and subcortical electrical activities from Electroencephalography (EEG) or Magnetoencephalography (MEG) recordings is called Electrophysiological Source Imaging (ESI). Given the complementarity between EEG and MEG in measuring radial and tangential cortical sources, combined EEG/MEG is considered beneficial in improving the reconstruction performance of ESI algorithms. Traditional algorithms mainly emphasize incorporating predesigned neurophysiological priors to solve the ESI problem. Deep learning frameworks aim to directly learn the mapping from scalp EEG/MEG measurements to the underlying brain source activities in a data-driven manner, demonstrating superior performance compared to traditional methods. However, most of the existing deep learning approaches for the ESI problem are performed on a single modality of EEG or MEG, meaning the complementarity of these two modalities has not been fully utilized. How to fuse the EEG and MEG in a more principled manner under the deep learning paradigm remains a challenging question. This study develops a Multi-Modal Deep Fusion (MMDF) framework using Attention Neural Networks (ANN) to fully leverage the complementary information between EEG and MEG for solving the ESI inverse problem, which is termed as MMDF-ANN. Specifically, our proposed brain source imaging approach consists of four phases, including feature extraction, weight generation, deep feature fusion, and source mapping. Our experimental results on both synthetic dataset and real dataset demonstrated that using a fusion of EEG and MEG can significantly improve the source localization accuracy compared to using a single-modality of EEG or MEG. Compared to the benchmark algorithms, MMDF-ANN demonstrated good stability when reconstructing sources with extended activation areas and situations of EEG/MEG measurements with a low signal-to-noise ratio.


Subject(s)
Algorithms , Deep Learning , Electroencephalography , Magnetoencephalography , Neural Networks, Computer , Magnetoencephalography/methods , Humans , Electroencephalography/methods , Adult , Male , Multimodal Imaging/methods , Female , Brain/physiology , Brain/diagnostic imaging , Young Adult
7.
Hum Brain Mapp ; 45(10): e26720, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38994740

ABSTRACT

Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.


Subject(s)
Electroencephalography , Entropy , Magnetoencephalography , Humans , Magnetoencephalography/methods , Electroencephalography/methods , Adult , Female , Male , Computer Simulation , Young Adult , Epilepsy/physiopathology , Epilepsy/diagnostic imaging , Middle Aged , Brain Mapping/methods , Brain/diagnostic imaging , Brain/physiopathology , Hippocampus/diagnostic imaging , Hippocampus/physiopathology , Models, Neurological
8.
PeerJ ; 12: e17721, 2024.
Article in English | MEDLINE | ID: mdl-39040935

ABSTRACT

A large body of research establishes the efficacy of musical intervention in many aspects of physical, cognitive, communication, social, and emotional rehabilitation. However, the underlying neural mechanisms for musical therapy remain elusive. This study aimed to investigate the potential neural correlates of musical therapy, focusing on the changes in the topology of emotion brain network. To this end, a Bayesian statistical approach and a cross-over experimental design were employed together with two resting-state magnetoencephalography (MEG) as controls. MEG recordings of 30 healthy subjects were acquired while listening to five auditory stimuli in random order. Two resting-state MEG recordings of each subject were obtained, one prior to the first stimulus (pre) and one after the final stimulus (post). Time series at the level of brain regions were estimated using depth-weighted minimum norm estimation (wMNE) source reconstruction method and the functional connectivity between these regions were computed. The resultant connectivity matrices were used to derive two topological network measures: transitivity and global efficiency which are important in gauging the functional segregation and integration of brain network respectively. The differences in these measures between pre- and post-stimuli resting MEG were set as the equivalence regions. We found that the network measures under all auditory stimuli were equivalent to the resting state network measures in all frequency bands, indicating that the topology of the functional brain network associated with emotional regulation in healthy subjects remains unchanged following these auditory stimuli. This suggests that changes in the emotion network topology may not be the underlying neural mechanism of musical therapy. Nonetheless, further studies are required to explore the neural mechanisms of musical interventions especially in the populations with neuropsychiatric disorders.


Subject(s)
Acoustic Stimulation , Auditory Perception , Bayes Theorem , Brain , Emotions , Healthy Volunteers , Magnetoencephalography , Humans , Magnetoencephalography/methods , Male , Female , Adult , Emotions/physiology , Acoustic Stimulation/methods , Brain/physiology , Auditory Perception/physiology , Nerve Net/physiology , Young Adult , Music Therapy/methods , Cross-Over Studies , Brain Mapping/methods
9.
Hum Brain Mapp ; 45(10): e26774, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949599

ABSTRACT

Testosterone levels sharply rise during the transition from childhood to adolescence and these changes are known to be associated with changes in human brain structure. During this same developmental window, there are also robust changes in the neural oscillatory dynamics serving verbal working memory processing. Surprisingly, whereas many studies have investigated the effects of chronological age on the neural oscillations supporting verbal working memory, none have probed the impact of endogenous testosterone levels during this developmental period. Using a sample of 89 youth aged 6-14 years-old, we collected salivary testosterone samples and recorded magnetoencephalography during a modified Sternberg verbal working memory task. Significant oscillatory responses were identified and imaged using a beamforming approach and the resulting maps were subjected to whole-brain ANCOVAs examining the effects of testosterone and sex, controlling for age, during verbal working memory encoding and maintenance. Our primary results indicated robust testosterone-related effects in theta (4-7 Hz) and alpha (8-14 Hz) oscillatory activity, controlling for age. During encoding, females exhibited weaker theta oscillations than males in right cerebellar cortices and stronger alpha oscillations in left temporal cortices. During maintenance, youth with greater testosterone exhibited weaker alpha oscillations in right parahippocampal and cerebellar cortices, as well as regions across the left-lateralized language network. These results extend the existing literature on the development of verbal working memory processing by showing region and sex-specific effects of testosterone, and are the first results to link endogenous testosterone levels to the neural oscillatory activity serving verbal working memory, above and beyond the effects of chronological age.


Subject(s)
Magnetoencephalography , Memory, Short-Term , Testosterone , Humans , Male , Memory, Short-Term/physiology , Female , Adolescent , Child , Brain/physiology , Saliva/chemistry , Saliva/metabolism , Brain Mapping , Sex Characteristics
10.
Comput Methods Programs Biomed ; 254: 108292, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936152

ABSTRACT

BACKGROUND AND OBJECTIVES: The exploration of various neuroimaging techniques have become focal points within the field of neuroscience research. Magnetoencephalography based on optically pumped magnetometers (OPM-MEG) has shown significant potential to be the next generation of functional neuroimaging with the advantages of high signal intensity and flexible sensor arrangement. In this study, we constructed a 31-channel OPM-MEG system and performed a preliminary comparison of the temporal and spatial relationship between magnetic responses measured by OPM-MEG and blood-oxygen-level-dependent signals detected by functional magnetic resonance imaging (fMRI) during a grasping task. METHODS: For OPM-MEG, the ß-band (15-30 Hz) oscillatory activities can be reliably detected across multiple subjects and multiple session runs. To effectively localize the inhibitory oscillatory activities, a source power-spectrum ratio-based imaging method was proposed. This approach was compared with conventional source imaging methods, such as minimum norm-type and beamformer methods, and was applied in OPM-MEG source analysis. Subsequently, the spatial and temporal responses at the source-level between OPM-MEG and fMRI were analyzed. RESULTS: The effectiveness of the proposed method was confirmed through simulations compared to benchmark methods. Our demonstration revealed an average spatial separation of 10.57 ± 4.41 mm between the localization results of OPM-MEG and fMRI across four subjects. Furthermore, the fMRI-constrained OPM-MEG localization results indicated a more focused imaging extent. CONCLUSIONS: Taken together, the performance exhibited by OPM-MEG positions it as a potential instrument for functional surgery assessment.


Subject(s)
Magnetic Resonance Imaging , Magnetoencephalography , Sensorimotor Cortex , Humans , Magnetic Resonance Imaging/methods , Magnetoencephalography/methods , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Brain Mapping/methods , Adult , Male , Algorithms , Computer Simulation
11.
PLoS One ; 19(6): e0303959, 2024.
Article in English | MEDLINE | ID: mdl-38843176

ABSTRACT

Phase-amplitude coupling (PAC) has been used as a powerful tool to understand the mechanism underlying neural binding by investigating neural synchrony across different frequency bands. This study examined the possibility that dysregulated alpha-gamma modulation may be crucially involved in aberrant brain functioning in autism spectrum disorder (ASD). Magnetoencephalographic data were recorded from 13 adult participants with ASD and 16 controls. The time-coursed sources averaged over a primary visual area 1 and fusiform gyrus area were reconstructed with the minimum-norm estimate method. The alpha-gamma PAC was further calculated based on these sources. The statistical analysis was implemented based on the PAC and directed asymmetry index. The results showed the hyper-activity coupling for ASD at the no-face condition and revealed the importance of alpha-gamma phase modulation in detecting a face. Our data provides novel evidence for the role of the alpha-gamma PAC and suggests that the globe connectivity may be more critical during visual perception.


Subject(s)
Autism Spectrum Disorder , Magnetoencephalography , Visual Perception , Humans , Autism Spectrum Disorder/physiopathology , Male , Adult , Female , Visual Perception/physiology , Young Adult , Brain Mapping/methods , Case-Control Studies
12.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38836408

ABSTRACT

Sense of touch is essential for our interactions with external objects and fine control of hand actions. Despite extensive research on human somatosensory processing, it is still elusive how involved brain regions interact as a dynamic network in processing tactile information. Few studies probed temporal dynamics of somatosensory information flow and reported inconsistent results. Here, we examined cortical somatosensory processing through magnetic source imaging and cortico-cortical coupling dynamics. We recorded magnetoencephalography signals from typically developing children during unilateral pneumatic stimulation. Neural activities underlying somatosensory evoked fields were mapped with dynamic statistical parametric mapping, assessed with spatiotemporal activation analysis, and modeled by Granger causality. Unilateral pneumatic stimulation evoked prominent and consistent activations in the contralateral primary and secondary somatosensory areas but weaker and less consistent activations in the ipsilateral primary and secondary somatosensory areas. Activations in the contralateral primary motor cortex and supramarginal gyrus were also consistently observed. Spatiotemporal activation and Granger causality analysis revealed initial serial information flow from contralateral primary to supramarginal gyrus, contralateral primary motor cortex, and contralateral secondary and later dynamic and parallel information flows between the consistently activated contralateral cortical areas. Our study reveals the spatiotemporal dynamics of cortical somatosensory processing in the normal developing brain.


Subject(s)
Magnetoencephalography , Somatosensory Cortex , Humans , Male , Somatosensory Cortex/physiology , Somatosensory Cortex/growth & development , Female , Child , Evoked Potentials, Somatosensory/physiology , Brain Mapping , Touch Perception/physiology , Child Development/physiology , Magnetic Resonance Imaging , Nerve Net/physiology , Physical Stimulation , Motor Cortex/physiology , Motor Cortex/growth & development
13.
Elife ; 132024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831699

ABSTRACT

Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.


Subject(s)
Magnetoencephalography , Humans , Magnetoencephalography/methods , Magnetoencephalography/instrumentation , Child , Adolescent , Adult , Young Adult , Male , Female , Child, Preschool , Beta Rhythm/physiology , Brain/physiology
14.
Neuroimage ; 296: 120661, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38838840

ABSTRACT

Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time-frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5-8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.


Subject(s)
Artifacts , Magnetoencephalography , Humans , Magnetoencephalography/methods , Magnetoencephalography/instrumentation , Adult , Female , Male , Algorithms , Metals , Signal Processing, Computer-Assisted , Young Adult , Brain/physiology
15.
Commun Biol ; 7(1): 748, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902370

ABSTRACT

Human language relies on the correct processing of syntactic information, as it is essential for successful communication between speakers. As an abstract level of language, syntax has often been studied separately from the physical form of the speech signal, thus often masking the interactions that can promote better syntactic processing in the human brain. However, behavioral and neural evidence from adults suggests the idea that prosody and syntax interact, and studies in infants support the notion that prosody assists language learning. Here we analyze a MEG dataset to investigate how acoustic cues, specifically prosody, interact with syntactic representations in the brains of native English speakers. More specifically, to examine whether prosody enhances the cortical encoding of syntactic representations, we decode syntactic phrase boundaries directly from brain activity, and evaluate possible modulations of this decoding by the prosodic boundaries. Our findings demonstrate that the presence of prosodic boundaries improves the neural representation of phrase boundaries, indicating the facilitative role of prosodic cues in processing abstract linguistic features. This work has implications for interactive models of how the brain processes different linguistic features. Future research is needed to establish the neural underpinnings of prosody-syntax interactions in languages with different typological characteristics.


Subject(s)
Language , Speech Perception , Humans , Speech Perception/physiology , Male , Female , Adult , Brain/physiology , Speech/physiology , Young Adult , Magnetoencephalography , Linguistics , Cues
16.
Sci Rep ; 14(1): 14680, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918430

ABSTRACT

Schizophrenia is a severe disruption in cognition and emotion, affecting fundamental human functions. In this study, we applied Multi-Scale Entropy analysis to resting-state Magnetoencephalography data from 54 schizophrenia patients and 98 healthy controls. This method quantifies the temporal complexity of the signal across different time scales using the concept of sample entropy. Results show significantly higher sample entropy in schizophrenia patients, primarily in central, parietal, and occipital lobes, peaking at time scales equivalent to frequencies between 15 and 24 Hz. To disentangle the contributions of the amplitude and phase components, we applied the same analysis to a phase-shuffled surrogate signal. The analysis revealed that most differences originate from the amplitude component in the δ, α, and ß power bands. While the phase component had a smaller magnitude, closer examination reveals clear spatial patterns and significant differences across specific brain regions. We assessed the potential of multi-scale entropy as a schizophrenia biomarker by comparing its classification performance to conventional spectral analysis and a cognitive task (the n-back paradigm). The discriminative power of multi-scale entropy and spectral features was similar, with a slight advantage for multi-scale entropy features. The results of the n-back test were slightly below those obtained from multi-scale entropy and spectral features.


Subject(s)
Entropy , Magnetoencephalography , Schizophrenia , Humans , Schizophrenia/physiopathology , Schizophrenia/diagnosis , Magnetoencephalography/methods , Male , Female , Adult , Brain/physiopathology , Middle Aged , Case-Control Studies
17.
EBioMedicine ; 105: 105201, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38908100

ABSTRACT

BACKGROUND: Research in healthy young adults shows that characteristic patterns of brain activity define individual "brain-fingerprints" that are unique to each person. However, variability in these brain-fingerprints increases in individuals with neurological conditions, challenging the clinical relevance and potential impact of the approach. Our study shows that brain-fingerprints derived from neurophysiological brain activity are associated with pathophysiological and clinical traits of individual patients with Parkinson's disease (PD). METHODS: We created brain-fingerprints from task-free brain activity recorded through magnetoencephalography in 79 PD patients and compared them with those from two independent samples of age-matched healthy controls (N = 424 total). We decomposed brain activity into arrhythmic and rhythmic components, defining distinct brain-fingerprints for each type from recording durations of up to 4 min and as short as 30 s. FINDINGS: The arrhythmic spectral components of cortical activity in patients with Parkinson's disease are more variable over short periods, challenging the definition of a reliable brain-fingerprint. However, by isolating the rhythmic components of cortical activity, we derived brain-fingerprints that distinguished between patients and healthy controls with about 90% accuracy. The most prominent cortical features of the resulting Parkinson's brain-fingerprint are mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also demonstrate that Parkinson's symptom laterality can be decoded directly from cortical neurophysiological activity. Furthermore, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. INTERPRETATION: The increased moment-to-moment variability of arrhythmic brain-fingerprints challenges patient differentiation and explains previously published results. We outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and symptom laterality of Parkinson's disease. Thus, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification. Symmetrically, we discuss how rhythmic brain-fingerprints may contribute to the improved identification and testing of therapeutic neurostimulation targets. FUNDING: Data collection and sharing for this project was provided by the Quebec Parkinson Network (QPN), the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD; release 6.0) program, the Cambridge Centre for Aging Neuroscience (Cam-CAN), and the Open MEG Archives (OMEGA). The QPN is funded by a grant from Fonds de Recherche du Québec - Santé (FRQS). PREVENT-AD was launched in 2011 as a $13.5 million, 7-year public-private partnership using funds provided by McGill University, the FRQS, an unrestricted research grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, and the Canada Fund for Innovation. The Brainstorm project is supported by funding to SB from the NIH (R01-EB026299-05). Further funding to SB for this study included a Discovery grant from the Natural Sciences and Engineering Research Council of Canada of Canada (436355-13), and the CIHR Canada research Chair in Neural Dynamics of Brain Systems (CRC-2017-00311).


Subject(s)
Brain , Magnetoencephalography , Parkinson Disease , Humans , Parkinson Disease/physiopathology , Male , Female , Magnetoencephalography/methods , Middle Aged , Brain/physiopathology , Aged , Brain Mapping/methods , Case-Control Studies , Adult
18.
J Neural Eng ; 21(4)2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38936398

ABSTRACT

Objective.Measures of functional connectivity (FC) can elucidate which cortical regions work together in order to complete a variety of behavioral tasks. This study's primary objective was to expand a previously published model of measuring FC to include multiple subjects and several regions of interest. While FC has been more extensively investigated in vision and other sensorimotor tasks, it is not as well understood in audition. The secondary objective of this study was to investigate how auditory regions are functionally connected to other cortical regions when attention is directed to different distinct auditory stimuli.Approach.This study implements a linear dynamic system (LDS) to measure the structured time-lagged dependence across several cortical regions in order to estimate their FC during a dual-stream auditory attention task.Results.The model's output shows consistent functionally connected regions across different listening conditions, indicative of an auditory attention network that engages regardless of endogenous switching of attention or different auditory cues being attended.Significance.The LDS implemented in this study implements a multivariate autoregression to infer FC across cortical regions during an auditory attention task. This study shows how a first-order autoregressive function can reliably measure functional connectivity from M/EEG data. Additionally, the study shows how auditory regions engage with the supramodal attention network outlined in the visual attention literature.


Subject(s)
Attention , Electroencephalography , Humans , Electroencephalography/methods , Male , Female , Attention/physiology , Adult , Acoustic Stimulation/methods , Young Adult , Linear Models , Auditory Perception/physiology , Auditory Cortex/physiology , Magnetoencephalography/methods , Nerve Net/physiology
19.
J Neurosci ; 44(28)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38839302

ABSTRACT

Temporal prediction assists language comprehension. In a series of recent behavioral studies, we have shown that listeners specifically employ rhythmic modulations of prosody to estimate the duration of upcoming sentences, thereby speeding up comprehension. In the current human magnetoencephalography (MEG) study on participants of either sex, we show that the human brain achieves this function through a mechanism termed entrainment. Through entrainment, electrophysiological brain activity maintains and continues contextual rhythms beyond their offset. Our experiment combined exposure to repetitive prosodic contours with the subsequent presentation of visual sentences that either matched or mismatched the duration of the preceding contour. During exposure to prosodic contours, we observed MEG coherence with the contours, which was source-localized to right-hemispheric auditory areas. During the processing of the visual targets, activity at the frequency of the preceding contour was still detectable in the MEG; yet sources shifted to the (left) frontal cortex, in line with a functional inheritance of the rhythmic acoustic context for prediction. Strikingly, when the target sentence was shorter than expected from the preceding contour, an omission response appeared in the evoked potential record. We conclude that prosodic entrainment is a functional mechanism of temporal prediction in language comprehension. In general, acoustic rhythms appear to endow language for employing the brain's electrophysiological mechanisms of temporal prediction.


Subject(s)
Magnetoencephalography , Speech Perception , Humans , Male , Female , Adult , Speech Perception/physiology , Young Adult , Language , Comprehension/physiology , Acoustic Stimulation/methods , Speech/physiology , Photic Stimulation/methods
20.
Int J Geriatr Psychiatry ; 39(6): e6112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837281

ABSTRACT

OBJECTIVES: People with Alzheimer's Disease (AD) experience changes in their level and content of consciousness, but there is little research on biomarkers of consciousness in pre-clinical AD and Mild Cognitive Impairment (MCI). This study investigated whether levels of consciousness are decreased in people with MCI. METHODS: A multi-site site magnetoencephalography (MEG) dataset, BIOFIND, comprising 83 people with MCI and 83 age matched controls, was analysed. Arousal (and drowsiness) was assessed by computing the theta-alpha ratio (TAR). The Lempel-Ziv algorithm (LZ) was used to quantify the information content of brain activity, with higher LZ values indicating greater complexity and potentially a higher level of consciousness. RESULTS: LZ was lower in the MCI group versus controls, indicating a reduced level of consciousness in MCI. TAR was higher in the MCI group versus controls, indicating a reduced level of arousal (i.e. increased drowsiness) in MCI. LZ was also found to be correlated with mini-mental state examination (MMSE) scores, suggesting an association between cognitive impairment and level of consciousness in people with MCI. CONCLUSIONS: A decline in consciousness and arousal can be seen in MCI. As cognitive impairment worsens, measured by MMSE scores, levels of consciousness and arousal decrease. These findings highlight how monitoring consciousness using biomarkers could help understand and manage impairments found at the preclinical stages of AD. Further research is needed to explore markers of consciousness between people who progress from MCI to dementia and those who do not, and in people with moderate and severe AD, to promote person-centred care.


Subject(s)
Arousal , Cognitive Dysfunction , Magnetoencephalography , Humans , Cognitive Dysfunction/physiopathology , Female , Male , Aged , Arousal/physiology , Aged, 80 and over , Case-Control Studies , Consciousness/physiology , Alzheimer Disease/physiopathology , Biomarkers/analysis , Algorithms , Middle Aged , Mental Status and Dementia Tests
SELECTION OF CITATIONS
SEARCH DETAIL