Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30.171
Filter
1.
Physiol Plant ; 176(4): e14422, 2024.
Article in English | MEDLINE | ID: mdl-38962815

ABSTRACT

Low temperatures pose a common challenge in the production of cucumbers and tomatoes, hindering plant growth and, in severe cases, leading to plant death. In our investigation, we observed a substantial improvement in the growth of cucumber and tomato seedlings through the application of corn steep liquor (CSL), myo-inositol (MI), and their combinations. When subjected to low-temperature stress, these treatments resulted in heightened levels of photosynthetic pigments, thereby fostering enhanced photosynthesis in both tomato and cucumber plants. Furthermore, it contributed to a decrease in malondialdehyde (MDA) levels and electrolyte leakage (REP). The effectiveness of the treatment was further validated through the analysis of key gene expressions (CBF1, COR, MIOX4, and MIPS1) in cucumber. Particularly, noteworthy positive outcomes were noted in the treatment involving 0.6 mL L-1 CSL combined with 72 mg L-1 MI. This study provides valuable technical insights into leveraging the synergistic effects of inositol and maize leachate to promote early crop growth and bolster resistance to low temperatures.


Subject(s)
Cold Temperature , Cucumis sativus , Inositol , Seedlings , Solanum lycopersicum , Zea mays , Inositol/metabolism , Zea mays/growth & development , Zea mays/metabolism , Zea mays/genetics , Zea mays/physiology , Seedlings/growth & development , Seedlings/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Cucumis sativus/genetics , Cucumis sativus/physiology , Photosynthesis/drug effects , Malondialdehyde/metabolism , Gene Expression Regulation, Plant/drug effects
2.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961333

ABSTRACT

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Subject(s)
Antioxidants , Apoptosis , Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ginsenosides , Myocytes, Cardiac , Oxidative Stress , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Male , Oxidative Stress/drug effects , Ryanodine Receptor Calcium Release Channel/metabolism , Ryanodine Receptor Calcium Release Channel/drug effects , Ginsenosides/pharmacology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/etiology , Apoptosis/drug effects , Antioxidants/pharmacology , Phosphorylation , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Myocytes, Cardiac/metabolism , Myocardium/pathology , Myocardium/metabolism , Insulin , Malondialdehyde/metabolism
3.
Sci Rep ; 14(1): 15213, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956158

ABSTRACT

Microplastic pollution, especially secondary microplastics (MPs), poses a significant threat to marine ecosystems. Despite its prevalence, the impact of natural-aged MPs on marine organisms, hindered by collection challenges, remains poorly understood. This study focused on 1-3 µm natural-aged MPs collected from Japan's coastal sea, investigating their effects on the rotifer Brachionus plicatilis sensu stricto and its reproductive mechanisms. Rotifers exposed to varying MP concentrations (0, 20, and 200 particles/mL) over 14-day batch cultures exhibited reduced population growth and fertilization rates. Down-regulation of reproductive genes and up-regulation of oxidative stress-related genes were observed, indicating MP-induced disruptions. Enhanced activities of superoxide dismutase and acetylcholinesterase and elevated malondialdehyde levels further emphasized oxidative stress. These findings underscore the detrimental impact of MPs on rotifer reproductivity, shedding light on the underlying mechanisms.


Subject(s)
Microplastics , Oxidative Stress , Reproduction , Rotifera , Water Pollutants, Chemical , Animals , Rotifera/drug effects , Microplastics/toxicity , Reproduction/drug effects , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Malondialdehyde/metabolism
4.
Sci Rep ; 14(1): 15117, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956273

ABSTRACT

Cancer and related disorders are the most common cause of cancer-related mortality with the incidence of 1 in 9 among the pre-menopausal Pakistani females. among the most common ailments worldwide, indicating the importance of developing particular techniques that could help attenuate the effects of breast cancer and related outcomes. The primary aim of the current study was to review the role of inflammatory and stress markers in the development and progression of breast cancer. Four hundred ninety-eight (n = 498) patients with breast cancer and four hundred and ninety-eight (n = 498) age- and sex-matched controls were selected for this case‒control study. Serum samples were obtained, and the levels of stress and inflammatory markers, including Matrix metalloproteases (MMPs), Interleukins (ILs), Heat shock proteins (HSPs), Malondialdehyde (MDA), Nitric Oxide (NO), inducible Nitric Oxide Synthase (iNOS) and Tumour necrosis factor-alpha (TNF-α), were determined. Most (62%) patients had metastatic breast cancer (stage III or IV) with an adverse grade (65% with Grade III and 35% with Grade II). The present study showed that the levels of oxidants such as MDA, ILs, MMPs and HSPs were significantly greater, while the levels of antioxidants such as Superoxide Dismutase (SOD), Glutathione (GSH), Catalase (CAT), vitamin A, C and D were significantly lower in breast cancer patients than in controls, suggesting their diagnostic importance and role in the pathophysiology of breast cancer. Oxidants, including IL-1, HSP27 and MMP9, which are highly specific and sensitive, may be used to develop the pathophysiological pathways of metastatic breast cancer in these patients. These pathways include cell invasion, cell migration and epithelial-mesenchymal transition. Therefore, we concluded that an increase in growth factors, e.g., Vascular Endothelial Growth Factor (VEGF), Tumour Growth Factor-beta (TGF-ß) and B-cell lymphoma (Bcl2), under the influence of these variables plays a crucial role in the metastasis of breast cancer.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Humans , Female , Breast Neoplasms/blood , Breast Neoplasms/pathology , Middle Aged , Adult , Biomarkers, Tumor/blood , Case-Control Studies , Inflammation/blood , Oxidative Stress , Malondialdehyde/blood , Nitric Oxide/blood , Nitric Oxide/metabolism
5.
Sci Rep ; 14(1): 15265, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961133

ABSTRACT

Cadmium (Cd) pollution is a serious threat to food safety and human health. Minimizing Cd uptake and enhancing Cd tolerance in plants are vital to improve crop yield and reduce hazardous effects to humans. In this study, we designed three Cd concentration stress treatments (Cd1: 0.20 mg·kg-1, Cd2: 0.60 mg·kg-1, and Cd3: 1.60 mg·kg-1) and two foliar silicon (Si) treatments (CK: no spraying of any material, and Si: foliar Si spraying) to conduct pot experiments on soil Cd stress. The results showed that spraying Si on the leaves reduced the Cd content in brown rice by 4.79-42.14%. Si application increased net photosynthetic rate (Pn) by 1.77-4.08%, stomatal conductance (Gs) by 5.27-23.43%, transpiration rate (Tr) by 2.99-20.50% and intercellular carbon dioxide (CO2) concentration (Ci) by 6.55-8.84%. Foliar spraying of Si significantly increased the activities of superoxide dismutase (SOD) and peroxidase (POD) in rice leaves by 9.84-14.09% and 4.69-53.09%, respectively, and reduced the content of malondialdehyde (MDA) by 7.83-48.72%. In summary, foliar Si spraying protects the photosynthesis and antioxidant system of rice canopy leaves, and is an effective method to reduce the Cd content in brown rice.


Subject(s)
Antioxidants , Cadmium , Oryza , Photosynthesis , Plant Leaves , Silicon , Oryza/metabolism , Oryza/drug effects , Oryza/growth & development , Cadmium/toxicity , Cadmium/metabolism , Photosynthesis/drug effects , Silicon/pharmacology , Silicon/metabolism , Antioxidants/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Soil Pollutants , Peroxidase/metabolism
6.
Clin Interv Aging ; 19: 1141-1151, 2024.
Article in English | MEDLINE | ID: mdl-38948168

ABSTRACT

Background: Serum trace elements and oxidative stress factors are related to diabetic microvascular complications. The study was to investigate the complex relationship between trace elements, oxidative stress factors, and the severity of microvascular complications of diabetes in older adults. Methods: The present study included patients with or without type 2 diabetes, and blood glucose, blood lipids, trace elements (iron, magnesium, zinc), oxidative stress factors (malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC)) were evaluated. Risk factors for the severity of diabetic microvascular complications in older adults with diabetes were also estimated. Results: There were statistically significant differences in fasting blood glucose (FBG), triglycerides (TG), low density lipoprotein (LDL), glycated hemoglobin (HbAlc), MDA, NO, SOD, T-AOC, magnesium, and zinc between the two groups (P<0.05). Iron (rZinc = 0.147, rSOD = 0.180, rT-AOC = 0.193, P < 0.05) was positively correlated with zinc, SOD and T-AOC. Iron was negatively correlated with MDA (rMDA = -0.146, P < 0.05). Magnesium was positively correlated with SOD (rMagnesium = 0.147, P < 0.05). Zinc (rSOD = 0.616, rT-AOC = 0.575, P < 0.01) was positively correlated with SOD and T-AOC. Zinc (rMDA =-0.636, rNO=-0.616, P<0.01) was positively correlated with MDA and negatively correlated with NO. The course of disease (18.653, [5.726; 60.764], P <0.01), FBG (1.265, [1.059; 1.511], P <0.05), HbAlc (1.545, [1.431; 1.680], P <0.01), MDA (2.989, [1.900; 4.702], P <0.01) were risk factor for the severity of diabetic microvascular complications. Zinc (0.680, [0.503; 0.919], P < 0.05) and SOD (0.820, [0.698; 0.964], P < 0.05) were protective factors for the severity of diabetic microvascular complications. Conclusion: Serum trace elements are related to oxidative stress levels in older adults with type 2 diabetes. The more stable trace element in older adults with diabetes, the lower the oxidative stress and the fewer microvascular complications of diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Malondialdehyde , Oxidative Stress , Superoxide Dismutase , Zinc , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Male , Female , Aged , Zinc/blood , China , Malondialdehyde/blood , Superoxide Dismutase/blood , Middle Aged , Blood Glucose/analysis , Risk Factors , Diabetic Angiopathies/blood , Glycated Hemoglobin/analysis , Nitric Oxide/blood , Antioxidants , Magnesium/blood , Lipids/blood , Trace Elements/blood , Severity of Illness Index
7.
Sci Rep ; 14(1): 14956, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38942829

ABSTRACT

Preterm born (PTB) infants are at risk for injuries related to oxidative stress. We investigated the association between antioxidant and neurodevelopmental gene polymorphisms and oxidative stress parameters in PTB male young adults and their term-born counterparts at rest and during exercise. Healthy young PTB (N = 22) and full-term (N = 15) males underwent graded exercise tests in normobaric normoxic (FiO2 = 0.21) and hypoxic (FiO2 = 0.13) conditions. CAT rs1001179 was associated with decrease in nitrites in the whole group and in PTB individuals (P = 0.017 and P = 0.043, respectively). GPX1 rs1050450 was associated with decrease in ferric reducing antioxidant power in the whole group and in full-term individuals (P = 0.017 and P = 0.021, respectively). HIF1A rs11549465 was associated with decrease in nitrotyrosine and increase in malondialdehyde (P = 0.022 and P = 0.018, respectively). NOTCH4 rs367398 was associated with increase in advanced oxidation protein products and nitrites (P = 0.002 and P = 0.004, respectively) in hypoxia. In normoxia, NOTCH4 rs367398 was associated with increase in malondialdehyde in the whole group (P = 0.043). BDNF rs6265 was associated with decreased nitrites/nitrates in the whole group and in PTB individuals (P = 0.009 and P = 0.043, respectively). Polymorphisms in investigated genes and PTB might influence oxidative stress response after exercise in normoxic or hypoxic conditions far beyond the neonatal period in young male adults.


Subject(s)
Antioxidants , Hypoxia , Oxidative Stress , Polymorphism, Single Nucleotide , Humans , Oxidative Stress/genetics , Male , Hypoxia/genetics , Antioxidants/metabolism , Young Adult , Infant, Newborn , Glutathione Peroxidase GPX1 , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Catalase/genetics , Adult , Glutathione Peroxidase/genetics , Infant, Premature , Nitrites/metabolism , Malondialdehyde/metabolism , Tyrosine/genetics , Tyrosine/analogs & derivatives , Premature Birth/genetics
8.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38828664

ABSTRACT

Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.


Subject(s)
Antioxidants , Cadmium , Chenopodium quinoa , Hydrogen Peroxide , Seedlings , gamma-Aminobutyric Acid , Seedlings/drug effects , Seedlings/metabolism , Seedlings/growth & development , Cadmium/metabolism , Cadmium/toxicity , Chenopodium quinoa/metabolism , Chenopodium quinoa/drug effects , Chenopodium quinoa/growth & development , gamma-Aminobutyric Acid/metabolism , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Malondialdehyde/metabolism , Stress, Physiological/drug effects , Superoxide Dismutase/metabolism , Photosynthesis/drug effects , Oxidative Stress/drug effects
9.
Sci Rep ; 14(1): 14511, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914646

ABSTRACT

Flavonoids are crucial secondary metabolites that possess the ability to mitigate UV damage and withstand both biotic and abiotic stresses. Therefore, it is of immense significance to investigate the flavonoid content as a pivotal indicator for a comprehensive assessment of chestnut's drought tolerance. This study aimed to determine the flavonoid content and drought tolerance-related physiological and biochemical indices of six chestnut varieties (clones) grafted trees-Qianxi 42 (QX42), Qinglong 45 (QL45), Yanshanzaofeng (YSZF), Yanzi (YZ), Yanqiu (YQ), and Yanlong (YL)-under natural drought stress. The results were used to comprehensively analyze the drought tolerance ability of these varieties. The study revealed that the ranking of drought tolerance indices in terms of their ability to reflect drought tolerance was as follows: superoxide (oxide) dismutase (SOD) activity, ascorbate peroxidase (APX) activity, flavone content, catalase (CAT) activity, proline (PRO) content, soluble sugar content, peroxidase (POD) activity, betaine content, flavonol content, hydrogen peroxide (H2O2) content, soluble protein content, superoxide ion (OFR) content, superoxide (ion OFR) production rate, malondialdehyde (MDA) content, chlorophyll content. Through principal component analysis, the contents of flavonoids and flavonols can be used as indicators for comprehensive evaluation of drought tolerance of chestnut. The comprehensive evaluation order of drought tolerance of grafted trees of 6 chestnut varieties (Clones) was: QL45 > QX42 > YQ > YZ > YSZF > YL.


Subject(s)
Droughts , Flavonoids , Flavonoids/metabolism , Stress, Physiological , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Proline/metabolism , Chlorophyll/metabolism , Hydrogen Peroxide/metabolism , Fagaceae/physiology , Fagaceae/genetics , Adaptation, Physiological , Catalase/metabolism , Ascorbate Peroxidases/metabolism , Drought Resistance , East Asian People
10.
Sci Rep ; 14(1): 14520, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914640

ABSTRACT

Rose flowers (Rosa hybrida L.) are highly perishable and have a limited vase life. This study evaluated the effects of preharvest foliar applications of γ-aminobutyric acid (GABA) and calcium chloride (CaCl2), individually and combined, on antioxidant responses and vase life of cut Jumilia rose flowers. Treatments included foliar sprays of GABA at 0, 20, 40, and 60 mM and CaCl2 at 0, 0.75%, and 1.5%, applied in a factorial design within a completely randomized setup before harvest. Results showed GABA and CaCl2 interaction (especially, 60 mM GABA and 1.5% CaCl2) significantly increased enzymatic antioxidants including superoxide dismutase, catalase, and peroxidase, as well as non-enzymatic antioxidants such as flavonoids, carotenoids, phenolics, and antioxidant activity in petals compared to control. SOD activity in roses, treated with CaCl2 (1.5%) and GABA (60 mM), peaked at 7.86 units. mg-1 protein min-1, showing a nearly 2.93-fold increase over the control (2.68 units. mg-1 protein min-1). A parallel trend was observed for CAT activity. These treatments also reduced petal malondialdehyde content and polyphenol oxidase activity. Protein content and vase life duration increased in all treatments. Plants treated with a combination of GABA (20 mM) and CaCl2 (0.75%), GABA (60 mM) and CaCl2 (1.5%), or GABA (40 mM) individually exhibited the longest vase life duration. The co-application of GABA and CaCl2 improved the antioxidant activity and postharvest quality of cut roses by reducing PPO activity and MDA contents, increasing protein content and prolonging vase life. This treatment is a potential postharvest strategy to improve antioxidant capacity and delay senescence in cut roses.


Subject(s)
Antioxidants , Calcium Chloride , Flowers , Rosa , gamma-Aminobutyric Acid , Flowers/drug effects , Calcium Chloride/pharmacology , Antioxidants/metabolism , gamma-Aminobutyric Acid/metabolism , Rosa/metabolism , Rosa/drug effects , Superoxide Dismutase/metabolism , Catalase/metabolism , Malondialdehyde/metabolism , Plant Leaves/metabolism , Plant Leaves/drug effects
11.
PLoS One ; 19(6): e0305688, 2024.
Article in English | MEDLINE | ID: mdl-38917096

ABSTRACT

Increases in near-surface ozone (O3) concentrations is a global environmental problem. High-concentration O3 induces stress in plants, which can lead to visible damage to plants, reduced photosynthesis, accelerated aging, inhibited growth, and can even plant death. However, its impact has not been comprehensively evaluated because of the response differences between individual plant species, environmental O3 concentration, and duration of O3 stress in plants. We used a meta-analysis approach based on 31 studies 343 observations) to examine the effects of elevated O3 on malondialdehyde (MDA), superoxide dismutase (SOD), and peroxidase (POD) activities in herbaceous plants. Globally, important as they constitute the majority of the world's food crops. We partitioned the variation in effect size found in the meta-analysis according to the presence of plant species (ornamental herb, rice, and wheat), O3 concentration, and duration of O3 stress in plants. Our results showed that the effects of elevated O3 on plant membrane lipid peroxidation depending on plant species, O3 concentration, and duration of O3 stress in plants. The wheat SOD and POD activity was significantly lower compared to the herbs and rice (P<0.01). The SOD activity of all herbaceous plants increased by 34.6%, 10.5%, and 26.3% for exposure times to elevated O3 environments of 1-12, 13-30, and 31-60 days, respectively. When the exposure time was more than 60 days, SOD activity did not increase but significantly decreased by 12.1%. However, the POD activity of herbaceous plants increased by 30.4%, 57.3%, 21.9% and 5.81%, respectively, when exposure time of herbaceous plants in elevated O3 environment was 1-12, 13-30, 31-60 and more than 60 days. Our meta-analysis revealed that (1) rice is more resistant to elevated O3 than wheat and ornamental herbs likely because of the higher activity of antioxidant components (e.g., POD) in the symplasts, (2) exposure to elevated O3 concentrations for >60 days, may result in antioxidant SOD lose its regulatory ability, and the antioxidant component POD in the symplast is mainly used to resist O3 damage, and (3) the important factors affected the activity of SOD and POD in plants were not consistent: the duration of O3 stress in plants was more important than plant species and O3 concentration for SOD activity. However, for POD activity, plant species was the most important factor.


Subject(s)
Antioxidants , Ozone , Superoxide Dismutase , Superoxide Dismutase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Lipid Peroxidation , Plants/metabolism , Oxidative Stress , Oxidoreductases/metabolism , Oryza/growth & development , Oryza/metabolism , Peroxidase/metabolism
12.
Nano Lett ; 24(25): 7792-7799, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38860501

ABSTRACT

Disease biomarkers in tears are crucial for clinical diagnosis and health monitoring. However, the limited volume of tear samples, low concentration of tear biomarkers, and complex tear composition present challenges for precise testing. We introduce a spot-on testing platform of metal-organic framework (MOF)-based surface-enhanced Raman scattering (SERS) capillary column, which is capable of target molecules selective separation and enrichment for tear biomarkers in situ detection. It consists of Au nanostars for effective SERS signal and a porous MOF shell for separating impurities through molecular sieving effect. This platform allows for simultaneous collection and detection of tear, capturing the disease biomarker malondialdehyde in tears with a 9.38 × 10-9 mol/L limit of detection. Moreover, we designed a hand-held device based on this tubular SERS sensor, successfully diagnosing patients with dry eye disease. This functional capillary column enables noninvasive and rapid diagnosis of biomarkers in biofluids, providing potential for disease diagnosis and healthcare monitoring.


Subject(s)
Biomarkers , Gold , Malondialdehyde , Metal-Organic Frameworks , Spectrum Analysis, Raman , Tears , Spectrum Analysis, Raman/methods , Tears/chemistry , Metal-Organic Frameworks/chemistry , Humans , Malondialdehyde/analysis , Gold/chemistry , Biomarkers/analysis , Dry Eye Syndromes/diagnosis , Limit of Detection , Metal Nanoparticles/chemistry
13.
Bull Environ Contam Toxicol ; 112(6): 83, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822863

ABSTRACT

To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.


Subject(s)
Cadmium , Microplastics , Seedlings , Superoxide Dismutase , Vicia faba , Vicia faba/drug effects , Vicia faba/growth & development , Seedlings/drug effects , Seedlings/growth & development , Cadmium/toxicity , Microplastics/toxicity , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Water Pollutants, Chemical/toxicity , Plant Roots/drug effects , Plant Roots/growth & development
14.
Physiol Plant ; 176(3): e14374, 2024.
Article in English | MEDLINE | ID: mdl-38837422

ABSTRACT

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Subject(s)
Fruit , Heat-Shock Response , Photosystem II Protein Complex , Plant Leaves , Plant Proteins , Plastids , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Heat-Shock Response/genetics , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plastids/metabolism , Plastids/genetics , Chlorophyll/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Plants, Genetically Modified , Plant Senescence/genetics , Gene Expression Regulation, Plant , Malondialdehyde/metabolism
15.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 491-495, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38845495

ABSTRACT

OBJECTIVE: To investigate the effect of nuclear factor E2-related factor 2 (Nrf2) protein on ferroptosis in mice with sepsis-associated liver injury (SALI). METHODS: he male Sprague-Dawley (SD) mice were divided into 6 groups according to the random number table method, with 6 mice in each group. The SALI model of mice was established by cecal ligation and puncture (CLP), and the Sham group was only treated with laparotomy. CLP+Fer-1 group, CLP+Erastin group, CLP+ML385 group and CLP+Curcumin group were intraperitoneally injected with iron death inhibitor Ferrostatin-1 (Fer-1) 10 mg×kg-1×d-1, iron death activator Erastin 20 mg×kg-1×d-1, Nrf2 inhibitor ML385 30 mg×kg-1×d-1 and Nrf2 activator Curcumin 100 mg×kg-1×d-1 after CLP, respectively; Sham group and CLP group were given normal saline 10 mg×kg-1×d-1, each group was administered continuously for 10 days. Ten days after operation, the serum and liver tissues of mice were collected to detect the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, and the levels of malondialdehyde (MDA), glutathione (GSH) and Fe2+; in liver homogenate. The pathological changes of liver tissue were observed under light microscope after hematoxylin-eosin (HE) staining. The shape and length of mitochondria in liver cells were observed under transmission electron microscope. The protein expressions of Nrf2, glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) in liver tissue were detected by Western blotting. RESULTS: Compared with Sham group, the serum levels of ALT and AST in the CLP group were significantly increased; histologically, the hepatic cord was disordered, the cells were swollen and necrotic, and the length of mitochondria was significantly shortened; the levels of MDA and Fe2+ in liver tissue increased significantly, and the content of GSH decreased significantly; the protein expressions of Nrf2 and GPX4 in liver tissue decreased, and the protein expression of PTGS2 increased significantly. Compared with CLP group, the serum levels of ALT and AST in CLP+Fer-1 group and CLP+Curcumin group were significantly decreased [ALT (U/L): 80.65±19.44, 103.45±20.52 vs. 283.50±37.12, AST (U/L): 103.33±11.90, 127.33±15.79 vs. 288.67±36.82, all P < 0.05]; microscopically, the hepatic cord was irregular, the cells were slightly swollen, and the mitochondrial length was significantly increased (µm: 1.42±0.09, 1.43±0.21 vs. 1.07±0.25, both P < 0.05); the levels of MDA and Fe2+; in liver tissue decreased significantly, and the content of GSH increased significantly [MDA (mol/g): 0.87±0.23, 1.85±0.43 vs. 4.47±0.95, Fe2+ (µg/g): 63.80±7.15, 67.48±6.28 vs. 134.52±14.32, GSH (mol/g): 1.95±0.29, 1.95±0.45 vs. 0.55±0.29, all P < 0.05]; the protein expressions of Nrf2 and GPX4 in liver tissue were significantly increased, and the protein expression of PTGS2 was significantly decreased (Nrf2/GAPDH: 1.80±0.28, 2.10±0.43 vs. 0.70±0.24, GPX4/GAPDH: 0.80±0.06, 0.93±0.07 vs. 0.48±0.02, PTGS2/GAPDH: 0.76±0.05, 0.84±0.01 vs. 1.02±0.09, all P < 0.05). However, the results of the above indexes in the CLP+Erastin group and CLP+ML385 group were opposite, and the serum levels of ALT and AST were significantly increased [ALT (U/L): 344.52±40.79, 321.70±21.10 vs. 283.50±37.12, AST (U/L): 333.50±27.90, 333.00±16.67 vs. 288.67±36.82, all P < 0.05]; microscopically, the arrangement of hepatic cords was disordered, the cells were obviously swollen and necrotic, and the length of mitochondria was significantly shortened (µm: 0.78±0.13, 0.67±0.07 vs. 1.07±0.25, both P < 0.05); the levels of MDA and Fe2+ in liver tissue increased significantly, and the content of GSH decreased significantly [MDA (mol/g): 5.92±1.06, 5.62±0.56 vs. 4.47±0.95, Fe2+ (µg/g): 151.40±8.03, 151.88±8.68 vs. 134.52±14.32, GSH (mol/g): 0.25±0.08, 0.23±0.11 vs. 0.55±0.29, all P < 0.05]; the protein expressions of Nrf2 and GPX4 in liver tissue were significantly decreased, and the protein expression of PTGS2 was significantly increased (Nrf2/GAPDH: 0.46±0.09, 0.46±0.11 vs. 0.70±0.24, GPX4/GAPDH: 0.34±0.05, 0.40±0.01 vs. 0.48±0.02, PTGS2/GAPDH: 1.24±0.13, 1.16±0.11 vs. 1.02±0.09, all P < 0.05). CONCLUSIONS: CLP-induced SALI can lead to ferroptosis in mice hepatocytes, and Nrf2 protein in liver tissue can mediate SALI by regulating ferroptosis.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2 , Sepsis , Animals , Male , Mice , NF-E2-Related Factor 2/metabolism , Sepsis/metabolism , Sepsis/complications , Disease Models, Animal , Liver/metabolism , Rats, Sprague-Dawley , Liver Diseases/etiology , Liver Diseases/metabolism , Glutathione Peroxidase/metabolism , Malondialdehyde/metabolism , Curcumin/pharmacology , Phenylenediamines/pharmacology , Cyclohexylamines
16.
Food Res Int ; 189: 114536, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876589

ABSTRACT

Walnut isolate protein (WPI)-epigallocatechin gallate (EGCG) conjugates can be employed to creat food-grade delivery systems for preserving bioactive compounds. In this study, WPI-EGCG nanoparticles (WENPs) were developed for encapsulating lycopene (LYC) using the ultrasound-assisted method. The results indicated successful loading of LYC into these WENPs, forming the WENPs/LYC (cylinder with 200-300 nm in length and 14.81-30.05 nm in diameter). Encapsulating LYC in WENPs led to a notable decrease in release rate and improved stability in terms of thermal, ultraviolet (UV), and storage conditions compared to free LYC. Simultaneously, WENPs/LYC exhibited a synergistic and significantly higher antioxidant activity with an EC50 value of 23.98 µg/mL in HepG2 cells compared to free LYC's 31.54 µg/mL. Treatment with WENPs/LYC led to a dose-dependent restoration of intracellular antioxidant enzyme activities (SOD, CAT, and GSH-Px) and inhibition of intracellular malondialdehyde (MDA) formation. Furthermore, transcriptome analysis indicated that enrichment in glutathione metabolism and peroxisome processes following WENPs/LYC addition. Quantitative real-time reverse transcription PCR (qRT-PCR) verified the expression levels of related genes involved in the antioxidant resistance pathway of WENPs/LYC on AAPH-induced oxidative stress. This study offers novel perspectives into the antioxidant resistance pathway of WENPs/LYC, holding significant potential in food industry.


Subject(s)
Antioxidants , Catechin , Juglans , Lycopene , Nanoparticles , Lycopene/pharmacology , Lycopene/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Juglans/chemistry , Humans , Nanoparticles/chemistry , Hep G2 Cells , Plant Proteins , Malondialdehyde/metabolism , Drug Stability , Superoxide Dismutase/metabolism , Oxidative Stress/drug effects
17.
Reprod Domest Anim ; 59(6): e14598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38881434

ABSTRACT

Our previous research has shown that melatonin (MLT) can reduce cryopreserved ovarian damage in mice. Yet, the molecular mechanism of MLT protection is still unclear. Some studies have shown that melatonin receptor 1 (MT1) is very important for animal reproductive system. To evaluate whether MLT exerts its protective effect on cryopreserved mice ovarian tissue via MT1, we added antagonist of MT1/MT2 (Luzindor) or antagonist of MT2 (4P-PDOT) to the freezing solution, followed by cryopreservation and thawing of ovarian tissue. The levels of total superoxide dismutase (T-SOD), catalase (CAT), nitric oxide (NO) and malondialdehyde (MDA) were detected. Besides, by using RT-PCR and Western blotting, the expression of Bcl-2, Bax and Nrf2/HO-1 signalling pathway-related proteins was detected. These findings demonstrated that compared with the melatonin group, the addition of Luzindor increased apoptosis, NO and MDA activities, decreased CAT and T-SOD activities and inhibited Nrf2/HO-1 signalling pathway. In conclusion, melatonin can play a protective role in cryopreserved ovarian tissue of mice through MT1 receptor.


Subject(s)
Cryopreservation , Melatonin , NF-E2-Related Factor 2 , Ovary , Oxidative Stress , Receptor, Melatonin, MT1 , Signal Transduction , Animals , Female , Melatonin/pharmacology , Oxidative Stress/drug effects , Ovary/drug effects , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT1/genetics , Signal Transduction/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Cryopreservation/veterinary , Tryptamines/pharmacology , Apoptosis/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Heme Oxygenase (Decyclizing)/genetics , Nitric Oxide/metabolism , Malondialdehyde/metabolism , Membrane Proteins , Heme Oxygenase-1
18.
BMC Plant Biol ; 24(1): 557, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877427

ABSTRACT

In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.


Subject(s)
Chitosan , Lead , Oxidative Stress , Vicia faba , Vicia faba/drug effects , Vicia faba/genetics , Vicia faba/metabolism , Lead/metabolism , Lead/toxicity , Oxidative Stress/drug effects , Chitosan/pharmacology , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics
19.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892459

ABSTRACT

The aim of this study was to explore how the total flavonoids from Eucommia ulmoides leaves (EULs) regulate ischemia-induced nerve damage, as well as the protective effects mediated by oxidative stress. The cell survival rate was significantly improved compared to the ischemic group (p < 0.05) after treatment with the total flavonoids of EULs. The levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) decreased, while catalase (CAT) and glutathione (GSH) increased, indicating that the total flavonoids of EULs can significantly alleviate neurological damage caused by ischemic stroke by inhibiting oxidative stress (p < 0.01). The mRNA expression level of VEGF increased (p < 0.01), which was consistent with the protein expression results. Meanwhile, the protein expression of ERK and CCND1 increased (p < 0.01), suggesting that the total flavonoids of EULs could protect PC12 cells from ischemic injury via VEGF-related pathways. MCAO rat models indicated that the total flavonoids of EULs could reduce brain ischemia-reperfusion injury. In conclusion, this study demonstrates the potential mechanisms of the total flavonoids of EULs in treating ischemic stroke and their potential therapeutic effects in reducing ischemic injury, which provides useful information for ischemic stroke drug discovery.


Subject(s)
Eucommiaceae , Flavonoids , Ischemic Stroke , Oxidative Stress , Plant Leaves , Animals , Rats , Flavonoids/pharmacology , Eucommiaceae/chemistry , Plant Leaves/chemistry , PC12 Cells , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Oxidative Stress/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Male , Reactive Oxygen Species/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cell Survival/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Rats, Sprague-Dawley , Malondialdehyde/metabolism
20.
Nutrients ; 16(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892705

ABSTRACT

Background: Dietary quality and the consumption of antioxidant-rich foods have been shown to protect against memory decline. Therefore, this double-blind, randomized, placebo-controlled study aimed to investigate the effects of a nutritional supplement on changes in cognitive performance. Methods: In adults aged 40 to 70 years with subjective memory complaints, participants were randomly allocated to take a supplement containing vitamin E, astaxanthin, and grape juice extract daily for 12 weeks or a matching placebo. The primary outcomes comprised changes in cognitive tasks assessing episodic memory, working memory, and verbal memory. Secondary and exploratory measures included changes in the speed of information processing, attention, and self-report measures of memory, stress, and eye and skin health. Moreover, changes in plasma concentrations of brain-derived neurotrophic factor, malondialdehyde, tumor-necrosis factor-α, and interleukin-6 were measured, along with changes in skin carotenoid concentrations. Results: Compared to the placebo, nutritional supplementation was associated with larger improvements in one primary outcome measure comprising episodic memory (p = 0.037), but not for working memory (p = 0.418) or verbal learning (p = 0.841). Findings from secondary and exploratory outcomes demonstrated that the nutraceutical intake was associated with larger improvements in the Everyday Memory Questionnaire (p = 0.022), increased plasma brain-derived neurotrophic factor (p = 0.030), decreased plasma malondialdehyde (p = 0.040), and increased skin carotenoid concentrations (p = 0.006). However, there were no group differences in changes in the remaining outcome measures. Conclusions: Twelve weeks of supplementation with a nutritional supplement was associated with improvements in episodic memory and several biological markers associated with cognitive health. Future research will be essential to extend and validate the current findings.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognition , Dietary Supplements , Humans , Middle Aged , Double-Blind Method , Male , Female , Cognition/drug effects , Adult , Aged , Brain-Derived Neurotrophic Factor/blood , Vitamin E , Xanthophylls/administration & dosage , Skin/drug effects , Antioxidants , Interleukin-6/blood , Self Report , Carotenoids/blood , Tumor Necrosis Factor-alpha/blood , Memory, Short-Term/drug effects , Memory, Episodic , Fruit and Vegetable Juices , Malondialdehyde/blood , Eye/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...