Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.106
1.
Drug Dev Res ; 85(4): e22196, 2024 Jun.
Article En | MEDLINE | ID: mdl-38812449

Apigenin, a natural flavonoid compound found in chamomile (Matricaia chamomilla L.) from the Asteraceae family, has been shown in our previous study to possess antimyocardial hypertrophy and anti-cardiac fibrosis effects. However, its effects and mechanisms on the pyroptosis of cardiomyocytes induced by doxorubicin (DOX) are poorly understood. The objective of this study was to investigate the role of GSK-3ß and the effects of apigenin in DOX-induced cardiotoxicity. H9c2 cells stimulated with DOX were treated with SB216763 and apigenin. Additionally, a mouse model of DOX-induced cardiotoxicity was prepared and further treated with apigenin and SB216763 for 30 days. The findings revealed that treatment with SB216763 or apigenin resulted in a significant reduction in the levels of pyroptosis-related factors. Furthermore, the phosphorylation of GSK-3ß was enhanced while the phosphorylation of nuclear factor-kB (NF-κB) p65 was reduced following treatment with either SB216763 or apigenin. Conversely, the effects of apigenin treatment were nullified in siRNA-GSK-3ß-transfected cells. Results from computer simulation and molecular docking analysis supported that apigenin could directly target the regulation of GSK-3ß. Therefore, our study confirmed that the inhibition of GSK-3ß and treatment with apigenin effectively suppressed the pyroptosis of cardiomyocytes in both DOX-stimulated H9c2 cells and mice. These benefits may be attributed in part to the decrease in GSK-3ß expression and subsequent reduction in NF-κB p65 activation. Overall, our findings revealed that the pharmacological targeting of GSK-3ß may offer a promising therapeutic approach for alleviating DOX-induced cardiotoxicity.


Apigenin , Doxorubicin , Glycogen Synthase Kinase 3 beta , Myocytes, Cardiac , Pyroptosis , Apigenin/pharmacology , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Pyroptosis/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Mice , Cell Line , Male , Rats , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Mice, Inbred C57BL , Molecular Docking Simulation , Indoles/pharmacology , Maleimides
2.
Carbohydr Polym ; 337: 122144, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710569

In vivo, cells interact with the extracellular matrix (ECM), which provides a multitude of biophysical and biochemical signals that modulate cellular behavior. Inspired by this, we explored a new methodology to develop a more physiomimetic polysaccharide-based matrix for 3D cell culture. Maleimide-modified alginate (AlgM) derivatives were successfully synthesized using DMTMM to activate carboxylic groups. Thiol-terminated cell-adhesion peptides were tethered to the hydrogel network to promote integrin binding. Rapid and efficient in situ hydrogel formation was promoted by thiol-Michael addition "click" chemistry via maleimide reaction with thiol-flanked protease-sensitive peptides. Alginate derivatives were further ionically crosslinked by divalent ions present in the medium, which led to greater stability and allowed longer cell culture periods. By tailoring alginate's biofunctionality we improved cell-cell and cell-matrix interactions, providing an ECM-like 3D microenvironment. We were able to systematically and independently vary biochemical and biophysical parameters to elicit specific cell responses, creating custom-made 3D matrices. DMTMM-mediated maleimide incorporation is a promising approach to synthesizing AlgM derivatives that can be leveraged to produce ECM-like matrices for a broad range of applications, from in vitro tissue modeling to tissue regeneration.


Alginates , Click Chemistry , Extracellular Matrix , Hydrogels , Maleimides , Sulfhydryl Compounds , Maleimides/chemistry , Alginates/chemistry , Sulfhydryl Compounds/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Humans , Cross-Linking Reagents/chemistry , Cell Adhesion/drug effects , Animals
3.
Cells ; 13(7)2024 Mar 30.
Article En | MEDLINE | ID: mdl-38607047

Cohesin is a highly conserved ring-shaped complex involved in topologically embracing chromatids, gene expression regulation, genome compartmentalization, and genome stability maintenance. Genomic analyses have detected mutations in the cohesin complex in a wide array of human tumors. These findings have led to increased interest in cohesin as a potential target in cancer therapy. Synthetic lethality has been suggested as an approach to exploit genetic differences in cancer cells to influence their selective killing. In this study, we show that mutations in ESCO1, NIPBL, PDS5B, RAD21, SMC1A, SMC3, STAG2, and WAPL genes are synthetically lethal with stimulation of WNT signaling obtained following LY2090314 treatment, a GSK3 inhibitor, in several cancer cell lines. Moreover, treatment led to the stabilization of ß-catenin and affected the expression of c-MYC, probably due to the occupancy decrease in cohesin at the c-MYC promoter. Finally, LY2090314 caused gene expression dysregulation mainly involving pathways related to transcription regulation, cell proliferation, and chromatin remodeling. For the first time, our work provides the underlying molecular basis for synthetic lethality due to cohesin mutations and suggests that targeting the WNT may be a promising therapeutic approach for tumors carrying mutated cohesin.


Cohesins , Heterocyclic Compounds, 3-Ring , Maleimides , Neoplasms , Humans , Synthetic Lethal Mutations/genetics , Wnt Signaling Pathway/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Glycogen Synthase Kinase 3/metabolism , Neoplasms/genetics , Neoplasms/pathology , DNA-Binding Proteins/metabolism , Transcription Factors/genetics
4.
J Chromatogr A ; 1721: 464861, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38564931

The covalent attachment of polyoxometalates (POMs) to polymers has been developed as a strategic approach for the advancement of POM-based hybrid materials with versatile applications. In this study, we utilized thiol-maleimide Michael addition to investigate the kinetics and efficacy of the "one-to-one" conjugation between Keggin type POM and polystyrene. We explored the effects of solvent polarity, catalyst, molecular weight of PS and synthetic strategies on the reaction kinetics and efficiency, by means of reverse-phase high-performance liquid chromatography (RP-HPLC). A series of comparative analysis affirmed the superior efficiency of the one-pot method, particularly when facilitated by the addition of a high-polarity solvent and an excess of maleimide. These findings offer valuable insights into the intricate interplay between reaction conditions, kinetics, and selectivity in thiol-maleimide reactions of POMs and polymers. They hold profound implications for advancing the study of POM-based multifunctional materials and the synthesis of complex hybrid molecules.


Anions , Polyelectrolytes , Polymers , Sulfhydryl Compounds , Polymers/chemistry , Maleimides/chemistry , Solvents
5.
Biomolecules ; 14(3)2024 Mar 15.
Article En | MEDLINE | ID: mdl-38540772

The enhancement of bioactivity in materials has become an important focus within the field of bone tissue engineering. Four-dimensional intelligent osteogenic module, an innovative fusion of 3D printing with the time axis, shows immense potential in augmenting the bioactivity of these materials, thereby facilitating autologous bone regeneration efficiently. This study focuses on novel bone repair materials, particularly bioactive scaffolds with a developmental osteogenic microenvironment prepared through 3D bioprinting technology. This research mainly creates a developmental osteogenic microenvironment named "DOME". This is primed by the application of a small amount of the small molecule drug SB216763, which activates canonical Wnt signaling in osteocytes, promoting osteogenesis and mineralization nodule formation in bone marrow stromal cells and inhibiting the formation of adipocytes. Moreover, DOME enhances endothelial cell migration and angiogenesis, which is integral to bone repair. More importantly, the DOME-PCI3D system, a 4D intelligent osteogenic module constructed through 3D bioprinting, stably supports cell growth (91.2% survival rate after 7 days) and significantly increases the expression of osteogenic transcription factors in bone marrow stromal cells and induces osteogenic differentiation and mineralization for 28 days. This study presents a novel approach for bone repair, employing 3D bioprinting to create a multifunctional 4D intelligent osteogenic module. This innovative method not only resolves challenges related to shape-matching and biological activity but also demonstrates the vast potential for applications in bone repair.


Indoles , Maleimides , Osteogenesis , Wnt Signaling Pathway , Osteogenesis/physiology , Osteocytes , Bone and Bones , Tissue Engineering/methods , Cell Differentiation
6.
ACS Appl Bio Mater ; 7(3): 1976-1989, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38447202

The development of nanocarriers to prolong the residence time and enhance the permeability of chemotherapeutic drugs on bladder mucosa is important in the postsurgery treatment of superficial bladder cancers (BCs). Here, the mucoadhesive HA-SH/PF127 nanogels composed of a temperature-sensitive Pluronic F127 (PF127) core and thiolated hyaluronic acid (HA-SH) shell were prepared by the emulsification/solvent evaporation method. The nanogels were constructed through the thiol-maleimide click reaction in the HA-SH aqueous side of the oil-water interface and self-oxidized cross-linking thiols between HA-SH. The HA-SH/PF127 nanogels prepared at different thiol-to-maleimide group molar ratios, water-to-oil volume ratios, and cross-linking reaction times were characterized regarding hydrodynamic diameter (Dh) and zeta potential (ζ), and the optimal formulation was obtained. The excellent mucoadhesive properties of the HA-SH/PF127 nanogels were evaluated by using the mucin particle method. Doxorubicin (DOX) was encapsulated in the PF127 core of DOX@HA-SH/PF127 nanogels with a high loading efficiency (87.5%) and sustained release from the nanogels in artificial urine. Ex vivo studies on porcine bladder mucosa showed that the DOX@HA-SH/PF127 nanogels enhanced the penetration of the DOX into the bladder mucosa without disrupting the mucus structure or the bladder tissue. A significant dose-dependent cytotoxic effect of DOX@HA-SH/PF127 nanogels on both T24 and MB49 cells was observed. The present study demonstrates that the mucoadhesive HA-SH/PF127 nanogels are a promising intravesical drug delivery system for superficial BC therapy.


Hyaluronic Acid , Maleimides , Poloxamer , Polyethylene Glycols , Polyethyleneimine , Sulfhydryl Compounds , Animals , Swine , Poloxamer/chemistry , Nanogels , Hyaluronic Acid/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Doxorubicin/chemistry , Water
7.
N Biotechnol ; 81: 33-42, 2024 Jul 25.
Article En | MEDLINE | ID: mdl-38493996

We report the synthesis of a novel class of metal-complexing peptide-based polymers, which we name HyperMAPs (Hyper-loaded MetAl-complexed Polymers). The controlled solid-phase synthesis of HyperMAPs' scaffold peptide provides our polymer with a well-defined molecular structure that allows for an accurate on-design assembly of a wide variety of metals. The peptide-scaffold features a handle for direct conjugation to antibodies or any other biomolecules by means of a thiol-maleimide-click or aldehyde-oxime reaction, a fluorogenic moiety for biomolecule conjugation tracking, and a well-defined number of functional groups for direct incorporation of metal-chelator complexes. Since metal-chelator complexes are prepared in a separate reaction prior to incorporation to the peptide scaffold, polymers can be designed to contain specific ratios of metal isotopes, providing each polymer with a unique CyTOF spectral fingerprint. We demonstrate the complexing of 21 different metals using two different chelators and provide evidence of the application of HyperMAPs on a 13 parameter CyTOF panel and compare its performance to monoisotopic metal-conjugated antibodies.


Coordination Complexes , Maleimides , Polymers , Polymers/chemistry , Sulfhydryl Compounds/chemistry , Peptides/chemistry , Metals/chemistry , Chelating Agents/chemistry , Antibodies
8.
FEBS Lett ; 598(9): 1080-1093, 2024 May.
Article En | MEDLINE | ID: mdl-38523059

Recent developments in sequencing and bioinformatics have advanced our understanding of adenosine-to-inosine (A-to-I) RNA editing. Surprisingly, recent analyses have revealed the capability of adenosine deaminase acting on RNA (ADAR) to edit DNA:RNA hybrid strands. However, edited inosines in DNA remain largely unexplored. A precise biochemical method could help uncover these potentially rare DNA editing sites. We explore maleimide as a scaffold for inosine labeling. With fluorophore-conjugated maleimide, we were able to label inosine in RNA or DNA. Moreover, with biotin-conjugated maleimide, we purified RNA and DNA containing inosine. Our novel technique of inosine chemical labeling and affinity molecular purification offers substantial advantages and provides a versatile platform for further discovery of A-to-I editing sites in RNA and DNA.


Adenosine , Inosine , RNA Editing , Inosine/chemistry , Inosine/metabolism , Adenosine/chemistry , Adenosine/metabolism , Adenosine/analogs & derivatives , Deamination , DNA/chemistry , DNA/metabolism , Maleimides/chemistry , Adenosine Deaminase/metabolism , Adenosine Deaminase/chemistry , RNA/chemistry , RNA/metabolism , Staining and Labeling/methods , Humans , Fluorescent Dyes/chemistry , Biotin/chemistry , Biotin/metabolism
9.
Sci Rep ; 14(1): 5634, 2024 03 07.
Article En | MEDLINE | ID: mdl-38454122

In these studies, we designed and investigated the potential anticancer activity of five iron(II) cyclopentadienyl complexes bearing different phosphine and phosphite ligands. All complexes were characterized with spectroscopic analysis viz. NMR, FT-IR, ESI-MS, UV-Vis, fluorescence, XRD (for four complexes) and elemental analyses. For biological studies, we used three types of cells-normal peripheral blood mononuclear (PBM) cells, leukemic HL-60 cells and non-small-cell lung cancer A549 cells. We evaluated cell viability and DNA damage after cell incubation with these complexes. We observed that all iron(II) complexes were more cytotoxic for HL-60 cells than for A549 cells. The complex CpFe(CO)(P(OPh)3)(η1-N-maleimidato) 3b was the most cytotoxic with IC50 = 9.09 µM in HL-60 cells, IC50 = 19.16 µM in A549 and IC50 = 5.80 µM in PBM cells. The complex CpFe(CO)(P(Fu)3)(η1-N-maleimidato) 2b was cytotoxic only for both cancer cell lines, with IC50 = 10.03 µM in HL-60 cells and IC50 = 73.54 µM in A549 cells. We also found the genotoxic potential of the complex 2b in both types of cancer cells. However, the complex CpFe(CO)2(η1-N-maleimidato) 1 which we studied previously, was much more genotoxic than complex 2b, especially for A549 cells. The plasmid relaxation assay showed that iron(II) complexes do not induce strand breaks in fully paired ds-DNA. The DNA titration experiment showed no intercalation of complex 2b into DNA. Molecular docking revealed however that complexes CpFe(CO)(PPh3) (η1-N-maleimidato) 2a, 2b, 3b and CpFe(CO)(P(OiPr)3)(η1-N-maleimidato) 3c have the greatest potential to bind to mismatched DNA. Our studies demonstrated that the iron(II) complex 1 and 2b are the most interesting compounds in terms of selective cytotoxic action against cancer cells. However, the cellular mechanism of their anticancer activity requires further research.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Coordination Complexes , Lung Neoplasms , Phosphines , Phosphites , Humans , Molecular Docking Simulation , Coordination Complexes/chemistry , Iron , Leukocytes, Mononuclear/metabolism , Spectroscopy, Fourier Transform Infrared , DNA/metabolism , Maleimides , Ferrous Compounds/pharmacology , Antineoplastic Agents/chemistry , Ligands , Cell Line, Tumor
10.
J Biol Chem ; 300(3): 105714, 2024 Mar.
Article En | MEDLINE | ID: mdl-38309502

Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase Ⅱ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.


DNA-Binding Proteins , Mouse Embryonic Stem Cells , Protein Kinase C , Animals , Mice , DNA Methylation , DNA-Binding Proteins/metabolism , Indoles/pharmacology , Maleimides/pharmacology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/enzymology , Mouse Embryonic Stem Cells/physiology , Protein Kinase C/genetics , Protein Kinase C/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Kinase Inhibitors/pharmacology
11.
Chirality ; 36(2): e23645, 2024 Feb.
Article En | MEDLINE | ID: mdl-38384154

We are looking into how well a copolymeric material made of poly (maleic acid-co-4-vinylpyridine) cross-linked with divinylbenzene can separate L-norepinephrine (L-NEP) from (±)-NEP. The initial step in this direction was the synthesis and subsequent analysis of L-NEP-maleimide chiral derivative. A 4-vinylpyridine/divinylbenzene combination was copolymerized with the resultant chiral maleimide. After heating the polymer materials in a high-alkaline environment to breakdown the connecting imide bonds, they were acidified in an HCl solution to eliminate the incorporated L-NEP species. Fourier transform infrared spectroscopy (FTIR) and a scanning electron microscope were used to examine the imprinted L-NEP-imprinted materials. The manufactured L-NEP-imprinted materials exhibited selectivity characteristics that were over 11 times greater for L-NEP than D-norepinephrine. The highest capacity observed in Langmuir adsorption studies was 170 mg/g at a pH of 7. After optical separation using a column technique, it was determined that the enantiomeric excess levels of D-norepinephrine and L-NEP in the first feeding and subsequent recovery solutions were 95% and 81%, respectively.


Molecular Imprinting , Molecularly Imprinted Polymers , Vinyl Compounds , Norepinephrine , Molecular Imprinting/methods , Stereoisomerism , Polymers/chemistry , Adsorption , Maleimides
12.
Bioconjug Chem ; 35(2): 203-213, 2024 02 21.
Article En | MEDLINE | ID: mdl-38343092

The field of clinical surgery frequently encounters challenges related to atypical wound tissue healing, resulting in the development of persistent chronic wounds or aesthetically displeasing scar tissue. The use of wound dressings crafted from mussel adhesive proteins and hyaluronic acid has demonstrated the potential in mitigating these undesirable outcomes. However, the synergistic effects of these two biomaterials remain underexplored. In this study, we have engineered a versatile, degradable, and biocompatible dressing that comprises recombinant 3,4-dihydroxyphenylalanine (DOPA)-modified mussel adhesive proteins and maleimide-functionalized hyaluronic acid. We have successfully fabricated this biocompatible dressing and conducted comprehensive experimental assessments to confirm its hemostatic, antibacterial, and biocompatible characteristics. Importantly, this dressing exclusively incorporates biologically derived materials characterized by low toxicity and minimal immunogenicity, thus holding immense promise for clinical applications in the field of wound healing.


Hemostatics , Hemostatics/pharmacology , Hemostatics/therapeutic use , Cysteine , Hyaluronic Acid , Anti-Bacterial Agents/pharmacology , Bandages , Maleimides
13.
Free Radic Biol Med ; 213: 359-370, 2024 03.
Article En | MEDLINE | ID: mdl-38290604

Epidemiological studies have established a robust correlation between exposure to ambient particulate matter (PM) and various neurological disorders, with dysregulation of intracellular redox processes and cell death being key mechanisms involved. Ferroptosis, a cell death form characterized by iron-dependent lipid peroxidation and disruption of antioxidant defenses, may be involved in the neurotoxic effects of PM exposure. However, the relationship between PM-induced neurotoxicity and ferroptosis in nerve cells remains to be elucidated. In this study, we utilized a rat model (exposed to PM at a dose of 10 mg/kg body weight per day for 4 weeks) and an HT-22 cell model (exposed to PM at concentrations of 50, 100, and 200 µg/mL for 24 h) to investigate the potential induction of ferroptosis by PM exposure. Furthermore, RNA sequencing analysis was employed to identify hub genes that potentially contribute to the process of ferroptosis, which was subsequently validated through in vivo and in vitro experiments. The results revealed that PM exposure increased MDA content and Fe2+ levels, and decreased SOD activity and GSH/GSSG ratio in rat hippocampal and HT-22 cells. Through RNA sequencing analysis, bioinformatics analysis, and RT-qPCR experiments, we identified GSK3B as a possible hub gene involved in ferroptosis. Subsequent investigations demonstrated that PM exposure increased GSK3B levels and decreased Nrf2, and GPX4 levels in vivo and in vitro. Furthermore, treatment with LY2090314, a specific inhibitor of GSK3B, was found to mitigate the PM-induced elevation of MDA and ROS and restore SOD activity and GSH/GSSG ratio. The LY2090314 treatment promoted the upregulation of Nrf2 and GPX4 and facilitated the nuclear translocation of Nrf2 in HT-22 cells. Moreover, treatment with LY2090314 resulted in the upregulation of Nrf2 and GPX4, along with the facilitation of nuclear translocation of Nrf2. This study suggested that PM-induced ferroptosis in hippocampal cells may be via the GSK3B/Nrf2/GPX4 pathway.


Ferroptosis , Heterocyclic Compounds, 3-Ring , Maleimides , Neurotoxicity Syndromes , Animals , Rats , Ferroptosis/genetics , Glutathione Disulfide , NF-E2-Related Factor 2/genetics , Hippocampus , Superoxide Dismutase
14.
Nano Lett ; 24(10): 2989-2997, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38294951

Many virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability. Specifically, the VLPs of physalis mottle virus (PhMV) and Qß were used to demonstrate this concept. We built an internal polymer "backbone" using a maleimide-PEG15-maleimide cross-linker to covalently interlink viral coat proteins inside the capsid cavity, while the native VLPs are held together by only noncovalent bonding between subunits. Endoskeleton-armored VLPs exhibited significantly improved thermal stability (95 °C for 15 min), increased resistance to denaturants (i.e., surfactants, pHs, chemical denaturants, and organic solvents), and enhanced mechanical performance. Single-molecule force spectroscopy demonstrated a 6-fold increase in rupture distance and a 1.9-fold increase in rupture force of endoskeleton-armored PhMV. Overall, this endoskeleton-armored strategy provides more opportunities for the development and applications of materials.


Capsid Proteins , Capsid , Capsid Proteins/chemistry , Capsid/chemistry , Maleimides/analysis
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 913-922, 2024 02.
Article En | MEDLINE | ID: mdl-37535074

Albuvirtide (ABT) is the first long-acting HIV fusion inhibitor developed in China, blocking the invasion of HIV-1 virus into target cells. This study aimed to compare the pharmacokinetics (PK), tolerability, and safety of ABT following a single intravenous (IV) bolus injection or intravenous drip in healthy Chinese subjects. A single-center, randomized, open-label, single-period, parallel phase I clinical trial was conducted. Thirty subjects were randomly divided into three groups in a ratio of 1:1:1. After an overnight fast, all subjects received a single dose of 320 mg ABT either by intravenous drip for 45 min (group A) or bolus injection for 0.5 min (group B), or bolus injection for 3 min (group C). ABT plasma concentrations were analyzed using a validated enzyme-linked immunosorbent assay (ELISA). Non-compartmental analysis was used to evaluate PK parameters. The median time to reach maximum concentration was 0.75 h in group A and 0.16 h in both groups B and C. Elimination half-life, mean residence time, apparent clearance, and apparent volume of distribution were similar among the three groups. The 90% confidence intervals (CI) of geometric mean ratios of PK parameters for groups B and C relative to group C were within 85-120%. All adverse events (AEs) reported in this study were mild, according to the CTCAE guidelines and the study investigator's judgement. ABT bolus injections for 0.5 min and 3 min are expected to be well tolerated and to exhibit similar PK characteristics as IV drip for 45 min, offering potential clinical benefits.


Maleimides , Peptides , Humans , Infusions, Intravenous , Healthy Volunteers , Injections, Intravenous
16.
Bioorg Chem ; 143: 106982, 2024 Feb.
Article En | MEDLINE | ID: mdl-37995642

Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.


Azides , Click Chemistry , Maleimides , Sulfhydryl Compounds , Azides/chemistry , Alkynes/chemistry , Cycloaddition Reaction , Copper/chemistry
17.
Redox Biol ; 69: 102979, 2024 Feb.
Article En | MEDLINE | ID: mdl-38061206

BACKGROUND: Empagliflozin (EMPA) ameliorates reactive oxygen species (ROS) generation in human endothelial cells (ECs) exposed to 10 % stretch, but the underlying mechanisms are still unclear. Pathological stretch is supposed to stimulate protein kinase C (PKC) by increasing intracellular calcium (Ca2+), therefore activating nicotinamide adenine dinucleotide phosphate oxidase (NOX) and promoting ROS production in human ECs. We hypothesized that EMPA inhibits stretch-induced NOX activation and ROS generation through preventing PKC activation. METHODS: Human coronary artery endothelial cells (HCAECs) were pre-incubated for 2 h before exposure to cyclic stretch (5 % or 10 %) with either vehicle, EMPA or the PKC inhibitor LY-333531 or PKC siRNA. PKC activity, NOX activity and ROS production were detected after 24 h. Furthermore, the Ca2+ chelator BAPTA-AM, NCX inhibitor ORM-10962 or NCX siRNA, sodium/potassium pump inhibitor ouabain and sodium hydrogen exchanger (NHE) inhibitor cariporide were applied to explore the involvement of the NHE/Na+/NCX/Ca2+ in the ROS inhibitory capacity of EMPA. RESULTS: Compared to 5 % stretch, 10 % significantly increased PKC activity, which was reduced by EMPA and PKC inhibitor LY-333531. EMPA and LY-333531 showed a similar inhibitory capacity on NOX activity and ROS generation induced by 10 % stretch, which was not augmented by combined treatment with both drugs. PKC-ß knockdown inhibits the NOX activation induced by Ca2+ and 10 % stretch. BAPTA, pharmacologic or genetic NCX inhibition and cariporide reduced Ca2+ in static HCAECs and prevented the activation of PKC and NOX in 10%-stretched cells. Ouabain increased ROS generation in cells exposed to 5 % stretch. CONCLUSION: EMPA reduced NOX activity via attenuation of the NHE/Na+/NCX/Ca2+/PKC axis, leading to less ROS generation in HCAECs exposed to 10 % stretch.


Benzhydryl Compounds , Coronary Vessels , Endothelial Cells , Glucosides , Guanidines , Indoles , Maleimides , Sulfones , Humans , Endothelial Cells/metabolism , Reactive Oxygen Species/metabolism , Coronary Vessels/metabolism , Protein Kinase C/metabolism , Ouabain/metabolism , Oxidative Stress , Sodium-Hydrogen Exchangers/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
18.
Small ; 20(13): e2304253, 2024 Mar.
Article En | MEDLINE | ID: mdl-37963821

Due to its tumor homing and long serum half-life, albumin is an ideal drug carrier for chemotherapy. For endogenous albumin hitchhiking with high cargo loading, a trimeric albumin-binding domain (ABD), i.e., ABD-Tri is designed by fusing an ABD with high specificity and affinity for albumin to a self-trimerizing domain (Tri) with an additional cysteine residue. ABD-Tri is highly (40 mg L-1) expressed as soluble and trimeric proteins in Escherichia coli (E. coli). Once mixed together, ABD-Tri rapidly and specifically forms a stable complex with albumin under physiological conditions without obviously changing its receptor- and cell-binding and tumor-homing properties. Maleimide-modified prodrugs are highly effectively conjugated to ABD-Tri to produce homogenous ABD-Tri-prodrugs with triple cargo loading under physiological conditions by thiol-maleimide click chemistry. Unlike the maleimide moiety, which can only mediate time- and concentration-dependent albumin binding, ABD-Tri mediated fast (within several minutes) albumin binding of drugs even at extremely low concentrations (µg mL-1). Compared to maleimide-modified prodrugs, ABD-Tri-prodrugs exhibit better tumor homing and greater in vivo antitumor effect, indicating that conjugation of chemical drug to ABD-Tri outperforms maleimide modification for endogenous albumin hitchhiking. The results demonstrate that ABD-Tri may serve as a novel platform to produce albumin-binding prodrugs with high cargo-loading capacity for tumor-targeted chemotherapy.


Neoplasms , Prodrugs , Sulfhydryl Compounds , Humans , Prodrugs/chemistry , Serum Albumin , Escherichia coli/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Maleimides/chemistry
19.
Biol Reprod ; 110(2): 246-260, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-37944068

Uterine glands and their secretions are crucial for conceptus survival and implantation in rodents and humans. In mice, the development of uterine gland known as adenogenesis occurs after birth, whereas the adenogenesis in humans initiates from fetal life and completed at puberty. Uterine adenogenesis involves dynamic epithelial cell proliferation, differentiation, and apoptosis. However, it is largely unexplored about the mechanisms governing adenogenesis. CK1α plays important roles in regulating cell division, differentiation, and death, but it is unknown whether CK1α affects adenogenesis. In the current study, uterus-specific CK1α knockout female mice (Csnk1a1d/d) were infertile resulted from lack of uterine glands. Subsequent analysis revealed that CK1α deletion induced massive apoptosis in uterine epithelium by activating GSK3ß, which was confirmed by injections of GSK3ß inhibitor SB216763 to Csnk1a1d/d females, and the co-treatment of SB216763 and CK1 inhibitor d4476 on cultured epithelial cells. Another important finding was that our results revealed CK1α deficiency activated p53, which then blocked the expression of Foxa2, an important factor for glandular epithelium development and function. This was confirmed by that Foxa2 expression level was elevated in p53 inhibitor pifithrin-α injected Csnk1a1d/d mouse uterus and in vitro dual-luciferase reporter assay between p53 and Foxa2. Collectively, these studies reveal that CK1α is a novel factor regulating uterine adenogenesis by inhibiting epithelial cell apoptosis through GSK3ß pathway and regulating Foxa2 expression through p53 pathway. Uncovering the mechanisms of uterine adenogenesis is expected to improve pregnancy success in humans and other mammals.


Indoles , Maleimides , Tumor Suppressor Protein p53 , Uterus , Pregnancy , Animals , Female , Mice , Humans , Glycogen Synthase Kinase 3 beta/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Uterus/metabolism , Apoptosis , Epithelial Cells/metabolism , Mice, Knockout , Mammals/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Hepatocyte Nuclear Factor 3-beta/metabolism
20.
J Enzyme Inhib Med Chem ; 39(1): 2290910, 2024 Dec.
Article En | MEDLINE | ID: mdl-38093611

In the present work, we report a new series of potent SARS-CoV-2 Main Protease (Mpro) inhibitors based on maleimide derivatives. The inhibitory activities were tested in an enzymatic assay using recombinant Mpro (3CL Protease from coronavirus SARS-CoV-2). Within the set of new Mpro inhibitors, 6e demonstrated the highest activity in the enzymatic assay with an IC50 value of 8.52 ± 0.44 µM. The IC50 value for Nirmatrelvir (PF-07321332, used as a reference) was 0.84 ± 0.37 µM. The cytotoxic properties were determined in the MTT assay using MRC-5 and HEK-293 cell lines. In the course of the investigation, we found that the newly obtained maleimide derivatives are not substantially cytotoxic (IC50 values for most compounds were above 200 µM).


COVID-19 , Humans , HEK293 Cells , SARS-CoV-2 , Maleimides/pharmacology , Lactams , Leucine , Nitriles , Protease Inhibitors/pharmacology , Molecular Docking Simulation , Antiviral Agents/pharmacology
...