Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Sci Rep ; 14(1): 11242, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755230

ABSTRACT

The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.


Subject(s)
Erythrocytes , Plasmodium falciparum , Proteomics , Protozoan Proteins , Erythrocytes/parasitology , Erythrocytes/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Humans , Proteomics/methods , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Ascorbate Peroxidases/metabolism , Protein Binding , Biotinylation , Endonucleases , Peptides , Proteins , Multifunctional Enzymes
2.
Brain Res ; 1822: 148669, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37951562

ABSTRACT

Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.


Subject(s)
Blood-Brain Barrier , Bradykinin , Cell Adhesion , Malaria, Cerebral , Malaria, Falciparum , Plasmodium falciparum , Humans , Bradykinin/metabolism , Cell Adhesion/physiology , Culture Media, Conditioned/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/physiology , Erythrocytes/parasitology , Malaria, Cerebral/metabolism , Malaria, Cerebral/parasitology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Monocytes/physiology , Plasmodium falciparum/physiology , Blood-Brain Barrier/physiopathology
3.
Front Cell Infect Microbiol ; 12: 816574, 2022.
Article in English | MEDLINE | ID: mdl-35433504

ABSTRACT

Plasmodium falciparum is the most lethal human malaria parasite, partly due to its genetic variability and ability to use multiple invasion routes via its binding to host cell surface receptors. The parasite extensively modifies infected red blood cell architecture to promote its survival which leads to increased cell membrane rigidity, adhesiveness and permeability. Merozoites are initially released from infected hepatocytes and efficiently enter red blood cells in a well-orchestrated process that involves specific interactions between parasite ligands and erythrocyte receptors; symptoms of the disease occur during the life-cycle's blood stage due to capillary blockage and massive erythrocyte lysis. Several studies have focused on elucidating molecular merozoite/erythrocyte interactions and host cell modifications; however, further in-depth analysis is required for understanding the parasite's biology and thus provide the fundamental tools for developing prophylactic or therapeutic alternatives to mitigate or eliminate Plasmodium falciparum-related malaria. This review focuses on the cellular and molecular events during Plasmodium falciparum merozoite invasion of red blood cells and the alterations that occur in an erythrocyte once it has become infected.


Subject(s)
Malaria, Falciparum , Malaria , Animals , Erythrocytes/parasitology , Humans , Malaria/metabolism , Malaria, Falciparum/metabolism , Merozoites , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
4.
PLoS One ; 17(1): e0263092, 2022.
Article in English | MEDLINE | ID: mdl-35077516

ABSTRACT

Knowledge about the relation of histopathological characteristics and mediators of physiological processes in the placenta malaria (PM) is poor, and that PM caused by Plasmodium vivax is almost null. The objective was to compare histopathological characteristics, cytokines and mediators of physiological processes in PM depending on the parasitic species, through a cross-sectional study in three groups: negative-PM, vivax-PM, falciparum-PM from Northwestern Colombia. The diagnosis of PM was made with thick blood smear, qPCR, and histopathology. Immuno-histochemical was made with EnVision system (Dako) and Zeiss Axio Imager M2 with light microscope. Cells in apoptosis were studied with the TUNEL technique. To measure the expression level of cytokines and mediators qRT-PCR was used. We included 179 placentas without PM and 87 with PM (53% P. vivax and 47% P. falciparum). At delivery, anemia was 25% in negative-PM, 60% in vivax-PM, and 44% in falciparum-PM group. The neonatal weight had an intense difference between groups with 3292±394g in negative-PM, 2,841±239 in vivax-PM, and 2,957±352 in falciparum-PM. The histopathological characteristics and CD+ cells in placenta with statistical differences (Dunn´s test) between negative-PM vs vivax-PM (P. falciparum was similar to P. vivax) were infarction, fibrinoid deposits, calcification, cells in apoptosis, immune infiltrates in decidua and intervillous space, CD4+, CD8+, CD14+, CD56+, CD68+. The expression levels of mediators in the placenta with statistical differences (Dunn´s test) between negative-PM vs vivax-PM (P. falciparum was similar to P. vivax) were Fas, FasL, HIF1α, Cox1, Cox2, VEGF, IL4, IL10, IFNγ, TNF, TGFß, FOXP3, and CTLA4. PM with P. falciparum and P. vivax, damages this organ and causes significant alteration of various physiological processes, which cause maternal anemia and a reduction in neonatal weight in degrees that are statistically and clinically significant. It is necessary that the search for plasmodial infection in pregnant and placenta goes from passive to active surveillance with adequate diagnostic capacity.


Subject(s)
Malaria, Falciparum/metabolism , Malaria, Vivax/metabolism , Placenta/metabolism , Plasmodium falciparum/metabolism , Plasmodium vivax/metabolism , Pregnancy Complications, Parasitic/metabolism , Adolescent , Adult , Colombia , Cytokines/metabolism , Female , Humans , Placenta/parasitology , Pregnancy , Pregnancy Complications, Parasitic/parasitology , Real-Time Polymerase Chain Reaction
5.
Int J Mol Sci ; 22(22)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34830263

ABSTRACT

Throughout evolution, the need for single-celled organisms to associate and form a single cluster of cells has had several evolutionary advantages. In complex, multicellular organisms, each tissue or organ has a specialty and function that make life together possible, and the organism as a whole needs to act in balance and adapt to changes in the environment. Sensory organs are essential for connecting external stimuli into a biological response, through the senses: sight, smell, taste, hearing, and touch. The G-protein-coupled receptors (GPCRs) are responsible for many of these senses and therefore play a key role in the perception of the cells' external environment, enabling interaction and coordinated development between each cell of a multicellular organism. The malaria-causing protozoan parasite, Plasmodium falciparum, has a complex life cycle that is extremely dependent on a finely regulated cellular signaling machinery. In this review, we summarize strong evidence and the main candidates of GPCRs in protozoan parasites. Interestingly, one of these GPCRs is a sensor for K+ shift in Plasmodium falciparum, PfSR25. Studying this family of proteins in P. falciparum could have a significant impact, both on understanding the history of the evolution of GPCRs and on finding new targets for antimalarials.


Subject(s)
Calcium Signaling/physiology , Host-Parasite Interactions/physiology , Malaria, Falciparum/metabolism , Perception/physiology , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Calcium/metabolism , Calcium Signaling/drug effects , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Molecular Targeted Therapy/methods , Perception/drug effects , Protein Binding , Receptors, G-Protein-Coupled/antagonists & inhibitors
6.
Mol Cell Proteomics ; 18(2): 182-199, 2019 02.
Article in English | MEDLINE | ID: mdl-30242111

ABSTRACT

Malaria in pregnancy is a public health concern in malaria-endemic areas. Accumulation of maternal immune cells in the placenta and increased levels of inflammatory cytokines caused by sequestration of Plasmodium falciparum-infected erythrocytes have been associated to poor neonatal outcomes, including low birth weight because of fetal growth restriction. Little is known about the molecular changes occurring in a P. falciparum-infected placenta that has developed placental malaria during pregnancy but had the parasites cleared by pharmacological treatment (past infection). We conducted an integrated proteome, phosphoproteome and glycoproteome analysis in past P. falciparum-infected placentas aiming to find molecular changes associated with placental malaria. A total of 2946 proteins, 1733 N-linked glycosites and 4100 phosphosites were identified and quantified in this study, disclosing overrepresented processes related to oxidative stress, protein folding and regulation of apoptosis in past-infected placentas Moreover, AKT and ERK signaling pathways activation, together with clinical data, were further correlated to an increased apoptosis in past-infected placentas. This study showed apoptosis-related mechanisms associated with placental malaria that can be further explored as therapeutic target against adverse pregnancy outcomes.


Subject(s)
Malaria, Falciparum/metabolism , Placenta/metabolism , Pregnancy Complications, Parasitic/metabolism , Proteomics/methods , Animals , Disease Models, Animal , Female , Glycosylation , Humans , MAP Kinase Signaling System , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mice , Phosphorylation , Placenta/parasitology , Pregnancy , Pregnancy Complications, Parasitic/drug therapy , Protein Interaction Maps
7.
Mol Biochem Parasitol ; 227: 5-14, 2019 01.
Article in English | MEDLINE | ID: mdl-30472238

ABSTRACT

Deficiency of glucose-6-phosphate dehydrogenase (G6PD) and sickle cell trait (SCT) are described as the polymorphic disorders prevalent in erythrocytes. Both are considered the result of the selective pressure exerted by Plasmodium parasites over human genome, due to a certain degree of resistance to the clinical symptoms of severe malaria. There exist in both a prooxidant environment that favors the oxidative damage on membrane proteins, which probably is part of molecular protector mechanisms. Nevertheless, mechanisms are not completely understood at molecular level for each polymorphism yet, and even less if are commons for several of them. Here, synchronous cultures at high parasitemia levels of P. falciparum 3D7 were used to quantify oxidative damage in membrane proteins of erythrocytes with G6PD deficient and SCT. Carbonyl index by dot blot assay was used to calculate the variation of oxidative damage during the asexual phases. Besides, protein carbonylation profiles were obtained by Western blot and complemented with mass spectrometry using MALDI-TOF-TOF analysis. Erythrocytes with G6PD deficient and SCT showed higher carbonyl index values than control and similar profiles of carbonylated proteins; moreover, cytoskeletal and stress response proteins were identified as the main targets of oxidative damage. Therefore, both polymorphisms promote carbonylation on the same membrane proteins. Finally, these results allowed to reinforce the hypothesis of oxidative damage in erythrocyte membrane proteins as molecular mechanism of human adaptation to malaria infection.


Subject(s)
Erythrocytes/parasitology , Glucosephosphate Dehydrogenase Deficiency/blood , Malaria, Falciparum/blood , Membrane Proteins/metabolism , Plasmodium falciparum/metabolism , Sickle Cell Trait/blood , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/parasitology , Erythrocytes/enzymology , Erythrocytes/metabolism , Glucosephosphate Dehydrogenase Deficiency/metabolism , Glucosephosphate Dehydrogenase Deficiency/parasitology , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Oxidation-Reduction , Oxidative Stress , Plasmodium falciparum/genetics , Protein Carbonylation , Sickle Cell Trait/metabolism , Sickle Cell Trait/parasitology
8.
Microbes Infect ; 20(3): 205-211, 2018 03.
Article in English | MEDLINE | ID: mdl-29253662

ABSTRACT

Purine nucleotide synthesis in protozoa takes place exclusively via the purine salvage pathway and S-adenosyl-l-homocysteine hydrolase (SAHH) is an important enzyme in the Plasmodium salvage pathway which is not present in erythrocytes. Here, we describe the antimalarial effect of 2'3'-dialdehyde adenosine or oxidized adenosine (oADO), inhibitor of SAHH, on in vitro infection of human erythrocytes by P. falciparum. Treatment of infected erythrocytes with oADO inhibits parasite development and reinvasion of new cells. Erythrocytes pre-treated with oADO have a reduced susceptibility to invasion. Our results suggest that oADO interferes with one or more parasitic enzymes of the purine salvage pathway.


Subject(s)
Adenosine/analogs & derivatives , Antimalarials/pharmacology , Erythrocytes/parasitology , Plasmodium falciparum/drug effects , Adenosine/metabolism , Adenosine/pharmacology , Erythrocytes/metabolism , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development
9.
Sci Rep ; 7(1): 14326, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29085013

ABSTRACT

Angiotensin II (Ang II) is a natural mammalian hormone that has been described to exhibit antiplasmodial activity therefore constituting a promising alternative for the treatment of malaria. Despite its promise, the development of Ang II as an antimalarial is limited by its potent induction of vasoconstriction and its rapid degradation within minutes. Here, we used peptide design to perform targeted chemical modifications to Ang II to generate conformationally restricted (disulfide-crosslinked) peptide derivatives with suppressed vasoconstrictor activity and increased stability. Designed constrained peptides were synthesized chemically and then tested for antiplasmodial activity. Two lead constrained peptides were identified (i.e., peptides 1 and 2), each composed of 10 amino acid residues. These peptides exhibited very promising activity in both our Plasmodium gallinaceum (>80%) and Plasmodium falciparum (>40%) models, an activity that was equivalent to that of Ang II, and led to complete suppression of vasoconstriction. In addition, peptide 5 exhibited selective activity towards the pre-erythrocytic stage (98% of activity against P. gallinaceum), thus suggesting that it may be possible to design peptides that target specific stages of the malaria life cycle. The Ang II derived stable scaffolds presented here may provide the basis for development of a new generation of peptide-based drugs for the treatment of malaria.


Subject(s)
Angiotensin II/metabolism , Antimalarials/metabolism , Erythrocytes/physiology , Malaria, Falciparum/metabolism , Peptides/metabolism , Plasmodium falciparum/physiology , Plasmodium gallinaceum/physiology , Vasodilator Agents/metabolism , Angiotensin II/therapeutic use , Animals , Antimalarials/therapeutic use , Chemical Engineering , Drug Design , Erythrocytes/drug effects , Humans , Life Cycle Stages , Malaria, Falciparum/drug therapy , Peptides/chemical synthesis , Peptides/therapeutic use , Vasoconstriction/drug effects , Vasodilator Agents/chemical synthesis , Vasodilator Agents/therapeutic use
10.
Sci Rep ; 6: 22093, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26915471

ABSTRACT

In mammals, haem degradation to biliverdin (BV) through the action of haem oxygenase (HO) is a critical step in haem metabolism. The malaria parasite converts haem into the chemically inert haemozoin to avoid toxicity. We discovered that the knock-out of HO in P. berghei is lethal; therefore, we investigated the function of biliverdin (BV) and haem in the parasite. Addition of external BV and haem to P. falciparum-infected red blood cell (RBC) cultures delays the progression of parasite development. The search for a BV molecular target within the parasites identified P. falciparum enolase (Pf enolase) as the strongest candidate. Isothermal titration calorimetry using recombinant full-length Plasmodium enolase suggested one binding site for BV. Kinetic assays revealed that BV is a non-competitive inhibitor. We employed molecular modelling studies to predict the new binding site as well as the binding mode of BV to P. falciparum enolase. Furthermore, addition of BV and haem targets the phosphorylation of Plasmodium falciparum eIF2α factor, an eukaryotic initiation factor phosphorylated by eIF2α kinases under stress conditions. We propose that BV targets enolase to reduce parasite glycolysis rates and changes the eIF2α phosphorylation pattern as a molecular mechanism for its action.


Subject(s)
Biliverdine/metabolism , Erythrocytes/parasitology , Eukaryotic Initiation Factor-2/antagonists & inhibitors , Phosphopyruvate Hydratase/antagonists & inhibitors , Plasmodium falciparum/metabolism , Amino Acid Sequence , Biliverdine/pharmacology , Erythrocytes/metabolism , Eukaryotic Initiation Factor-2/chemistry , Eukaryotic Initiation Factor-2/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Humans , Malaria, Falciparum/metabolism , Models, Molecular , Protozoan Proteins/antagonists & inhibitors , Sequence Alignment
11.
J Ethnopharmacol ; 166: 279-85, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25792015

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Field investigations highlighted the use of Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh), a small tree used by the Wayana Amerindians in Twenke-Taluhwen and Antecume-Pata, French Guiana, for the treatment of malaria, and administered either orally in the form of a decoction or applied externally over the whole body. This use appears limited to the Wayana cultural group in French Guiana and has never been reported anywhere else. Our goal was to evaluate the antimalarial and anti-inflammatory activities of a P. acutangulum decoction to explain the good reputation of this remedy. MATERIALS AND METHODS: Interviews with the Wayana inhabitants of Twenke-Taluhwen and Antecume-Pata were conducted within the TRAMAZ project according to the TRAMIL methodology, which is based on a quantitative and qualitative analysis of medicinal plant uses. A decoction of dried aerial parts of P. acutangulum was prepared in consistency with the Wayana recipe. In vitro antiplasmodial assays were performed on chloroquine-resistant FcB1 ([(3)H]-hypoxanthine bioassay) and 7G8 (pLDH bioassay) P. falciparum strains and on chloroquine sensitive NF54 ([(3)H]-hypoxanthine bioassay) P. falciparum strain. In vitro anti-inflammatory activity (IL-1ß, IL-6, IL-8, TNFα) was evaluated on LPS-stimulated human PBMC and NO secretion inhibition was measured on LPS stimulated RAW murine macrophages. Cytotoxicity of the decoction was measured on L6 mammalian cells, PBMCs, and RAW cells. A preliminary evaluation of the in vivo antimalarial activity of the decoction, administered orally twice daily, was assessed by the classical four-day suppressive test against P. berghei NK65 in mice. RESULTS: The decoction displayed a good antiplasmodial activity in vitro against the three tested strains, regardless to the bioassay used, with IC50 values of 3.3µg/mL and 10.3µg/mL against P. falciparum FcB1 and NF54, respectively and 19.0µg/mL against P. falciparum 7G8. It also exhibited significant anti-inflammatory activity in vitro in a dose dependent manner. At a concentration of 50µg/mL, the decoction inhibited the secretion of the following pro-inflammatory cytokines: TNFα (-18%), IL-1ß (-58%), IL-6 (-32%), IL-8 (-21%). It also exhibited a mild NO secretion inhibition (-13%) at the same concentration. The decoction was non-cytotoxic against L6 cells (IC50>100µg/mL), RAW cells and PBMC. In vivo, 150µL of the decoction given orally twice a day (equivalent to 350mg/kg/day of dried extract) inhibited 39.7% average parasite growth, with more than 50% of inhibition in three mice over five. The absence of response for the two remaining mice, however, induced a strong standard deviation. CONCLUSIONS: This study highlighted the in vitro antiplasmodial activity of the decoction of P. acutangulum aerial parts, used by Wayana Amerindians from the Upper-Maroni in French Guiana in case of malaria. Its antioxidant and anti-inflammatory potential, which may help to explain its use against this disease, was demonstrated using models of artificially stimulated cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antimalarials/pharmacology , Antiprotozoal Agents/pharmacology , Myrtaceae/chemistry , Plant Extracts/pharmacology , Plasmodium falciparum/drug effects , Psidium/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antiprotozoal Agents/chemistry , Cell Line , Chloroquine/pharmacology , Ethnopharmacology/methods , French Guiana , Humans , Interleukins/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/metabolism , Mice , Nitric Oxide/metabolism , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Tumor Necrosis Factor-alpha/metabolism
12.
Antimicrob Agents Chemother ; 59(6): 3271-80, 2015.
Article in English | MEDLINE | ID: mdl-25801563

ABSTRACT

4-Nerolidylcatechol (1) is an abundant antiplasmodial metabolite that is isolated from Piper peltatum roots. O-Acylation or O-alkylation of compound 1 provides derivatives exhibiting improved stability and significant in vitro antiplasmodial activity. The aim of this work was to study the in vitro inhibition of hemozoin formation, inhibition of isoprenoid biosynthesis in Plasmodium falciparum cultures, and in vivo antimalarial activity of several 4-nerolidylcatechol derivatives. 1,2-O,O-Diacetyl-4-nerolidylcatechol (2) inhibited in vitro hemozoin formation by up to 50%. In metabolic labeling studies using [1-(n)-(3)H]geranylgeranyl pyrophosphate, diester 2: significantly inhibited the biosynthesis of isoprenoid metabolites ubiquinone 8, menaquinone 4, and dolichol 12 in cultures of P. falciparum 3D7. Similarly, 2-O-benzyl-4-nerolidylcatechol (3) significantly inhibited the biosynthesis of dolichol 12. P. falciparum in vitro protein synthesis was not affected by compounds 2 or 3. At oral doses of 50 mg per kg of body weight per day, compound 2 suppressed Plasmodium berghei NK65 in infected BALB/c mice by 44%. This in vivo result for derivative 2 represents marked improvement over that obtained previously for natural product 1. Compound 2 was not detected in mouse blood 1 h after oral ingestion or in mixtures with mouse blood/blood plasma in vitro. However, it was detected after in vitro contact with human blood or blood plasma. Derivatives of 4-nerolidylcatechol exhibit parasite-specific modes of action, such as inhibition of isoprenoid biosynthesis and inhibition of hemozoin formation, and they therefore merit further investigation for their antimalarial potential.


Subject(s)
Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Catechols/pharmacokinetics , Catechols/therapeutic use , Malaria, Falciparum/drug therapy , Animals , Electrophoresis, Polyacrylamide Gel , Female , Malaria, Falciparum/metabolism , Mice , Mice, Inbred BALB C , Plasmodium berghei/drug effects , Plasmodium berghei/pathogenicity , Plasmodium falciparum/drug effects , Plasmodium falciparum/pathogenicity , Reverse Transcriptase Polymerase Chain Reaction
13.
PLoS One ; 9(2): e88420, 2014.
Article in English | MEDLINE | ID: mdl-24516657

ABSTRACT

Plasmodium falciparum (Pf) malaria causes 200 million cases worldwide, 8 million being severe and complicated leading to ∼1 million deaths and ∼100,000 abortions annually. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) has been implicated in cytoadherence and infected erythrocyte rosette formation, associated with cerebral malaria; chondroitin sulphate-A attachment and infected erythrocyte sequestration related to pregnancy-associated malaria and other severe forms of disease. An endothelial cell high activity binding peptide is described in several of this ∼300 kDa hypervariable protein's domains displaying a conserved motif (GACxPxRRxxLC); it established H-bonds with other binding peptides to mediate red blood cell group A and chondroitin sulphate attachment. This motif (when properly modified) induced PfEMP1-specific strain-transcending, fully-protective immunity for the first time in experimental challenge in Aotus monkeys, opening the way forward for a long sought-after vaccine against severe malaria.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Protozoan Proteins/metabolism , Animals , Aotidae , Chondroitin Sulfates/metabolism , Erythrocytes/immunology , Erythrocytes/metabolism , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/metabolism , Protein Binding/immunology
14.
PLoS One ; 7(10): e47913, 2012.
Article in English | MEDLINE | ID: mdl-23118907

ABSTRACT

Studies of Plasmodium falciparum invasion pathways in field isolates have been limited. Red blood cell (RBC) invasion is a complex process involving two invasion protein families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins, which are polymorphic and not fully characterized in field isolates. To determine the various P. falciparum invasion pathways used by parasite isolates from South America, we studied the invasion phenotypes in three regions: Colombia, Peru and Brazil. Additionally, polymorphisms in three members of the EBL (EBA-181, EBA-175 and EBL-1) and five members of the PfRh (PfRh1, PfRh2a, PfRh2b, PfRh4, PfRh5) families were determined. We found that most P. falciparum field isolates from Colombia and Peru invade RBCs through an atypical invasion pathway phenotypically characterized as resistant to all enzyme treatments (NrTrCr). Moreover, the invasion pathways and the ligand polymorphisms differed substantially among the Colombian and Brazilian isolates while the Peruvian isolates represent an amalgam of those present in the Colombian and Brazilian field isolates. The NrTrCr invasion profile was associated with the presence of the PfRh2a pepC variant, the PfRh5 variant 1 and EBA-181 RVNKN variant. The ebl and Pfrh expression levels in a field isolate displaying the NrTrCr profile also pointed to PfRh2a, PfRh5 and EBA-181 as being possibly the major players in this invasion pathway. Notably, our studies demonstrate the uniqueness of the Peruvian P. falciparum field isolates in terms of their invasion profiles and ligand polymorphisms, and present a unique opportunity for studying the ability of P. falciparum parasites to expand their invasion repertoire after being reintroduced to human populations. The present study is directly relevant to asexual blood stage vaccine design focused on invasion pathway proteins, suggesting that regional invasion variants and global geographical variation are likely to preclude a simple one size fits all type of vaccine.


Subject(s)
Erythrocytes , Malaria, Falciparum , Plasmodium falciparum , Protozoan Proteins , Animals , Erythrocytes/cytology , Erythrocytes/immunology , Erythrocytes/parasitology , Humans , Ligands , Malaria Vaccines/immunology , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Phenotype , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Plasmodium falciparum/pathogenicity , Polymorphism, Genetic , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , Reticulocytes/metabolism , Reticulocytes/parasitology , South America
15.
Biochem Biophys Res Commun ; 389(4): 586-92, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-19748487

ABSTRACT

Plasmodium falciparum, the most lethal malarial parasite, expresses an ortholog for the protein kinase C (PKC) activator RACK1. However, PKC has not been identified in this parasite, and the mammalian RACK1 can interact with the inositol 1,4,5-trisphosphate receptor (InsP3R). Therefore we investigated whether the Plasmodium ortholog PfRACK also can affect InsP3R-mediated Ca(2+) signaling in mammalian cells. GFP-tagged PfRACK and endogenous RACK1 were expressed in a similar distribution within cells. PfRACK inhibited agonist-induced Ca(2+) signals in cells expressing each isoform of the InsP3R, and this effect persisted when expression of endogenous RACK1 was reduced by siRNA. PfRACK also inhibited Ca(2+) signals induced by photorelease of caged InsP3. These findings provide evidence that PfRACK directly inhibits InsP3-mediated Ca(2+) signaling in mammalian cells. Interference with host cell signaling pathways to subvert the host intracellular milieu may be an important mechanism for parasite survival.


Subject(s)
Calcium Signaling , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Receptors, Cell Surface/metabolism , Animals , Cell Line , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum/pathogenicity , Receptors for Activated C Kinase , Receptors, Cell Surface/genetics
16.
Biomedica ; 28(4): 523-30, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19462557

ABSTRACT

INTRODUCTION: Studies on the molecular epidemiology of antimalarial resistance constitute a useful tool to understand the events underlying treatment failure and resistance in falciparum malaria in Colombia. Several authors have reported on the efficacy of some molecular markers to predict drug resistance in Plasmodium falciparum. The P. falciparum pfcrt gene has been widely characterized in this context. OBJECTIVE: The frequency of pfcrt gene mutations in P. falciparum were associated with treatment failure to the antimalarials chloroquine, mefloquine, amodiaquine and sulfadoxine/pyrimethamine. MATERIALS AND METHODS: A representative sample of 172 patients with non-complicated falciparum malaria was selected from two highly malaria-endemic areas of northeastern Colombia, the Turbo and Bajo Cauca regions. These patients were assessed for treatment response together with the status of codons 72, 74, 75 and 76 in the pfcrt gene using a PCR-RFLP approach. RESULTS: A high frequency of treatment failure to chloroquine (82%) and to amodiaquine (29%) was confirmed, whereas mefloquine and combined therapy remained effective. The presence of the T76 mutation in pfcrt was confirmed in all samples. The most common haplotype was CMNT (67%). CONCLUSIONS: No significant association was confirmed between specific haplotypes and the treatment response in any of the treatment groups. Two haplotypes, SMET and SMNT, were reported for the first time in Colombia. Twelve percent of the samples carried both mixed mutant and wild-type alleles.


Subject(s)
Haplotypes , Membrane Transport Proteins/genetics , Plasmodium falciparum/genetics , Point Mutation , Protozoan Proteins/genetics , Animals , Antimalarials/therapeutic use , Biomarkers/metabolism , Colombia , Drug Resistance , Female , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/metabolism , Male
17.
Biol Chem ; 388(1): 25-36, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17214546

ABSTRACT

Binding of P. falciparum-infected erythrocytes to vascular endothelium and to uninfected erythrocytes is mediated by the parasite-derived variant erythrocyte membrane protein PfEMP-1 and various receptors, both on the vascular endothelium and on the erythrocyte surface. Consecutive, non-overlapping peptides spanning the N-terminal segment (NTS) and Duffy-binding-like PfEMP1 sequence alpha-domain (DBLalpha) of this protein were tested in erythrocyte and C32 cell binding assays. Eight peptides specifically bound to C32 cells, and were named high-activity binding peptides (HABPs). No erythrocyte binding HABPs were found in this region. Strikingly, three HABPs [6504 ((1)MVELA KMGPK EAAGG DDIED(20)), 6505 ((21)ESAKH MFDRI GKDVY DKVKE(40)) and 6506 ((41)YRAKE RGKGL QGRLS EAKFEK(60))] are located within the NTS, for which no specific function has yet been described. HABP 6505 is neither immunogenic nor protection-inducing; therefore, based on our previous reports, critical amino acids (shown in bold) in HABP-C32 cell binding were identified and replaced to modify HABP immunogenicity and protectivity. Analogue peptide 12722 (ESAKH KFDRI GKDVY DMVKE) produced high antibody titres and completely protected three out of 12 vaccinated Aotus monkeys and 23410 (KHKFD FIGKI VYDMV KER) also produced high protection-inducing titres and completely protected one out of eight monkeys. (1)H NMR studies showed that all peptides were helical. Binding of these peptides to isolated HLADRbeta1 molecules did not reveal any preference, suggesting that they could bind to molecules not studied here.


Subject(s)
Malaria, Falciparum/immunology , Peptides/immunology , Protozoan Proteins/immunology , Amino Acid Sequence , Animals , Aotidae , Binding Sites , Blotting, Western , Erythrocytes/immunology , Erythrocytes/metabolism , Erythrocytes/parasitology , Humans , Magnetic Resonance Spectroscopy , Malaria Vaccines/chemistry , Malaria Vaccines/immunology , Malaria Vaccines/metabolism , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Tumor Cells, Cultured
18.
Acta Trop ; 98(3): 270-6, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16846568

ABSTRACT

We studied the behavior of cortisol and dehydroepiandrosterone (DHEA) in 24 patients with uncomplicated Plasmodium falciparum malaria of the Evandro Chagas Institute, Belém, Pará, Brazil. The patients were evaluated before treatment (Day 0), 24h after the beginning of medication (Day 1) and on Day 8 of follow-up (Day 7). Steroid levels were correlated with parasitemia, temperature and time of the disease. The levels of these hormones were found to be significantly higher on Day 0 than on Day 7, showing no correlation with parasitemia or temperature, but temperature had a positive effect on the correlation between cortisol and dehydroepiandrosterone. Cortisol was not correlated with the time of disease, but a significant negative correlation was observed between DHEA and time of disease on Day 7, suggesting a decline in the adrenal reserve of this steroid. In conclusion, an increase in cortisol and dehydroepiandrosterone is observed in patients with falciparum malaria, with these levels declining with decreasing parasitemia. The finding that temperature interfered with the correlation between cortisol and dehydroepiandrosterone suggests a common mechanism for the activation of these hormones in malaria.


Subject(s)
Dehydroepiandrosterone/blood , Hydrocortisone/blood , Hypothalamo-Hypophyseal System/physiology , Malaria, Falciparum/blood , Malaria, Falciparum/physiopathology , Pituitary-Adrenal System/physiology , Adolescent , Adult , Animals , Female , Humans , Malaria, Falciparum/metabolism , Male , Middle Aged , Plasmodium falciparum/isolation & purification
19.
Rev Panam Salud Publica ; 19(1): 9-22, 2006 Jan.
Article in Spanish | MEDLINE | ID: mdl-16536934

ABSTRACT

OBJECTIVES: To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. METHODS: We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina"), "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. RESULTS: Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism), as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status) influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other antimalarial drugs, the distribution in the population of the genetic alleles linked to the enzymes involved in their metabolism, the contribution of these genetic mutations to therapeutic failure, and the possibility of predicting the response to antimalarial therapy. CONCLUSIONS: The therapeutic response to antimalarial drugs is a multifactorial process that is poorly understood, so that it is not possible to ascribe to a specific phenotype or genotype a role in the response to antimalarial therapy. Attention should be given to biological and social factors, such as diet, nutritional status, and inflammatory and infectious processes that are often present in areas where malaria is endemic.


Subject(s)
Antimalarials/therapeutic use , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Malaria, Falciparum/drug therapy , Malaria/drug therapy , Administration, Oral , Adult , Amodiaquine/administration & dosage , Amodiaquine/metabolism , Amodiaquine/pharmacokinetics , Amodiaquine/therapeutic use , Animals , Antimalarials/administration & dosage , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Biotransformation , Child , Chloroquine/administration & dosage , Chloroquine/metabolism , Chloroquine/pharmacokinetics , Chloroquine/therapeutic use , Databases as Topic , Disease Models, Animal , Genotype , Humans , Malaria/metabolism , Malaria, Falciparum/metabolism , Mefloquine/administration & dosage , Mefloquine/metabolism , Mefloquine/pharmacokinetics , Mefloquine/therapeutic use , Mice , Murinae , Mutation , Nutritional Status , Phenotype , Plasmodium berghei , Polymorphism, Genetic , Proguanil/administration & dosage , Proguanil/metabolism , Proguanil/pharmacokinetics , Proguanil/therapeutic use , Rats
20.
Rev. panam. salud pública ; 19(1): 9-22, ene. 2006. tab
Article in Spanish | LILACS | ID: lil-431741

ABSTRACT

OBJETIVOS: Evaluar la relación entre los factores genéticos y fenotípicos del sistema enzimático del citocromo P-450 y la respuesta terapéutica antimalárica a la cloroquina, la amodiaquina, la mefloquina y el proguanil, así como determinar la influencia de algunos factores biológicos y sociales del hospedero en el comportamiento de este complejo enzimático. MÉTODOS: Revisión sistemática de las bases de literatura biomédica PubMed, Excerpta Medica, LILACS y SciELO mediante descriptores en español e inglés. Se usaron los siguientes descriptores: "CYP-450" y "citocromo P-450" y sus combinaciones con "proguanil" (y lo mismo con "mefloquina", "cloroquina" y "amodiaquina"), "farmacocinética de proguanil" (y lo mismo con "mefloquina", "cloroquina" y "amodiaquina"), "resistencia a proguanil" (y lo mismo con "mefloquina", "cloroquina" y "amodiaquina"), "metabolismo", "farmacogenética", "enfermedad", "inflamación", "infección", "enfermedad hepática", "malaria", "nutrición" y "desnutrición". Estos mismos términos se usaron en inglés. La búsqueda se limitó a los artículos publicados en español, inglés y portugués hasta el 30 de junio de 2005 y a cuatro medicamentos antimaláricos: amodiaquina, cloroquina, mefloquina y proguanil. RESULTADOS: Algunos factores genéticos del citocromo P-450 humano (principalmente su polimorfismo), así como otros de tipo biológico y social (la propia presencia de enfermedad, inflamación o infección, la administración de medicamentos antimaláricos y su combinación, y el estado nutricional del paciente), influyen en la actividad de ese complejo enzimático. Solo en la última década se ha abordado el estudio de las bases genéticas de los citocromos y se han podido dilucidar los mecanismos de algunas interacciones entre fármacos y del metabolismo de estos, lo que ha permitido caracterizar el proceso de biotransformación de la amodiaquina y de la cloroquina. Se espera que nuevas investigaciones permitan responder a las interrogantes que aún subsisten, entre ellas cuál es la ruta metabólica de otros medicamentos antimaláricos, la distribución en la población de los alelos de las enzimas que participan en su metabolismo, y la contribución de tales mutaciones al fracaso terapéutico, y predecir la respuesta a los tratamientos antimaláricos. CONCLUSIONES. La respuesta terapéutica a los medicamentos antimaláricos es un proceso multifactorial y poco comprendido, por lo que no es posible asignar a un fenotipo o a un genotipo una determinada responsabilidad en la respuesta terapéutica antimalárica. Se debe contemplar la influencia de factores biológicos y sociales, tales como la alimentación, el estado nutricional y cualquier proceso inflamatorio e infeccioso concomitante, que puedan ser frecuentes en las zonas con malaria endémica.


OBJECTIVES. To assess the relationship between the genetic and phenotypic factors linked to the cytochrome P-450 enzyme system and the response to the antimalarial drugs chloroquine, amodiaquine, mefloquine, and proguanil, as well as to determine how certain biological and social factors of the host influence the behavior of this enzymatic complex. METHODS. We performed a systematic review of the medical bibliographic databases PubMed, Excerpta Medica, LILACS, and SciELO by using the following Spanish and English descriptors: "CYP-450" and "citocromo P-450" in combination with "proguanil" (and with "mefloquina," "cloroquina," and "amodiaquina"), "farmacocinética de proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "resistencia a proguanil" (and the same using "mefloquina," "cloroquina," and "amodiaquina"), "metabolismo," "farmacogenética," "enfermedad," "inflamación," "infección," "enfermedad hepática," "malaria," "nutrición," and "desnutrición." The same terms were used in English. The search included only articles published in Spanish, English, and Portuguese on or before 30 June 2005 that dealt with only four antimalarial drugs: amodiaquine, chloroquine, mefloquine, and proguanil. RESULTS. Some genetic factors linked to human cytochrome P-450 (mainly its polymorphism), as well as other biological and social factors (the presence of disease itself, or of inflammation and infection, the use of antimalarials in their various combinations, and the patient's nutritional status) influence the behavior of this complex enzymatic system. It has only been in the last decade that the genetics of the cytochromes has been explored and that the mechanisms underlying some therapeutic interactions and aspects of drug metabolism have been uncovered, making it possible to characterize the biotransformation pathway of amodiaquine and chloroquine. Hopefully new research will help answer the questions that still remain, some of which pertain to the metabolism of other antimalarial drugs, the distribution in the population of the genetic alleles linked to the enzymes involved in their metabolism, the contribution of these genetic mutations to therapeutic failure, and the possibility of predicting the response to antimalarial therapy. CONCLUSIONS. The therapeutic response to antimalarial drugs is a multifactorial process that is poorly understood, so that it is not possible to ascribe to a specific phenotype or genotype a role in the response to antimalarial therapy. Attention should be given to biological and social factors, such as diet, nutritional status, and inflammatory and infectious processes that are often present in areas where malaria is endemic.


Subject(s)
Humans , Animals , Child , Adult , Mice , Rats , Antimalarials/therapeutic use , /genetics , /metabolism , Malaria, Falciparum/drug therapy , Malaria/drug therapy , Administration, Oral , Amodiaquine/administration & dosage , Amodiaquine/metabolism , Amodiaquine/pharmacokinetics , Amodiaquine/therapeutic use , Antimalarials/administration & dosage , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Biotransformation , Proguanil/administration & dosage , Proguanil/metabolism , Proguanil/pharmacokinetics , Proguanil/therapeutic use , Chloroquine/administration & dosage , Chloroquine/metabolism , Chloroquine/pharmacokinetics , Chloroquine/therapeutic use , Databases as Topic , Disease Models, Animal , Genotype , Malaria, Falciparum/metabolism , Malaria/metabolism , Mefloquine/administration & dosage , Mefloquine/metabolism , Mefloquine/pharmacokinetics , Mefloquine/therapeutic use , Murinae , Mutation , Nutritional Status , Phenotype , Plasmodium berghei , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL