Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.780
Filter
1.
Front Immunol ; 15: 1392043, 2024.
Article in English | MEDLINE | ID: mdl-38962015

ABSTRACT

In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Malaria Vaccines , Malaria, Vivax , Mice, Inbred BALB C , Plasmodium vivax , Protozoan Proteins , Animals , Plasmodium vivax/immunology , Plasmodium vivax/genetics , Mice , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Female , Protozoan Proteins/immunology , Protozoan Proteins/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, B-Lymphocyte/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Disease Models, Animal , Adjuvants, Immunologic , Immunogenicity, Vaccine , Antigens, Surface
3.
Malar J ; 23(1): 202, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971786

ABSTRACT

BACKGROUND: Plasmodium vivax malaria is still an important public health problem in Ethiopia. Unlike Plasmodium falciparum, P. vivax has a dormant liver stage (hypnozoite) that can be a risk of recurrent vivax malaria unless treated by radical cure with primaquine. Drug resistance to chloroquine is threatening malaria control and elimination efforts. This study assessed the therapeutic efficacy and safety of chloroquine plus 14 days of primaquine on P. vivax infection based on parasitological, clinical, and haematological parameters. METHODS: A single-arm in vivo prospective therapeutic efficacy study was conducted to assess the clinical and parasitological response to the first-line treatment of P. vivax in Ethiopia, chloroquine plus 14 days low dose of (0.25 mg/kg/day) primaquine between December 2022 and March 2023 at Hamusit Health Centre using the standard World Health Organization (WHO) protocol. A total of 100 study participants with P. vivax mono-infection who were over 6 months old were enrolled and monitored for adequate clinical and parasitological responses for 42 days. The WHO double-entry Excel sheet and SPSS v.25 software were used for Kaplan-Meier survival analysis, and a paired t-test was used for analysis of haemoglobin improvements between follow up days. RESULTS: A total of 100 patients were enrolled among those, 96% cases were rural residents, 93% had previous malaria exposure, and predominant age group was 5-15 years (61%). 92.6% (95% CI 85.1-96.4%) of enrolled patients were adequate clinical and parasitological response, and 7.4% (95% CI 3.6-14.9%) recurrences were observed among treated patients. The fever and parasite clearance rate on day 3 were 98% and 94%, respectively. The baseline haemoglobin levels improved significantly compared to those days 14 and 42 (p < 0.001). No serious adverse event was observed during the study period. CONCLUSIONS: In this study, co-administration of chloroquine with primaquine was efficacious and well-tolerated with fast resolution of fever and high parasites clearance rate. However, the 7.4% failure is reported is alarming that warrant further monitoring of the therapeutic efficacy study of P. vivax.


Subject(s)
Antimalarials , Chloroquine , Drug Therapy, Combination , Malaria, Vivax , Plasmodium vivax , Primaquine , Malaria, Vivax/drug therapy , Chloroquine/therapeutic use , Chloroquine/administration & dosage , Chloroquine/adverse effects , Primaquine/therapeutic use , Primaquine/administration & dosage , Ethiopia , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Antimalarials/adverse effects , Humans , Adolescent , Male , Adult , Young Adult , Female , Child , Prospective Studies , Middle Aged , Child, Preschool , Plasmodium vivax/drug effects , Aged
4.
PLoS One ; 19(7): e0304337, 2024.
Article in English | MEDLINE | ID: mdl-38968216

ABSTRACT

BACKGROUND: Plasmodium vivax has become the predominant species in the border regions of Thailand. The emergence and spread of antimalarial drug resistance in P. vivax is one of the significant challenges for malaria control. Continuous surveillance of drug resistance is therefore necessary for monitoring the development of drug resistance in the region. This study aims to investigate the prevalence of the mutation in the P. vivax multidrug resistant 1 (Pvmdr1), dihydrofolate reductase (Pvdhfr), and dihydropteroate synthetase (Pvdhps) genes conferred resistance to chloroquine (CQ), pyrimethamine (P) and sulfadoxine (S), respectively. METHOD: 100 P. vivax isolates were obtained between January to May 2023 from a Kanchanaburi province, western Thailand. Nucleotide sequences of Pvmdr1, Pvdhfr, and Pvdhps genes were amplified and sequenced. The frequency of single nucleotide polymorphisms (SNPs)-haplotypes of drug-resistant alleles was assessed. The linkage disequilibrium (LD) tests were also analyzed. RESULTS: In Pvmdr1, T958M, Y976F, and F1076L, mutations were detected in 100%, 21%, and 23% of the isolates, respectively. In Pvdhfr, the quadruple mutant allele (I57R58M61T117) prevailed in 84% of the samples, followed by (L57R58M61T117) in 11%. For Pvdhps, the double mutant allele (G383G553) was detected (48%), followed by the triple mutant allele (G383M512G553) (47%) of the isolates. The most prevalent combination of Pvdhfr (I57R58M61T117) and Pvdhps (G383G553) alleles was sextuple mutated haplotypes (48%). For LD analysis, the association in the SNPs pairs was found between the intragenic and intergenic regions of the Pvdhfr and Pvdhps genes. CONCLUSION: The study has recently updated the high prevalence of three gene mutations associated with CQ and SP resistance. Genetic monitoring is therefore important to intensify in the regions to further assess the spread of drug resistant. Our data also provide evidence on the distribution of drug resistance for the early warning system, thereby threatening P. vivax malaria treatment policy decisions at the national level.


Subject(s)
Antimalarials , Drug Resistance , Malaria, Vivax , Plasmodium vivax , Polymorphism, Single Nucleotide , Plasmodium vivax/genetics , Plasmodium vivax/drug effects , Plasmodium vivax/isolation & purification , Thailand/epidemiology , Drug Resistance/genetics , Humans , Antimalarials/pharmacology , Malaria, Vivax/parasitology , Malaria, Vivax/epidemiology , Malaria, Vivax/drug therapy , Tetrahydrofolate Dehydrogenase/genetics , Linkage Disequilibrium , Mutation , Protozoan Proteins/genetics , Chloroquine/pharmacology , Dihydropteroate Synthase/genetics , Sulfadoxine/pharmacology , Pyrimethamine/pharmacology , Multidrug Resistance-Associated Proteins/genetics , Haplotypes , Male , Female , Adult
5.
Sci Rep ; 14(1): 16187, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003288

ABSTRACT

Asymptomatic malaria can impact existing malaria control and elimination efforts around the world, particularly in Africa, where the majority of malaria cases and death occurs. This is a cross-sectional study aimed to determine the prevalence and predictors of asymptomatic malaria among migrant farmworkers from June to July 2020 in the Upper Awash Agro-industry, East Shewa zone, Oromia Regional State, Ethiopia. A total of 254 migrant farmworkers without signs and symptoms of malaria were enrolled. Data on socio-demographic characteristics and malaria prevention practices were obtained through a structured questionnaire. Venous blood samples were collected and diagnosed using microscopy, rapid diagnostic tests, and polymerase chain reaction (PCR). Data were coded, entered, and analyzed using SPSS version-21 statistical software. Multivariable logistic regression was used to assess associated factors. A p < 0.05 was considered statistically significant. The overall prevalence of asymptomatic malaria among farmworkers in this study was 5.1% [95% CI 1.6, 6.7]. The proportions of Plasmodium falciparum was 90.0% (9/10) while it was 10.0% (1/10) for Plasmodium vivax. Out of the microscopy and/or RDT-confirmed malaria cases, (n = 9; 100%) were confirmed to be P. falciparum by nested PCR, while (n = 3/122; 2.46%) were found to be P. falciparum among 50% negative cases with the microscopy and/or RDT. The gametocyte stage was detected in 40% of microscopically positive cases out of which 44.4% belongs to P. falciparum. Home area/origin of migrant laborers [AOR = 6.08, (95% CI 1.08, 34.66)], family history of malaria [AOR = 8.15, (95% CI 1.43, 46.44)], and outdoor sleeping [AOR = 10.14, (95% CI 1.15, 89.14)] were significantly associated with asymptomatic malaria. In conclusion, asymptomatic malaria was detected among farmworkers in the study area and it was significantly associated with outdoor sleeping, home area, and family history of malaria. Prevention tools and control strategies, particularly focusing on migrant farmworkers, should be considered to support the ongoing malaria control and elimination effort in Ethiopia.


Subject(s)
Farmers , Transients and Migrants , Humans , Ethiopia/epidemiology , Transients and Migrants/statistics & numerical data , Female , Male , Adult , Cross-Sectional Studies , Prevalence , Young Adult , Adolescent , Malaria/epidemiology , Malaria/parasitology , Middle Aged , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Asymptomatic Infections/epidemiology , Plasmodium vivax/isolation & purification , Risk Factors , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology
6.
Protein Sci ; 33(8): e5095, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38988315

ABSTRACT

The Duffy-binding protein (DBP) is a promising antigen for a malaria vaccine that would protect against clinical symptoms caused by Plasmodium vivax infection. Region II of DBP (DBP-II) contains the receptor-binding domain that engages host red blood cells, but DBP-II vaccines elicit many non-neutralizing antibodies that bind distal to the receptor-binding surface. Here, we engineered a truncated DBP-II immunogen that focuses the immune response to the receptor-binding surface. This immunogen contains the receptor-binding subdomain S1S2 and lacks the immunodominant subdomain S3. Structure-based computational design of S1S2 identified combinatorial amino acid changes that stabilized the isolated S1S2 without perturbing neutralizing epitopes. This immunogen elicited DBP-II-specific antibodies in immunized mice that were significantly enriched for blocking activity compared to the native DBP-II antigen. This generalizable design process successfully stabilized an integral core fragment of a protein and focused the immune response to desired epitopes to create a promising new antigen for malaria vaccine development.


Subject(s)
Antibodies, Protozoan , Antigens, Protozoan , Epitopes , Malaria Vaccines , Plasmodium vivax , Protozoan Proteins , Receptors, Cell Surface , Protozoan Proteins/immunology , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Antigens, Protozoan/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Plasmodium vivax/immunology , Animals , Malaria Vaccines/immunology , Malaria Vaccines/chemistry , Epitopes/immunology , Epitopes/chemistry , Mice , Antibodies, Protozoan/immunology , Receptors, Cell Surface/immunology , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Models, Molecular , Malaria, Vivax/immunology , Malaria, Vivax/prevention & control , Mice, Inbred BALB C
7.
PLoS Negl Trop Dis ; 18(7): e0012299, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38959285

ABSTRACT

An improved understanding of the Plasmodium vivax populations in the Great Mekong Subregion (GMS) is needed to monitor the progress of malaria elimination. This study aimed to use a P. vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics and explore the gene flow among P. vivax parasite populations in the western GMS (China, Myanmar and Thailand). A total of 315 P. vivax patient samples collected in 2011 and 2018 from four regions of the western GMS were genotyped for 42 SNPs using the high-throughput MassARRAY SNP genotyping technology. Population genetic analysis was conducted to estimate the genetic diversity, effective population size, and population structure among the P. vivax populations. Overall, 291 samples were successfully genotyped at 39 SNPs. A significant difference was observed in the proportion of polyclonal infections among the five P. vivax populations (P = 0.0012, Pearson Chi-square test, χ2 = 18.1), with western Myanmar having the highest proportion (96.2%, 50/52) in 2018. Likewise, the average complexity of infection was also highest in western Myanmar (1.31) and lowest in northeast Myanmar (1.01) in 2018. The older samples from western China in 2011 had the highest pairwise nucleotide diversity (π, 0.388 ± 0.046), expected heterozygosity (He, 0.363 ± 0.02), and the largest effective population size. In comparison, in the neighboring northeast Myanmar, the more recent samples in 2018 showed the lowest values (π, 0.224 ± 0.036; He, 0.220 ± 0.026). Furthermore, the 2018 northeast Myanmar parasites showed high and moderate genetic differentiation from other populations with FST values of 0.162-0.252, whereas genetic differentiation among other populations was relatively low (FST ≤ 0.059). Principal component analysis, phylogeny, and STRUCTURE analysis showed that the P. vivax population in northeast Myanmar in 2018 substantially diverged from other populations. Although the 42 SNP barcode is a valuable tool for tracking parasite origins of worldwide parasite populations, a more extended barcode with additional SNPs is needed to distinguish the more related parasite populations in the western GMS.


Subject(s)
DNA Barcoding, Taxonomic , Malaria, Vivax , Plasmodium vivax , Polymorphism, Single Nucleotide , Plasmodium vivax/genetics , Plasmodium vivax/classification , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/epidemiology , Myanmar/epidemiology , Thailand/epidemiology , Genotype , China/epidemiology , Genetic Variation , Gene Flow
8.
PeerJ ; 12: e17632, 2024.
Article in English | MEDLINE | ID: mdl-38948214

ABSTRACT

Background: The integration of diagnostic methods holds promise for advancing the surveillance of malaria transmission in both endemic and non-endemic regions. Serological assays emerge as valuable tools to identify and delimit malaria transmission, serving as a complementary method to rapid diagnostic tests (RDT) and thick smear microscopy. Here, we evaluate the potential of antibodies directed against peptides encompassing the entire amino acid sequence of the PvMSP-1 Sal-I strain as viable serological biomarkers for P. vivax exposure. Methods: We screened peptides encompassing the complete amino acid sequence of the Plasmodium vivax Merozoite Surface Protein 1 (PvMSP-1) Sal-I strain as potential biomarkers for P. vivax exposure. Here, immunodominant peptides specifically recognized by antibodies from individuals infected with P. vivax were identified using the SPOT-synthesis technique followed by immunoblotting. Two 15-mer peptides were selected based on their higher and specific reactivity in immunoblotting assays. Subsequently, peptides p70 and p314 were synthesized in soluble form using SPPS (Solid Phase Peptide Synthesis) and tested by ELISA (IgG, and subclasses). Results: This study unveils the presence of IgG antibodies against the peptide p314 in most P. vivax-infected individuals from the Brazilian Amazon region. In silico B-cell epitope prediction further supports the utilization of p314 as a potential biomarker for evaluating malaria transmission, strengthened by its amino acid sequence being part of a conserved block of PvMSP-1. Indeed, compared to patients infected with P. falciparum and uninfected individuals never exposed to malaria, P. vivax-infected patients have a notably higher recognition of p314 by IgG1 and IgG3.


Subject(s)
Antibodies, Protozoan , Biomarkers , Malaria, Vivax , Merozoite Surface Protein 1 , Plasmodium vivax , Humans , Malaria, Vivax/immunology , Malaria, Vivax/blood , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Malaria, Vivax/diagnosis , Merozoite Surface Protein 1/immunology , Plasmodium vivax/immunology , Biomarkers/blood , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood , Immunoglobulin G/immunology , Immunoglobulin G/blood , Adult , Female , Male , Middle Aged , Peptides/immunology , Enzyme-Linked Immunosorbent Assay/methods , Young Adult , Adolescent , Amino Acid Sequence
9.
Sci Rep ; 14(1): 16291, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009685

ABSTRACT

Hard-to-reach communities represent Peru's main challenge for malaria elimination, but information about transmission in these areas is scarce. Here, we assessed Plasmodium vivax (Pv) and P. falciparum (Pf) transmission dynamics, resistance markers, and Pf hrp2/3 deletions in Nueva Jerusalén (NJ), a remote, indigenous community in the Peruvian Amazon with high population mobility. We collected samples from November 2019 to May 2020 by active (ACD) and passive case detection (PCD) in NJ. Parasites were identified with microscopy and PCR. Then, we analyzed a representative set of positive-PCR samples (Pv = 68, Pf = 58) using highly-multiplexed deep sequencing assays (AmpliSeq) and compared NJ parasites with ones from other remote Peruvian areas using population genetics indexes. The ACD intervention did not reduce malaria cases in the short term, and persistent malaria transmission was observed (at least one Pv infection was detected in 96% of the study days). In Nueva Jerusalen, the Pv population had modest genetic diversity (He = 0.27). Pf population had lower diversity (He = 0.08) and presented temporal clustering, one of these clusters linked to an outbreak in February 2020. Moreover, Pv and Pf parasites from NJ exhibited variable levels of differentiation (Pv Fst = 0.07-0.52 and Pf Fst = 0.11-0.58) with parasites from other remote areas. No artemisin resistance mutations but chloroquine (57%) and sulfadoxine-pyrimethamine (35-67%) were detected in NJ's Pf parasites. Moreover, pfhrp2/3 gene deletions were common (32-50% of parasites with one or both genes deleted). The persistent Pv transmission and the detection of a Pf outbreak with parasites genetically distinct from the local ones highlight the need for tailored interventions focusing on mobility patterns and imported infections in remote areas to eliminate malaria in the Peruvian Amazon.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Protozoan Proteins , Peru/epidemiology , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Protozoan Proteins/genetics , Female , Male , Child , Adult , Antimalarials/therapeutic use , Antimalarials/pharmacology , Adolescent , Drug Resistance/genetics , Middle Aged , Indigenous Peoples/genetics , Young Adult , Child, Preschool , Genomics/methods , Genetic Variation , Antigens, Protozoan/genetics
10.
Malar J ; 23(1): 209, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010126

ABSTRACT

BACKGROUND: Malaria remains a global health challenge, particularly in Peru's Loreto region. Despite ongoing efforts, high infection rates and asymptomatic cases perpetuate transmission. The Peruvian Ministry of Health's "Zero Malaria Plan" targets elimination. This novel study combines microscopic, molecular, and serological techniques to assess transmission intensity, identify epidemiological risk factors, and characterize species-specific patterns across villages. The findings aim to inform targeted interventions and support broader malaria elimination efforts in line with the Zero Malaria Plan initiative. METHODS: A cross-sectional malaria survey was conducted in the Zungarococha community, comprising the villages Llanchama (LL), Ninarumi (NI), Puerto Almendra (PA), and Zungarococha (ZG), using microscopic, molecular, and serological techniques to evaluate malaria transmission intensity. Statistical analysis, including multivariate-adjusted analysis, seroprevalence curves, and spatial clustering analysis, were performed to assess malaria prevalence, exposure, and risk factors. RESULTS: The survey revealed a high prevalence of asymptomatic infections (6% by microscopy and 18% by PCR), indicating that molecular methods are more sensitive for detecting asymptomatic infections. Seroprevalence varied significantly between villages, reflecting the heterogeneous malaria transmission dynamics. Multivariate analysis identified age, village, and limited bed net use as significant risk factors for malaria infection and species-specific exposure. Seroprevalence curves demonstrated community-specific patterns, with Llanchama and Puerto Almendra showing the highest seroconversion rates for both Plasmodium species. CONCLUSIONS: The study highlights the diverse nature of malaria transmission in the Loreto region, particularly nothing the pronounced heterogeneity as transmission rates decline, especially in residual malaria scenarios. The use of molecular and serological techniques enhances the detection of current infections and past exposure, aiding in the identification of epidemiological risk factors. These findings underscore the importance of using molecular and serological tools to characterize malaria transmission patterns in low-endemic areas, which is crucial for planning and implementing targeted interventions and elimination strategies. This is particularly relevant for initiatives like the Zero Malaria Plan in the Peruvian Amazon.


Subject(s)
Malaria , Peru/epidemiology , Cross-Sectional Studies , Humans , Child, Preschool , Adult , Adolescent , Male , Female , Child , Middle Aged , Young Adult , Infant , Aged , Seroepidemiologic Studies , Prevalence , Risk Factors , Malaria/transmission , Malaria/epidemiology , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Aged, 80 and over , Malaria, Vivax/transmission , Malaria, Vivax/epidemiology , Infant, Newborn
11.
Front Cell Infect Microbiol ; 14: 1408451, 2024.
Article in English | MEDLINE | ID: mdl-38828264

ABSTRACT

Recent studies indicate that human spleen contains over 95% of the total parasite biomass during chronic asymptomatic infections caused by Plasmodium vivax. Previous studies have demonstrated that extracellular vesicles (EVs) secreted from infected reticulocytes facilitate binding to human spleen fibroblasts (hSFs) and identified parasite genes whose expression was dependent on an intact spleen. Here, we characterize the P. vivax spleen-dependent hypothetical gene (PVX_114580). Using CRISPR/Cas9, PVX_114580 was integrated into P. falciparum 3D7 genome and expressed during asexual stages. Immunofluorescence analysis demonstrated that the protein, which we named P. vivax Spleen-Dependent Protein 1 (PvSDP1), was located at the surface of infected red blood cells in the transgenic line and this localization was later confirmed in natural infections. Plasma-derived EVs from P. vivax-infected individuals (PvEVs) significantly increased cytoadherence of 3D7_PvSDP1 transgenic line to hSFs and this binding was inhibited by anti-PvSDP1 antibodies. Single-cell RNAseq of PvEVs-treated hSFs revealed increased expression of adhesion-related genes. These findings demonstrate the importance of parasite spleen-dependent genes and EVs from natural infections in the formation of intrasplenic niches in P. vivax, a major challenge for malaria elimination.


Subject(s)
Extracellular Vesicles , Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Spleen , Extracellular Vesicles/metabolism , Plasmodium vivax/genetics , Plasmodium vivax/metabolism , Humans , Spleen/metabolism , Spleen/parasitology , Malaria, Vivax/parasitology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Erythrocytes/parasitology , Erythrocytes/metabolism , Fibroblasts/parasitology , Fibroblasts/metabolism , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Cell Adhesion , Host-Parasite Interactions
12.
J Vector Borne Dis ; 61(2): 183-194, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38922652

ABSTRACT

BACKGROUND OBJECTIVES: Following World Health Organization (WHO) plans for thirty-five malaria-endemic countries, Indonesia will eliminate malaria by 2030. As one of the Indonesian provinces, West Java targeted subnational malaria elimination in 2022. This article aims to describe malaria surveillance data and elimination programs, including weaknesses in sustaining the program. METHODS: This study used secondary data from malaria surveillance information system regencies/cities' case reports for 2019-2022 and achievement data of sub-national malaria elimination certification from each regency/city from 2014-2022. The data was confirmed from the evaluation study document, analysis of reported cases, and interviews. RESULTS: Most cases were confirmed by microscopic examination (84.1% in 2021 and 94.4% in 2022) and rapid diagnostic tests (57% in 2019 and 58.1% in 2020). Malaria is more prevalent among men (93% in 2019, 95% in 2020, 96% in 2021, and 95.9% in 2022) and productive ages of 15-64 years (98.8% in 2019, 100% in 2020, 99.2% in 2021, and 98.8% in 2022), frequently occurs in the military (56.3% in 2019, 75.7% in 2020, 45.2% in 2021) and police (40.5% in 2022), often uses passive case detection for identifying cases (97.9% in 2019 and 2020, 95.2% in 2021, and 97.6% in 2022), and the majority undergo inpatient treatment (86.4% in 2019, 81.7% in 2021, and 82.6% in 2022). Most positive cases originated from imported cases, and last indigenous cases were still found in 2019. Plasmodium vivax dominated malaria cases and and relapses were high (55.0% in 2020, and 47.3% in 2022). INTERPRETATION CONCLUSION: All regencies/cities have obtained sub-national malaria elimination certification in 2022. West Java has the potential to be verified for Java-Bali sub-national malaria elimination targeted in 2023, albeit cases of imported malaria still occur. It is imperative to address the issue of imported cases transitioning into locally transmitted cases (introduced) by effective coordination across all regencies/cities and inter-provincial efforts.


Subject(s)
Disease Eradication , Malaria , Indonesia/epidemiology , Humans , Adolescent , Adult , Male , Middle Aged , Young Adult , Female , Child , Child, Preschool , Malaria/epidemiology , Malaria/prevention & control , Infant , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Prevalence , Aged , Infant, Newborn
13.
Sci Rep ; 14(1): 13669, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38871839

ABSTRACT

Among the factors affecting the effectiveness of malaria control is poor knowledge of the entomologic drivers of the disease. We investigated anopheline populations as part of a baseline study to implement house screening of windows and doors as a supplementary malaria control tool towards elimination in Jabi Tehnan district, Amhara Regional State of Ethiopia. The samples were surveyed monthly using CDC light traps between June 2020 and May 2021. Mosquito trap density (< 3 mosquitoes/trap) was low, however, with a high overall Plasmodium sporozoite rate (9%; indoor = 4.3%, outdoor = 13.1%) comprising P. falciparum (88.9%) and P. vivax (11.1%). Anopheles gambiae s.l., mostly An. arabiensis, comprised > 80% of total anopheline captures and contributed ~ 42% of Plasmodium-infected mosquitoes. On the other hand, morphologically scored Anopheles funestus s.l., constituting about 6% of anopheline collections, accounted for 50% of sporozoite-infected mosquitoes. Most of the infected An. funestus s.l. specimens (86.7%) were grouped with previously unknown or undescribed Anopheles species previously implicated as a cryptic malaria vector in the western Kenyan highlands, confirming its wider geographic distribution in eastern Africa. Other species with Plasmodium infection included An. longipalpis C, An. theileri, An. demillioni, and An. nili. Cumulatively, 77.8% of the infected mosquitoes occurred outdoors. These results suggest efficient malaria parasite transmission despite the low vector densities, which has implications for effective endpoint indicators to monitor malaria control progress. Additionally, the largely outdoor infection and discovery of previously unknown and cryptic vectors suggest an increased risk of residual malaria transmission and, thus, a constraint on effective malaria prevention and control.


Subject(s)
Anopheles , Mosquito Vectors , Ethiopia/epidemiology , Animals , Anopheles/parasitology , Mosquito Vectors/parasitology , Humans , Malaria/transmission , Malaria/epidemiology , Plasmodium falciparum/isolation & purification , Plasmodium falciparum/pathogenicity , Plasmodium vivax/physiology , Sporozoites , Mosquito Control/methods , Malaria, Vivax/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Female
14.
PLoS Negl Trop Dis ; 18(6): e0012197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837977

ABSTRACT

Effective radical cure of Plasmodium vivax malaria is essential for malaria elimination in Brazil. P. vivax radical cure requires administration of a schizonticide, such as chloroquine, plus an 8-aminoquinoline. However, 8-aminoquinolines cause hemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, requiring prior screening to exclude those at risk. Brazil is pioneering the implementation of tafenoquine, a single-dose 8-aminoquinoline indicated for P. vivax patients with >70% of normal G6PD activity. Tafenoquine implementation in Manaus and Porto Velho, two municipalities located in the western Brazilian Amazon, included comprehensive training of healthcare professionals (HCPs) on point-of-care quantitative G6PD testing and a new treatment algorithm for P. vivax radical cure incorporating tafenoquine. Training was initially provided to higher-level facilities (phase one) and later adapted for primary care units (phase two). This study analyzed HCP experiences during training and implementation and identified barriers and facilitators. In-depth interviews and focus discussion groups were conducted 30 days after each training for a purposive random sample of 115 HCPs. Thematic analysis was employed using MAXQDA software, analyzing data through inductive and deductive coding. Analysis showed that following the initial training for higher-level facilities, some HCPs did not feel confident performing quantitative G6PD testing and prescribing the tafenoquine regimen. Modifications to the training in phase two resulted in an improvement in understanding the implementation process of the G6PD test and tafenoquine, as well as in the knowledge acquired by HCPs. Additionally, knowledge gaps were addressed through in situ training, peer communication via a messaging app, and educational materials. Training supported effective deployment of the new tools in Manaus and Porto Velho and increased awareness of the need for pharmacovigilance. A training approach for nationwide implementation of these tools was devised. Implementing quantitative G6PD testing and tafenoquine represents a significant shift in P. vivax malaria case management. Consistent engagement with HCPs is needed to overcome challenges in fully integrating these tools within the Brazilian health system.


Subject(s)
Aminoquinolines , Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Health Personnel , Malaria, Vivax , Humans , Brazil , Malaria, Vivax/drug therapy , Malaria, Vivax/prevention & control , Antimalarials/therapeutic use , Aminoquinolines/therapeutic use , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Health Personnel/education , Female , Glucosephosphate Dehydrogenase , Male , Plasmodium vivax/drug effects , Adult
15.
Malar J ; 23(1): 183, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858696

ABSTRACT

BACKGROUND: Plasmodium vivax malaria is a leading cause of morbidity in Ethiopia. The first-line treatment for P. vivax is chloroquine (CQ) and primaquine (PQ), but there have been local reports of CQ resistance. A clinical study was conducted to determine the efficacy of CQ for the treatment of P. vivax malaria in southern Ethiopia. METHODS: In 2021, patients with P. vivax mono-infection and uncomplicated malaria were enrolled and treated with 25 mg/kg CQ for 3 consecutive days. Patients were followed for 28 days according to WHO guidelines. The data were analysed using per-protocol (PP) and Kaplan‒Meier (K‒M) analyses to estimate the risk of recurrent P. vivax parasitaemia on day 28. RESULTS: A total of 88 patients were enrolled, 78 (88.6%) of whom completed the 28 days of follow-up. Overall, 76 (97.4%) patients had adequate clinical and parasitological responses, and two patients had late parasitological failures. The initial therapeutic response was rapid, with 100% clearance of asexual parasitaemia within 48 h. CONCLUSION: Despite previous reports of declining chloroquine efficacy against P. vivax, CQ retains high therapeutic efficacy in southern Ethiopia, supporting the current national treatment guidelines. Ongoing clinical monitoring of CQ efficacy supported by advanced molecular methods is warranted to inform national surveillance and ensure optimal treatment guidelines.


Subject(s)
Antimalarials , Chloroquine , Malaria, Vivax , Malaria, Vivax/drug therapy , Chloroquine/therapeutic use , Ethiopia , Humans , Antimalarials/therapeutic use , Male , Adult , Female , Adolescent , Young Adult , Child , Middle Aged , Child, Preschool , Plasmodium vivax/drug effects , Treatment Outcome , Aged , Parasitemia/drug therapy
16.
J Korean Med Sci ; 39(22): e176, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38859739

ABSTRACT

BACKGROUND: Malaria elimination strategies in the Republic of Korea (ROK) have decreased malaria incidence but face challenges due to delayed case detection and response. To improve this, machine learning models for predicting malaria, focusing on high-risk areas, have been developed. METHODS: The study targeted the northern region of ROK, near the demilitarized zone, using a 1-km grid to identify areas for prediction. Grid cells without residential buildings were excluded, leaving 8,425 cells. The prediction was based on whether at least one malaria case was reported in each grid cell per month, using spatial data of patient locations. Four algorithms were used: gradient boosted (GBM), generalized linear (GLM), extreme gradient boosted (XGB), and ensemble models, incorporating environmental, sociodemographic, and meteorological data as predictors. The models were trained with data from May to October (2019-2021) and tested with data from May to October 2022. Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC). RESULTS: The AUROC of the prediction models performed excellently (GBM = 0.9243, GLM = 0.9060, XGB = 0.9180, and ensemble model = 0.9301). Previous malaria risk, population size, and meteorological factors influenced the model most in GBM and XGB. CONCLUSION: Machine-learning models with properly preprocessed malaria case data can provide reliable predictions. Additional predictors, such as mosquito density, should be included in future studies to improve the performance of models.


Subject(s)
Machine Learning , Malaria, Vivax , Plasmodium vivax , ROC Curve , Republic of Korea/epidemiology , Humans , Malaria, Vivax/epidemiology , Plasmodium vivax/isolation & purification , Algorithms , Area Under Curve , Incidence , Risk Factors
17.
Antimicrob Agents Chemother ; 68(7): e0033824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38837364

ABSTRACT

The human malaria-Aotus monkey model has served the malaria research community since its inception in 1966 at the Gorgas Memorial Laboratory (GML) in Panama. Spanning over five decades, this model has been instrumental in evaluating the in vivo efficacy and pharmacokinetics of a wide array of candidate antimalarial drugs, whether used singly or in combination. The animal model could be infected with drug-resistant and susceptible Plasmodium falciparum and Plasmodium vivax strains that follow a characteristic and reproducible course of infection, remarkably like human untreated and treated infections. Over the years, the model has enabled the evaluation of several synthetic and semisynthetic endoperoxides, for instance, artelinic acid, artesunate, artemether, arteether, and artemisone. These compounds have been evaluated alone and in combination with long-acting partner drugs, commonly referred to as artemisinin-based combination therapies, which are recommended as first-line treatment against uncomplicated malaria. Further, the model has also supported the evaluation of the primaquine analog tafenoquine against blood stages of P. vivax, contributing to its progression to clinical trials and eventual approval. Besides, the P. falciparum/Aotus model at GML has also played a pivotal role in exploring the biology, immunology, and pathogenesis of malaria and in the characterization of drug-resistant P. falciparum and P. vivax strains. This minireview offers a historical overview of the most significant contributions made by the Panamanian owl monkey (Aotus lemurinus lemurinus) to malaria chemotherapy research.


Subject(s)
Antimalarials , Artemisinins , Disease Models, Animal , Animals , Antimalarials/therapeutic use , Antimalarials/pharmacokinetics , Antimalarials/pharmacology , Artemisinins/therapeutic use , Artemisinins/pharmacology , Humans , Panama , Aotidae , Plasmodium falciparum/drug effects , Malaria/drug therapy , Plasmodium vivax/drug effects , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Artesunate/therapeutic use , Artesunate/pharmacology , Artesunate/pharmacokinetics , Malaria, Vivax/drug therapy , Malaria, Vivax/parasitology , History, 20th Century , Aminoquinolines
18.
Malar J ; 23(1): 194, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902674

ABSTRACT

BACKGROUND: Malaria remains a severe parasitic disease, posing a significant threat to public health and hindering economic development in sub-Saharan Africa. Ethiopia, a malaria endemic country, is facing a resurgence of the disease with a steadily rising incidence. Conventional diagnostic methods, such as microscopy, have become less effective due to low parasite density, particularly among Duffy-negative human populations in Africa. To develop comprehensive control strategies, it is crucial to generate data on the distribution and clinical occurrence of Plasmodium vivax and Plasmodium falciparum infections in regions where the disease is prevalent. This study assessed Plasmodium infections and Duffy antigen genotypes in febrile patients in Ethiopia. METHODS: Three hundred febrile patients visiting four health facilities in Jimma town of southwestern Ethiopia were randomly selected during the malaria transmission season (Apr-Oct). Sociodemographic information was collected, and microscopic examination was performed for all study participants. Plasmodium species and parasitaemia as well as the Duffy genotype were assessed by quantitative polymerase chain reaction (qPCR) for all samples. Data were analysed using Fisher's exact test and kappa statistics. RESULTS: The Plasmodium infection rate by qPCR was 16% (48/300) among febrile patients, of which 19 (39.6%) were P. vivax, 25 (52.1%) were P. falciparum, and 4 (8.3%) were mixed (P. vivax and P. falciparum) infections. Among the 48 qPCR-positive samples, 39 (13%) were negative by microscopy. The results of bivariate logistic regression analysis showed that agriculture-related occupation, relapse and recurrence were significantly associated with Plasmodium infection (P < 0.001). Of the 300 febrile patients, 85 (28.3%) were Duffy negative, of whom two had P. vivax, six had P. falciparum, and one had mixed infections. Except for one patient with P. falciparum infection, Plasmodium infections in Duffy-negative individuals were all submicroscopic with low parasitaemia. CONCLUSIONS: The present study revealed a high prevalence of submicroscopic malaria infections. Plasmodium vivax infections in Duffy-negative individuals were not detected due to low parasitaemia. In this study, an improved molecular diagnostic tool was used to detect and characterize Plasmodium infections, with the goal of quantifying P. vivax infection in Duffy-negative individuals. Advanced molecular diagnostic techniques, such as multiplex real-time PCR, loop-mediated isothermal amplification (LAMP), and CRISPR-based diagnostic methods. These techniques offer increased sensitivity, specificity, and the ability to detect low-parasite-density infections compared to the employed methodologies.


Subject(s)
Duffy Blood-Group System , Genotype , Malaria, Falciparum , Malaria, Vivax , Plasmodium falciparum , Plasmodium vivax , Duffy Blood-Group System/genetics , Humans , Male , Female , Adult , Adolescent , Young Adult , Malaria, Vivax/diagnosis , Malaria, Vivax/parasitology , Ethiopia/epidemiology , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Middle Aged , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Child , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Child, Preschool , Molecular Diagnostic Techniques/methods , Aged , Infant , Cross-Sectional Studies , Prevalence , Fever/parasitology
19.
Nature ; 631(8019): 125-133, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867050

ABSTRACT

Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia BCE, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.


Subject(s)
DNA, Ancient , Genome, Mitochondrial , Genome, Protozoan , Malaria , Plasmodium , Female , Humans , Male , Altitude , Americas/epidemiology , Asia/epidemiology , Biological Evolution , Disease Resistance/genetics , DNA, Ancient/analysis , Europe/epidemiology , Genome, Mitochondrial/genetics , Genome, Protozoan/genetics , History, Ancient , Malaria/parasitology , Malaria/history , Malaria/transmission , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/history , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/history , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Plasmodium/genetics , Plasmodium/classification , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Plasmodium malariae/genetics , Plasmodium malariae/isolation & purification , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification
20.
JMIR Public Health Surveill ; 10: e51993, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922648

ABSTRACT

BACKGROUND: A challenge in achieving the malaria-elimination target in the Greater Mekong Subregion, including Thailand, is the predominance of Plasmodium vivax malaria, which has shown extreme resilience to control measures. OBJECTIVE: This proof-of-concept study aimed to provide evidence for implementing primaquine mass drug administration (pMDA) as a strategy for P. vivax elimination in low-endemicity settings. METHODS: The study employed a mixed-methods trial to thoroughly evaluate the effectiveness, safety, acceptability, and community engagement of pMDA. The quantitative part was designed as a 2-period cluster-crossover randomized controlled trial. The intervention was pMDA augmented to the national prevention and control standards with directly observed treatment (DOT) by village health volunteers. The qualitative part employed in-depth interviews and brainstorming discussions. The study involved 7 clusters in 2 districts of 2 southern provinces in Thailand with persistently low P. vivax transmission. In the quantitative part, 5 cross-sectional blood surveys were conducted in both the pMDA and control groups before and 3 months after pMDA. The effectiveness of pMDA was determined by comparing the proportions of P. vivax infections per 1000 population between the 2 groups, with a multilevel zero-inflated negative binomial model adjusted for cluster and time as covariates and the interaction. The safety data comprised adverse events after drug administration. Thematic content analysis was used to assess the acceptability and engagement of stakeholders. RESULTS: In the pre-pMDA period, the proportions of P. vivax infections in the pMDA (n=1536) and control (n=1577) groups were 13.0 (95% CI 8.2-20.4) and 12.0 (95% CI 7.5-19.1), respectively. At month 3 post-pMDA, these proportions in the pMDA (n=1430) and control (n=1420) groups were 8.4 (95% CI 4.6-15.1) and 5.6 (95% CI 2.6-11.5), respectively. No statistically significant differences were found between the groups. The number of malaria cases reduced in all clusters in both groups, and thus, the impact of pMDA was inconclusive. There were no major safety concerns. Acceptance among the study participants and public health care providers at local and national levels was high, and they believed that pMDA had boosted awareness in the community. CONCLUSIONS: pMDA was associated with high adherence, safety, and tolerability, but it may not significantly impact P. vivax transmission. As this was a proof-of-concept study, we decided not to scale up the intervention with larger clusters and samples. An alternative approach involving a targeted primaquine treatment strategy with primaquine and DOT is currently being implemented. We experienced success regarding effective health care workforces at point-of-care centers, effective collaborations in the community, and commitment from authorities at local and national levels. Our efforts boosted the acceptability of the malaria-elimination initiative. Community engagement is recommended to achieve elimination targets. TRIAL REGISTRATION: Thai Clinical Trials Registry TCTR20190806004; https://www.thaiclinicaltrials.org/show/TCTR20190806004.


Subject(s)
Antimalarials , Malaria, Vivax , Mass Drug Administration , Primaquine , Humans , Primaquine/therapeutic use , Primaquine/administration & dosage , Thailand/epidemiology , Mass Drug Administration/methods , Mass Drug Administration/statistics & numerical data , Male , Female , Adult , Adolescent , Malaria, Vivax/drug therapy , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Middle Aged , Young Adult , Proof of Concept Study , Child , Cross-Over Studies , Cross-Sectional Studies , Patient Acceptance of Health Care/statistics & numerical data , Patient Acceptance of Health Care/psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...