Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.444
Filter
1.
J Med Chem ; 67(19): 17226-17242, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-39299698

ABSTRACT

To discover new osteoclast-targeting antiosteoporosis agents, we identified forty-six diselenyl maleimides, which were efficiently prepared using a novel, simple, and metal-free method at room temperature in a short reaction time. Among them, 3k showed the most marked inhibition of osteoclast differentiation with an IC50 value of 0.36 ± 0.03 µM. Moreover, 3k significantly suppressed RANKL-induced osteoclast formation, bone resorption, and osteoclast-specific genes expression in vitro. Mechanistic studies revealed that 3k remarkably blocked the RANKL-induced mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways. In ovariectomized mice, intragastric administration of 3k significantly alleviated bone loss, exhibiting an effect similar to that of alendronate. Surface plasmon resonance assay and microscale thermophoresis assay results suggested that RANKL might be a potential molecular target for 3k. Collectively, the findings presented above provided a novel candidate for further development of bone antiresorptive drugs that target RANKL.


Subject(s)
Maleimides , Osteoclasts , Osteoporosis , RANK Ligand , Animals , RANK Ligand/metabolism , Osteoporosis/drug therapy , Mice , Osteoclasts/drug effects , Osteoclasts/metabolism , Female , Maleimides/pharmacology , Maleimides/chemical synthesis , Maleimides/chemistry , Cell Differentiation/drug effects , Bone Resorption/drug therapy , Structure-Activity Relationship , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/chemical synthesis , Bone Density Conservation Agents/therapeutic use , RAW 264.7 Cells , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Drug Discovery
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124922, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39096671

ABSTRACT

It has been well established that Hydrogen sulfide (H2S) is involved in various pathophysiological processes. Therefore, accurate monitoring H2S levels in vitro or vivo is of great significance in biological systems. Herein, we firstly developed a thiomaleimide-based compound MAL-1 bearing aggregation-induced emission characteristic for selective response toward H2S due to its nucleophilicity. The proposed sensor presented prominent sensitivity and selectivity with low detection limit of 75 nM and pseudo-first-order reaction rate constant of 9.65 × 10-2 s-1, as well as low cytotoxicity which works well in recognizing H2S in real samples and visualizing H2S in living cells. Thus, it could be concluded that the novel thiomaleimide-based probe would be a promising tool for assessing intracellular H2S levels.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Hydrogen Sulfide/analysis , Fluorescent Dyes/chemistry , Humans , Maleimides/chemistry , Spectrometry, Fluorescence , Limit of Detection , HeLa Cells
3.
Sci Rep ; 14(1): 18361, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112534

ABSTRACT

Antibiotic resistance is a significant threat, leaving us vulnerable to bacterial infections. Novel strategies are needed to combat bacterial resistance beyond discovering new antibiotics. This research focuses on using maleimide conjugated PEGylated liposomes (Mal-PL-Ab) to individually encapsulate a variety of antibiotics (ceftriaxone, cephalexin, doxycycline, piperacillin, ampicillin, and ceftazidime) and enhance their delivery against multi-drug resistant (MDR) bacteria like Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae). Mal-PL-Ab, with an average size of 84.2 nm ± 4.32 nm, successfully encapsulated these antibiotics with an encapsulation efficiency of 37.73 ± 3.19%. Compared to non-PEGylated liposomes (L-Ab), Mal-PL-Ab exhibited reduced toxicity in human dermal cells, emphasizing the importance of PEGylation in minimizing adverse effects. Mal-PL-Ab significantly decreased the minimum inhibitory concentration (MIC) values against both E. coli and K. pneumoniae by 9.33-fold and eightfold reduction (compared to non-PEGylated liposomes with 2.33-fold and 2.33fold reduction), respectively, indicating enhanced efficacy against MDR strains. Furthermore, in vitro scratch assay and gene expression analysis of human dermal fibroblast revealed that Mal-PL-Ab promoted cell proliferation, migration, and wound healing through upregulation of cell cycle, DNA repair, and angiogenesis-related genes. Harnessing the power of encapsulation, Mal-PL-Ab presents a novel avenue for enhanced antibiotic delivery and wound healing, potentially transcending the limitations of traditional options.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli , Klebsiella pneumoniae , Liposomes , Maleimides , Microbial Sensitivity Tests , Polyethylene Glycols , Wound Healing , Klebsiella pneumoniae/drug effects , Escherichia coli/drug effects , Liposomes/chemistry , Polyethylene Glycols/chemistry , Maleimides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Wound Healing/drug effects
4.
STAR Protoc ; 5(3): 103182, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39093703

ABSTRACT

S-acylation of proteins allows their association with membranes. Here, we present a protocol for establishing a platform for membrane affinity evaluation of S-acylated proteins in vitro. We describe steps for preparing lipid-maleimide compounds, mCherry-p62 recombinant proteins, and total cellular membranes. We then detail procedures for synthesizing protein-lipid conjugates using lipid-maleimide compounds and recombinant proteins and evaluating the membrane affinity of protein-lipid conjugates. For complete details on the use and execution of this protocol, please refer to Huang Xue et al.1.


Subject(s)
Cell Membrane , Acylation , Cell Membrane/metabolism , Cell Membrane/chemistry , Lipids/chemistry , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Humans , Maleimides/chemistry , Animals
5.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000025

ABSTRACT

3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ'-addition and aryl imines using PR3 as a catalyst. The resulting series of 3,4-disubstituted maleimides exhibited excellent stereoselectivities, achieving yields of up to 86%. To our knowledge, the phosphine-mediated γ'-addition reaction of allenoates is seldom reported.


Subject(s)
Imines , Maleimides , Phosphines , Succinimides , Maleimides/chemistry , Maleimides/chemical synthesis , Phosphines/chemistry , Catalysis , Imines/chemistry , Succinimides/chemistry , Stereoisomerism , Molecular Structure , Isomerism
6.
Mol Pharm ; 21(9): 4386-4394, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39046432

ABSTRACT

This study aimed to evaluate a novel albumin-binding strategy for addressing the challenge of insufficient tumor retention of fibroblast activation protein inhibitors (FAPIs). Maleimide, a molecule capable of covalent binding to free thiol groups, was modified to conjugate with FAPI-04 in order to enhance its binding to endogenous albumin, resulting in an extended blood circulation half-life and increased tumor uptake. DOTA-FAPI-maleimide was prepared and radiolabeled with Ga-68 and Lu-177, followed by cellular assays, pharmacokinetic analysis, PET/CT, and SPECT/CT imaging to assess the probe distribution in various tumor-bearing models. Radiolabeling of the modified probe was successfully achieved with a radiochemical yield of over 99% and remained stable for 144 h. Cellular assays showed that the ligand concentration required for 50% inhibition of the probe was 1.20 ± 0.31 nM, and the Kd was 0.70 ± 0.07 nM with a Bmax of 7.94 ± 0.16 fmol/cell, indicative of higher specificity and affinity of DOTA-FAPI-maleimide compared to other FAPI-04 variants. In addition, DOTA-FAPI-maleimide exhibited a persistent blood clearance half-life of 7.11 ± 0.34 h. PET/CT images showed a tumor uptake of 2.20 ± 0.44%ID/g at 0.5 h p.i., with a tumor/muscle ratio of 5.64 in HT-1080-FAP tumor-bearing models. SPECT/CT images demonstrated long-lasting tumor retention. At 24 h p.i., the tumor uptake of [177Lu]Lu-DOTA-FAPI-maleimide reached 5.04 ± 1.67%ID/g, with stable tumor retention of 3.40 ± 1.95%ID/g after 4 days p.i. In conclusion, we developed and evaluated the thiol group-attaching strategy, which significantly extended the circulation and tumor retention of the adapted FAPI tracer. We envision its potential application for clinical cancer theranostics.


Subject(s)
Maleimides , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Animals , Maleimides/chemistry , Mice , Humans , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Tissue Distribution , Cell Line, Tumor , Positron Emission Tomography Computed Tomography/methods , Gallium Radioisotopes/pharmacokinetics , Gallium Radioisotopes/chemistry , Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Female , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Mice, Nude , Single Photon Emission Computed Tomography Computed Tomography/methods , Xenograft Model Antitumor Assays , Endopeptidases , Membrane Proteins/metabolism , Theranostic Nanomedicine/methods , Lutetium
7.
J Am Chem Soc ; 146(30): 20709-20719, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39012647

ABSTRACT

Chemical post-translational protein-protein conjugation is an important technique with growing applications in biotechnology and pharmaceutical research. Maleimides represent one of the most widely employed bioconjugation reagents. However, challenges associated with the instability of first- and second-generation maleimide technologies are yet to be fully addressed. We report the development of a novel class of maleimide reagents that can undergo on-demand ring-opening hydrolysis of the resulting thio-succinimide. This strategy enables rapid post-translational assembly of protein-protein conjugates. Thio-succinimide hydrolysis, triggered upon application of chemical, photochemical, or enzymatic stimuli, allowed homobifunctional bis-maleimide reagents to be applied in the production of stable protein-protein conjugates, with complete temporal control. Bivalent and bispecific protein-protein dimers constructed from small binders targeting antigens of oncological importance, PD-L1 and HER2, were generated with high purity, stability, and improved functionality compared to monomeric building blocks. The modularity of the approach was demonstrated through elaboration of the linker moiety through a bioorthogonal propargyl handle to produce protein-protein-fluorophore conjugates. Furthermore, extending the functionality of the homobifunctional reagents by temporarily masking reactive thiols included in the linker allowed the assembly of higher order trimeric and tetrameric single-domain antibody conjugates. The potential for the approach to be extended to proteins of greater biochemical complexity was demonstrated in the production of immunoglobulin single-domain antibody conjugates. On-demand control of thio-succinimide hydrolysis combined with the facile assembly of chemically defined homo- and heterodimers constitutes an important expansion of the chemical methods available for generating stable protein-protein conjugates.


Subject(s)
Maleimides , Succinimides , Hydrolysis , Succinimides/chemistry , Maleimides/chemistry , Proteins/chemistry , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/chemistry , Humans , Molecular Structure
8.
Bioorg Med Chem Lett ; 110: 129851, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38906336

ABSTRACT

Alzheimer's disease (AD) is a major cause of dementia and one of the most common chronic diseases affecting the aging population. Because AD is considered a public health priority, there is a critical need to discover novel and effective agents for the treatment of this condition. In view of the known contribution of up-regulated glutaminyl cyclase (QC) and glycogen synthase kinase-3ß (GSK-3ß) to the initiation of AD, we previously evaluated a series of dual inhibitors containing maleimide and imidazole motifs as potential anti-AD agents. Here, we assessed another series of hybrids containing maleimide and imidazole motifs to gain an in-depth understanding of the structure-activity relationship (SAR). Based on the primary screening, the introduction of 5-methyl imidazole at one side of the molecule did not enhance the QC-specific inhibitory activity of these hybrids (2, IC50 = 1.22 µM), although the potency was increased by 2' substitution on the maleimide motif at the other side of the molecule. Interestingly, compounds containing 5-methyl imidazole exhibited stronger GSK-3ß-specific inhibitory activity (2, IC50 = 0.0021 µM), and the electron-withdrawing group and 2' and 3' substitution were favorable. Further investigation of substitutions on the maleimide motif in compounds 14-35 revealed that QC-specific inhibition in the presence of piperidine was improved by introduction of a methoxy group (R2). Increasing the linker length and introduction of a methoxy group (R2) also increased the GSK-3ß-specific inhibitory potency. These findings were further confirmed by molecular docking analysis of 33 and 24 with QC and GSK-3ß. Overall, these hybrids exhibited enhanced inhibitory potency against both QC and GSK-3ß, highlighting an important strategy for improving the potency of hybrids as dual-targeting anti-AD agents.


Subject(s)
Aminoacyltransferases , Glycogen Synthase Kinase 3 beta , Imidazoles , Maleimides , Structure-Activity Relationship , Maleimides/chemistry , Maleimides/pharmacology , Maleimides/chemical synthesis , Imidazoles/chemistry , Imidazoles/pharmacology , Imidazoles/chemical synthesis , Humans , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Aminoacyltransferases/antagonists & inhibitors , Aminoacyltransferases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Molecular Structure , Alzheimer Disease/drug therapy , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/metabolism , Dose-Response Relationship, Drug
9.
Bioorg Med Chem ; 108: 117786, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38843656

ABSTRACT

An efficient protocol for direct coupling of maleimides and indolines at the C7-position was achieved under Rh(III) catalysis. Thirty four novel indoline-maleimide conjugates were prepared in good to excellent yields using this method. All compounds were evaluated for their anti-proliferative effect against colorectal cell lines. Among them, compound 3ab showed the most potent anti-proliferative activity against the CRC cells, and displayed low toxicity in the normal cell. Further investigation indicated that 3ab could effectively suppress the proliferation and migration of CRC cells, along with inducing cell cycle arrest and apoptosis. Mechanistic studies revealed that compound 3ab inhibited the proliferation of CRC cells via suppressing the AKT/GSK-3ß pathway. In vivo evaluation demonstrated remarkable antitumor effect of 3ab (10 mg/kg) in the HCT116 xenograft model with no obvious toxicity, which is superior to that of 5-Fluorouracil (20 mg/kg). Therefore, conjugate 3ab could be considered as a potential CRC therapy agent for further development.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Colorectal Neoplasms , Drug Design , Drug Screening Assays, Antitumor , Indoles , Maleimides , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Indoles/chemistry , Indoles/pharmacology , Indoles/chemical synthesis , Maleimides/chemistry , Maleimides/chemical synthesis , Maleimides/pharmacology , Cell Proliferation/drug effects , Animals , Structure-Activity Relationship , Apoptosis/drug effects , Molecular Structure , Mice , Dose-Response Relationship, Drug , Mice, Nude , Cell Line, Tumor , Mice, Inbred BALB C , Cell Movement/drug effects
10.
Bioorg Chem ; 149: 107504, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38850783

ABSTRACT

The notable characteristics of recently emerged Antibody-Drug Conjugates (ADCs) encompass the targeting of Human Epidermal growth factor Receptor 2 (HER2) through monoclonal antibodies (mAbs) and a high ratio of drug to antibody (DAR). The achievements of Kadcyla® (T-DM1) and Enhertu® (T-Dxd) have demonstrated that HER2-targeting antibodies, such as trastuzumab, have shown to be competitive in terms of efficacy and price for development. Furthermore, with the arrival of T-Dxd and Trodelvy®, high-DAR (7-8) ADCs, which differ from the moderate DAR (3-4) ADCs that were formerly regarded as conventional, are being acknowledged for their worth. Following this trend of drug development, we endeavored to develop a high-DAR ADC using a straightforward approach involving the utilization of DM1, a highly potent substance, in combination with the widely recognized trastuzumab. To achieve a high DAR, DM1 was conjugated to reduced cysteine through the simple design and synthesis of various dimaleimide linkers with differing lengths. Using LC and MS analysis, we have demonstrated that our synthesis methodology is uncomplicated and efficacious, yielding trastuzumab-based ADCs that exhibit a remarkable degree of uniformity. These ADCs have been experimentally substantiated to exert an inhibitory effect on cancer cells in vitro, thus affirming their value as noteworthy additions to the realm of ADCs.


Subject(s)
Ado-Trastuzumab Emtansine , Immunoconjugates , Receptor, ErbB-2 , Trastuzumab , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Ado-Trastuzumab Emtansine/chemistry , Trastuzumab/chemistry , Trastuzumab/pharmacology , Molecular Structure , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Maleimides/chemistry , Maleimides/chemical synthesis , Dose-Response Relationship, Drug , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Maytansine/chemistry , Maytansine/pharmacology , Maytansine/chemical synthesis , Maytansine/analogs & derivatives , Cell Line, Tumor , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/chemical synthesis , Antineoplastic Agents, Immunological/pharmacology
11.
Chembiochem ; 25(16): e202400206, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38837740

ABSTRACT

A one-to-one conjugate of cross-linked human hemoglobin and human serum albumin results from a strain-promoted alkyne-azide cycloaddition (SPAAC) of the modified proteins. Additions of a strained alkyne-substituted maleimide to the Cys-34 thiol of human serum albumin and an azide-containing cross-link between the amino groups of each ß-unit at Lys-82 of human hemoglobin provide sites for coupling by the SPAAC process. The coupled hemoglobin-albumin conjugate can be readily purified from unreacted hemoglobin. The oxygen binding properties of the two-protein bioconjugate demonstrate oxygen affinity and cooperativity that are suitable for use in an acellular oxygen carrier.


Subject(s)
Alkynes , Azides , Cycloaddition Reaction , Hemoglobins , Serum Albumin , Alkynes/chemistry , Azides/chemistry , Humans , Hemoglobins/chemistry , Serum Albumin/chemistry , Oxygen/chemistry , Maleimides/chemistry
12.
J Biomed Mater Res A ; 112(12): 2124-2135, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38894666

ABSTRACT

Hematopoietic stem cells (HSCs) are the apical cells of the hematopoietic system, giving rise to cells of the blood and lymph lineages. HSCs reside primarily within bone marrow niches that contain matrix and cell-derived signals that help inform stem cell fate. Aspects of the bone marrow microenvironment have been captured in vitro by encapsulating cells within hydrogel matrices that mimic native mechanical and biochemical properties. Hydrogel microparticles, or microgels, are increasingly being used to assemble granular biomaterials for cell culture and noninvasive delivery applications. Here, we report the optimization of a gelatin maleimide hydrogel system to create monodisperse gelatin microgels via a flow-focusing microfluidic process. We report characteristic hydrogel stiffness, stability, and swelling characteristics as well as encapsulation of murine hematopoietic stem and progenitor cells, and mesenchymal stem cells within microgels. Microgels support cell viability, confirming compatibility of the microfluidic encapsulation process with these sensitive bone marrow cell populations. Overall, this work presents a microgel-based gelatin maleimide hydrogel as a foundation for future development of a multicellular artificial bone marrow culture system.


Subject(s)
Gelatin , Hematopoietic Stem Cells , Maleimides , Microgels , Gelatin/chemistry , Animals , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Mice , Microgels/chemistry , Maleimides/chemistry , Cell Encapsulation/methods , Cell Survival/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects
13.
J Am Chem Soc ; 146(25): 17334-17347, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38767615

ABSTRACT

Manipulation of cell-cell interactions via cell surface modification is crucial in tissue engineering and cell-based therapy. To be able to monitor intercellular interactions, it can also provide useful information for understanding how the cells interact and communicate. We report herein a facile bioorthogonal strategy to promote and monitor cell-cell interactions. It involves the use of a maleimide-appended tetrazine-caged boron dipyrromethene (BODIPY)-based fluorescent probe and a maleimide-substituted bicyclo[6.1.0]non-4-yne (BCN) to modify the membrane of macrophage (RAW 264.7) and cancer (HT29, HeLa, and A431) cells, respectively, via maleimide-thiol conjugation. After modification, the two kinds of cells interact strongly through inverse electron-demand Diels-Alder reaction of the surface tetrazine and BCN moieties. The coupling also disrupts the tetrazine quenching unit, restoring the fluorescence emission of the BODIPY core on the cell-cell interface, and promotes phagocytosis. Hence, this approach can promote and facilitate the detection of intercellular interactions, rendering it potentially useful for macrophage-based immunotherapy.


Subject(s)
Boron Compounds , Cell Communication , Fluorescent Dyes , Humans , Boron Compounds/chemistry , Mice , Animals , Fluorescent Dyes/chemistry , RAW 264.7 Cells , Maleimides/chemistry , HeLa Cells
14.
Carbohydr Polym ; 337: 122144, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38710569

ABSTRACT

In vivo, cells interact with the extracellular matrix (ECM), which provides a multitude of biophysical and biochemical signals that modulate cellular behavior. Inspired by this, we explored a new methodology to develop a more physiomimetic polysaccharide-based matrix for 3D cell culture. Maleimide-modified alginate (AlgM) derivatives were successfully synthesized using DMTMM to activate carboxylic groups. Thiol-terminated cell-adhesion peptides were tethered to the hydrogel network to promote integrin binding. Rapid and efficient in situ hydrogel formation was promoted by thiol-Michael addition "click" chemistry via maleimide reaction with thiol-flanked protease-sensitive peptides. Alginate derivatives were further ionically crosslinked by divalent ions present in the medium, which led to greater stability and allowed longer cell culture periods. By tailoring alginate's biofunctionality we improved cell-cell and cell-matrix interactions, providing an ECM-like 3D microenvironment. We were able to systematically and independently vary biochemical and biophysical parameters to elicit specific cell responses, creating custom-made 3D matrices. DMTMM-mediated maleimide incorporation is a promising approach to synthesizing AlgM derivatives that can be leveraged to produce ECM-like matrices for a broad range of applications, from in vitro tissue modeling to tissue regeneration.


Subject(s)
Alginates , Click Chemistry , Extracellular Matrix , Hydrogels , Maleimides , Sulfhydryl Compounds , Humans , Alginates/chemistry , Cell Adhesion/drug effects , Cross-Linking Reagents/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/chemistry , Hydrogels/chemistry , Hydrogels/chemical synthesis , Maleimides/chemistry , Sulfhydryl Compounds/chemistry
15.
Macromol Rapid Commun ; 45(15): e2400158, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38651593

ABSTRACT

Carbon-chain dendritic polymers hold unique properties and promising applications. However, synthesizing carbon-chain dendrimers, beyond conjugated ones, remains a challenge. Here, the use of the iterative single unit monomer insertion technique for synthesizing 2.5 generation partial-carbon-chain dendrimers (G2.5) is described, utilizing bismaleimide as the core, a maleimide-trithiocarbonate conjugate as the branching unit, and indene as the spacer unit, following a divergent growth strategy. The optimized conditions for synthesizing the maleimide-trithiocarbonate branching unit are a bismaleimide to trithiocarbonate ratio of 5:1 and a reaction time of 30 min. The structures are verified using 1H nuclear magnetic resonance, gel permeation chromatography, and matrix-assisted laser desorption/ionization-time of flight mass spectra. A four-arm star polymer is then synthesized using the G2.5 as the core. This synthesis of a partial-carbon-chain dendrimer establishes a foundational step toward creating all-carbon-chain ones and may open new application avenues in material science.


Subject(s)
Carbon , Dendrimers , Dendrimers/chemistry , Dendrimers/chemical synthesis , Carbon/chemistry , Molecular Structure , Maleimides/chemistry , Maleimides/chemical synthesis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Polymerization , Polymers/chemistry , Polymers/chemical synthesis
16.
J Chromatogr A ; 1721: 464861, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38564931

ABSTRACT

The covalent attachment of polyoxometalates (POMs) to polymers has been developed as a strategic approach for the advancement of POM-based hybrid materials with versatile applications. In this study, we utilized thiol-maleimide Michael addition to investigate the kinetics and efficacy of the "one-to-one" conjugation between Keggin type POM and polystyrene. We explored the effects of solvent polarity, catalyst, molecular weight of PS and synthetic strategies on the reaction kinetics and efficiency, by means of reverse-phase high-performance liquid chromatography (RP-HPLC). A series of comparative analysis affirmed the superior efficiency of the one-pot method, particularly when facilitated by the addition of a high-polarity solvent and an excess of maleimide. These findings offer valuable insights into the intricate interplay between reaction conditions, kinetics, and selectivity in thiol-maleimide reactions of POMs and polymers. They hold profound implications for advancing the study of POM-based multifunctional materials and the synthesis of complex hybrid molecules.


Subject(s)
Anions , Polyelectrolytes , Polymers , Sulfhydryl Compounds , Polymers/chemistry , Maleimides/chemistry , Solvents
17.
Adv Healthc Mater ; 13(17): e2303749, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38483042

ABSTRACT

The Golgi apparatus (GA) is central in shuttling proteins from the endoplasmic reticulum to different cellular areas. Therefore, targeting the GA to precisely destroy its proteins through local heat could induce apoptosis, offering a potential avenue for effective cancer therapy. Herein, a GA-targeted photothermal agent based on protein anchoring is introduced for enhanced photothermal therapy of tumor through the modification of near-infrared molecular dye with maleimide derivative and benzene sulfonamide. The photothermal agent can actively target the GA and covalently anchor to its sulfhydryl proteins, thereby increasing its retention within the GA. Under laser irradiation, the heat generated by the photothermal agent efficiently disrupts sulfhydryl proteins in situ, leading to GA dysfunction and ultimately inducing cell apoptosis. In vivo experiments demonstrate that the photothermal agent can precisely treat tumors and significantly reduce side effects.


Subject(s)
Golgi Apparatus , Photothermal Therapy , Golgi Apparatus/metabolism , Golgi Apparatus/drug effects , Photothermal Therapy/methods , Animals , Humans , Mice , Apoptosis/drug effects , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Mice, Nude , Mice, Inbred BALB C , Maleimides/chemistry , Maleimides/pharmacology
18.
FEBS Lett ; 598(9): 1080-1093, 2024 May.
Article in English | MEDLINE | ID: mdl-38523059

ABSTRACT

Recent developments in sequencing and bioinformatics have advanced our understanding of adenosine-to-inosine (A-to-I) RNA editing. Surprisingly, recent analyses have revealed the capability of adenosine deaminase acting on RNA (ADAR) to edit DNA:RNA hybrid strands. However, edited inosines in DNA remain largely unexplored. A precise biochemical method could help uncover these potentially rare DNA editing sites. We explore maleimide as a scaffold for inosine labeling. With fluorophore-conjugated maleimide, we were able to label inosine in RNA or DNA. Moreover, with biotin-conjugated maleimide, we purified RNA and DNA containing inosine. Our novel technique of inosine chemical labeling and affinity molecular purification offers substantial advantages and provides a versatile platform for further discovery of A-to-I editing sites in RNA and DNA.


Subject(s)
Adenosine , Inosine , RNA Editing , Inosine/chemistry , Inosine/metabolism , Adenosine/chemistry , Adenosine/metabolism , Adenosine/analogs & derivatives , Deamination , DNA/chemistry , DNA/metabolism , Maleimides/chemistry , Adenosine Deaminase/metabolism , Adenosine Deaminase/chemistry , RNA/chemistry , RNA/metabolism , Staining and Labeling/methods , Humans , Fluorescent Dyes/chemistry , Biotin/chemistry , Biotin/metabolism
19.
Small ; 20(13): e2304253, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37963821

ABSTRACT

Due to its tumor homing and long serum half-life, albumin is an ideal drug carrier for chemotherapy. For endogenous albumin hitchhiking with high cargo loading, a trimeric albumin-binding domain (ABD), i.e., ABD-Tri is designed by fusing an ABD with high specificity and affinity for albumin to a self-trimerizing domain (Tri) with an additional cysteine residue. ABD-Tri is highly (40 mg L-1) expressed as soluble and trimeric proteins in Escherichia coli (E. coli). Once mixed together, ABD-Tri rapidly and specifically forms a stable complex with albumin under physiological conditions without obviously changing its receptor- and cell-binding and tumor-homing properties. Maleimide-modified prodrugs are highly effectively conjugated to ABD-Tri to produce homogenous ABD-Tri-prodrugs with triple cargo loading under physiological conditions by thiol-maleimide click chemistry. Unlike the maleimide moiety, which can only mediate time- and concentration-dependent albumin binding, ABD-Tri mediated fast (within several minutes) albumin binding of drugs even at extremely low concentrations (µg mL-1). Compared to maleimide-modified prodrugs, ABD-Tri-prodrugs exhibit better tumor homing and greater in vivo antitumor effect, indicating that conjugation of chemical drug to ABD-Tri outperforms maleimide modification for endogenous albumin hitchhiking. The results demonstrate that ABD-Tri may serve as a novel platform to produce albumin-binding prodrugs with high cargo-loading capacity for tumor-targeted chemotherapy.


Subject(s)
Neoplasms , Prodrugs , Sulfhydryl Compounds , Humans , Prodrugs/chemistry , Serum Albumin , Escherichia coli/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Maleimides/chemistry
20.
Org Lett ; 25(42): 7673-7677, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37853547

ABSTRACT

Pyridyloxy-directed Rh(III)-catalyzed regioselective C3Ar-H alkenylation of protected tyrosines was achieved with N-aryl and N-alkyl maleimides, furnishing a series of maleimide-appended tyrosine-based unnatural amino acids in good yields. Further, the late-stage exemplification of the strategy was successfully accomplished on tyrosine-containing dipeptides, tripeptides, and tetrapeptides in moderate reactivity. Also, the chemical applications of the strategy were successfully executed toward nailing tyrosine with other amino acids via a maleimide linker and intramolecular hydroarylation to produce tyrosine-centered stapled products and succinimide-glued macrocyclized products, respectively.


Subject(s)
Rhodium , Molecular Structure , Rhodium/chemistry , Tyrosine , Amino Acids , Maleimides/chemistry , Peptides , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL