Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.826
Filter
1.
J Agric Food Chem ; 72(29): 16449-16460, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38996051

ABSTRACT

Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.


Subject(s)
Epithelial Cells , Insulin Receptor Substrate Proteins , Mammary Glands, Animal , MicroRNAs , Milk , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Cattle/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Milk/metabolism , Milk/chemistry , Epithelial Cells/metabolism , Female , Insulin Receptor Substrate Proteins/metabolism , Insulin Receptor Substrate Proteins/genetics , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Triglycerides/metabolism , Triglycerides/biosynthesis , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Fats/metabolism , Lactation/genetics
2.
Sci Adv ; 10(27): eadk8958, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959315

ABSTRACT

The luminal-to-basal transition in mammary epithelial cells (MECs) is accompanied by changes in epithelial cell lineage plasticity; however, the underlying mechanism remains elusive. Here, we report that deficiency of Frmd3 inhibits mammary gland lineage development and induces stemness of MECs, subsequently leading to the occurrence of triple-negative breast cancer. Loss of Frmd3 in PyMT mice results in a luminal-to-basal transition phenotype. Single-cell RNA sequencing of MECs indicated that knockout of Frmd3 inhibits the Notch signaling pathway. Mechanistically, FERM domain-containing protein 3 (FRMD3) promotes the degradation of Disheveled-2 by disrupting its interaction with deubiquitinase USP9x. FRMD3 also interrupts the interaction of Disheveled-2 with CK1, FOXK1/2, and NICD and decreases Disheveled-2 phosphorylation and nuclear localization, thereby impairing Notch-dependent luminal epithelial lineage plasticity in MECs. A low level of FRMD3 predicts poor outcomes for breast cancer patients. Together, we demonstrated that FRMD3 is a tumor suppressor that functions as an endogenous activator of the Notch signaling pathway, facilitating the basal-to-luminal transformation in MECs.


Subject(s)
Epithelial Cells , Receptors, Notch , Signal Transduction , Animals , Epithelial Cells/metabolism , Female , Receptors, Notch/metabolism , Humans , Mice , Cell Lineage , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Differentiation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics
3.
Front Immunol ; 15: 1367432, 2024.
Article in English | MEDLINE | ID: mdl-38994364

ABSTRACT

Background: Innovative therapies against bacterial infections are needed. One approach is to focus on host-directed immunotherapy (HDT), with treatments that exploit natural processes of the host immune system. The goals of this type of therapy are to stimulate protective immunity while minimizing inflammation-induced tissue damage. We use non-traditional large animal models to explore the potential of the mammosphere-derived epithelial cell (MDEC) secretome, consisting of all bioactive factors released by the cells, to modulate host immune functions. MDEC cultures are enriched for mammary stem and progenitor cells and can be generated from virtually any mammal. We previously demonstrated that the bovine MDEC secretome, collected and delivered as conditioned medium (CM), inhibits the growth of bacteria in vitro and stimulates functions related to tissue repair in cultured endothelial and epithelial cells. Methods: The immunomodulatory effects of the bovine MDEC secretome on bovine neutrophils, an innate immune cell type critical for resolving bacterial infections, were determined in vitro using functional assays. The effects of MDEC CM on neutrophil molecular pathways were explored by evaluating the production of specific cytokines by neutrophils and examining global gene expression patterns in MDEC CM-treated neutrophils. Enzyme linked immunosorbent assays were used to determine the concentrations of select proteins in MDEC CM and siRNAs were used to reduce the expression of specific MDEC-secreted proteins, allowing for the identification of bioactive factors modulating neutrophil functions. Results: Neutrophils exposed to MDEC secretome exhibited increased chemotaxis and phagocytosis and decreased intracellular reactive oxygen species and extracellular trap formation, when compared to neutrophils exposed to control medium. C-X-C motif chemokine 6, superoxide dismutase, peroxiredoxin-2, and catalase, each present in the bovine MDEC secretome, were found to modulate neutrophil functions. Conclusion: The MDEC secretome administered to treat bacterial infections may increase neutrophil recruitment to the site of infection, stimulate pathogen phagocytosis by neutrophils, and reduce neutrophil-produced ROS accumulation. As a result, pathogen clearance might be improved and local inflammation and tissue damage reduced.


Subject(s)
Epithelial Cells , Neutrophils , Secretome , Animals , Cattle , Neutrophils/immunology , Neutrophils/metabolism , Epithelial Cells/metabolism , Epithelial Cells/immunology , Secretome/metabolism , Female , Culture Media, Conditioned/metabolism , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Phagocytosis , Mammary Glands, Animal/immunology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Cells, Cultured , Reactive Oxygen Species/metabolism
4.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39025525

ABSTRACT

Macrophages have important roles in mammary gland development and tissue homeostasis, but the specific mechanisms that regulate macrophage function need further elucidation. We have identified C/EBPß as an important transcription factor expressed by multiple macrophage populations in the normal mammary gland. Mammary glands from mice with C/EBPß-deficient macrophages (Cebpb ΔM) show a significant decrease in alveolar budding during the diestrus stage of the reproductive cycle, whereas branching morphogenesis remains unchanged. Defects in alveolar budding were found to be the result of both systemic hormones and local macrophage-directed signals. RNA sequencing shows significant changes in PR-responsive genes and alterations in the Wnt landscape of mammary epithelial cells of Cebpb ΔM mice, which regulate stem cell expansion during diestrus. Cebpb ΔM macrophages demonstrate a shift from a pro-inflammatory to a tissue-reparative phenotype, and exhibit increased phagocytic capacity as compared to WT. Finally, Cebpb ΔM macrophages down-regulate Notch2 and Notch3, which normally promote stem cell expansion during alveolar budding. These results suggest that C/EBPß is an important macrophage factor that facilitates macrophage-epithelial crosstalk during a key stage of mammary gland tissue homeostasis.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta , Estrous Cycle , Macrophages , Mammary Glands, Animal , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Female , Mice , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Macrophages/metabolism , Estrous Cycle/genetics , Mice, Knockout , Receptors, Notch/metabolism , Receptors, Notch/genetics , Epithelial Cells/metabolism , Phagocytosis/genetics , Mice, Inbred C57BL , Gene Deletion
5.
PeerJ ; 12: e17657, 2024.
Article in English | MEDLINE | ID: mdl-39011384

ABSTRACT

Background: Our previous studies have successfully reported the reprogramming of fibroblasts into induced mammary epithelial cells (iMECs). However, the regulatory relationships and functional roles of MicroRNAs (miRNAs) in the progression of fibroblasts achieving the cell fate of iMECs are insufficiently understood. Methods: First, we performed pre-and post-induction miRNAs sequencing analysis by using high-throughput sequencing. Following that, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment studies were used to determine the primary roles of the significantly distinct miRNAs and targeted genes. Finally, the effect of miR-222-3p on iMECs fate reprogramming in vitro by transfecting. Results: As a result goat ear fibroblasts (GEFs) reprogramming into iMECs activates a regulatory program, involving 79 differentially expressed miRNAs. Besides, the programming process involved changes in multiple signaling pathways such as adherens junction, TGF-ß signaling pathway, GnRH secretion and the prolactin signaling pathway, etc. Furthermore, it was discovered that the expression of miR-222-3p downregulation by miR-222-3p inhibitor significantly increase the reprogramming efficiency and promoted lipid accumulation of iMECs.


Subject(s)
Cellular Reprogramming , Epithelial Cells , Fibroblasts , Goats , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Fibroblasts/metabolism , Epithelial Cells/metabolism , Female , Cellular Reprogramming/genetics , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Signal Transduction , Cells, Cultured , Down-Regulation
6.
Breast Cancer Res ; 26(1): 106, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943151

ABSTRACT

BACKGROUND: The cell cycle of mammary stem cells must be tightly regulated to ensure normal homeostasis of the mammary gland to prevent abnormal proliferation and susceptibility to tumorigenesis. The atypical cell cycle regulator, Spy1 can override cell cycle checkpoints, including those activated by the tumour suppressor p53 which mediates mammary stem cell homeostasis. Spy1 has also been shown to promote expansion of select stem cell populations in other developmental systems. Spy1 protein is elevated during proliferative stages of mammary gland development, is found at higher levels in human breast cancers, and promotes susceptibility to mammary tumourigenesis when combined with loss of p53. We hypothesized that Spy1 cooperates with loss of p53 to increase susceptibility to tumour initiation due to changes in susceptible mammary stem cell populations during development and drives the formation of more aggressive stem like tumours. METHODS: Using a transgenic mouse model driving expression of Spy1 within the mammary gland, mammary development and stemness were assessed. These mice were intercrossed with p53 null mice to study the tumourigenic properties of Spy1 driven p53 null tumours, as well as global changes in signaling via RNA sequencing analysis. RESULTS: We show that elevated levels of Spy1 leads to expansion of mammary stem cells, even in the presence of p53, and an increase in mammary tumour formation. Spy1-driven tumours have an increased cancer stem cell population, decreased checkpoint signaling, and demonstrate an increase in therapy resistance. Loss of Spy1 decreases tumor onset and reduces the cancer stem cell population. CONCLUSIONS: This data demonstrates the potential of Spy1 to expand mammary stem cell populations and contribute to the initiation and progression of aggressive, breast cancers with increased cancer stem cell populations.


Subject(s)
Mammary Glands, Animal , Mice, Transgenic , Tumor Suppressor Protein p53 , Animals , Female , Mice , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Mammary Glands, Animal/pathology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Humans , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Carcinogenesis/genetics , Cell Proliferation , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Stem Cells/metabolism , Cell Cycle/genetics , Gene Expression Regulation, Neoplastic
7.
Nat Commun ; 15(1): 5152, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886396

ABSTRACT

In many cancers, a stem-like cell subpopulation mediates tumor initiation, dissemination and drug resistance. Here, we report that cancer stem cell (CSC) abundance is transcriptionally regulated by C-terminally phosphorylated p27 (p27pT157pT198). Mechanistically, this arises through p27 co-recruitment with STAT3/CBP to gene regulators of CSC self-renewal including MYC, the Notch ligand JAG1, and ANGPTL4. p27pTpT/STAT3 also recruits a SIN3A/HDAC1 complex to co-repress the Pyk2 inhibitor, PTPN12. Pyk2, in turn, activates STAT3, creating a feed-forward loop increasing stem-like properties in vitro and tumor-initiating stem cells in vivo. The p27-activated gene profile is over-represented in STAT3 activated human breast cancers. Furthermore, mammary transgenic expression of phosphomimetic, cyclin-CDK-binding defective p27 (p27CK-DD) increases mammary duct branching morphogenesis, yielding hyperplasia and microinvasive cancers that can metastasize to liver, further supporting a role for p27pTpT in CSC expansion. Thus, p27pTpT interacts with STAT3, driving transcriptional programs governing stem cell expansion or maintenance in normal and cancer tissues.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase Inhibitor p27 , Hyperplasia , Neoplastic Stem Cells , STAT3 Transcription Factor , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Humans , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Female , Phosphorylation , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Hyperplasia/metabolism , Mice , Gene Expression Regulation, Neoplastic , Cell Self Renewal/genetics , Cell Line, Tumor , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mammary Glands, Animal/cytology , Jagged-1 Protein/metabolism , Jagged-1 Protein/genetics
8.
Reprod Domest Anim ; 59(6): e14655, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924202

ABSTRACT

Understanding the normal physiology of the canine mammary gland (CMG) is crucial, as it provides a foundational reference for understanding canine mammary neoplasms. The relation between the Proliferation Index (PI) indicated by Ki-67 expression, along with the Apoptotic Index (AI) determined through Caspase-3 expression during the oestrous cycle, is inadequately documented in existing literature. This study seeks to offer insights into the interplay between PI and AI in the CMG across oestrous cycle phases. An extensive investigation was conducted on a diverse case series of bitches (n = 18). Oestrous cycle stages were determined through vaginal cytology, histological examination of the reproductive tract and serum progesterone and oestradiol concentrations. The entire mammary chain was histologically examined, and proliferation and apoptosis were assessed via double immunohistochemistry employing anti-Ki-67 and Caspase-3 antibodies. PI and AI were evaluated through a systematic random sampling approach, counting a minimum of 200 cells for each cell type. There was a significantly higher PI during early dioestrus in all mammary gland components, with a greater proportion of positive cells observed in epithelial cells compared to stromal cells. The highest PI was detected in epithelial cells within the end buds. Significant differences were found in Ki-67 labelling across the cranial mammary glands. A positive and strong correlation was noted between progesterone concentration and PI in epithelial cells. The AI remained consistently low throughout the oestrous cycle, with few differences observed across histological components. Caspase-3 labelling displayed the highest positivity in caudal mammary pairs. A negative and moderate correlation was identified between progesterone concentration and AI in interlobular mesenchymal cells. This study highlights the influence of endocrine regulation on cell proliferation indices in mammary tissue, emphasizing the need to consider these hormonal variations in toxicopathological studies involving canine mammary gland.


Subject(s)
Apoptosis , Caspase 3 , Cell Proliferation , Estrous Cycle , Ki-67 Antigen , Mammary Glands, Animal , Progesterone , Animals , Female , Ki-67 Antigen/metabolism , Dogs , Apoptosis/physiology , Mammary Glands, Animal/physiology , Mammary Glands, Animal/cytology , Caspase 3/metabolism , Estrous Cycle/physiology , Progesterone/blood , Progesterone/metabolism , Estradiol/blood , Estradiol/metabolism , Epithelial Cells
9.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891075

ABSTRACT

Subcutaneous adipocytes are crucial for mammary gland epithelial development during pregnancy. Our and others' previous data have suggested that adipo-epithelial transdifferentiation could play a key role in the mammary gland alveolar development. In this study, we tested whether adipo-epithelial transdifferentiation occurs in vitro. Data show that, under appropriate co-culture conditions with mammary epithelial organoids (MEOs), mature adipocytes lose their phenotype and acquire an epithelial one. Interestingly, even in the absence of MEOs, extracellular matrix and diffusible growth factors are able to promote adipo-epithelial transdifferentiation. Gene and protein expression studies indicate that transdifferentiating adipocytes exhibit some characteristics of milk-secreting alveolar glands, including significantly higher expression of milk proteins such as whey acidic protein and ß-casein. Similar data were also obtained in cultured human multipotent adipose-derived stem cell adipocytes. A miRNA sequencing experiment on the supernatant highlighted mir200c, which has a well-established role in the mesenchymal-epithelial transition, as a potential player in this phenomenon. Collectively, our data show that adipo-epithelial transdifferentiation can be reproduced in in vitro models where this phenomenon can be investigated at the molecular level.


Subject(s)
Adipocytes , Cell Transdifferentiation , Epithelial Cells , Humans , Female , Adipocytes/cytology , Adipocytes/metabolism , Epithelial Cells/metabolism , Epithelial Cells/cytology , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/growth & development , Organoids/cytology , Organoids/metabolism , Coculture Techniques , Mice , Models, Biological
10.
Ann Endocrinol (Paris) ; 85(3): 248-251, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38871512

ABSTRACT

Adipose tissue is highly plastic, as illustrated mainly by the transdifferentiation of white adipocytes into beige adipocytes, depending on environmental conditions. However, during gestation and lactation in rodent, there is an amazing phenomenon of transformation of subcutaneous adipose tissue into mammary glandular tissue, known as pink adipose tissue, capable of synthesizing and secreting milk. Recent work using transgenic lineage-tracing experiments, mainly carried out in Saverio Cinti's team, has demonstrated very convincingly that this process does indeed correspond to a transdifferentiation of white adipocytes into mammary alveolar cells (pink adipocytes) during gestation and lactation. This phenomenon is reversible, since during the post-lactation phase, pink adipocytes revert to the white adipocyte phenotype. The molecular mechanisms underlying this reversible transdifferentiation remain poorly understood.


Subject(s)
Adipose Tissue , Lactation , Animals , Humans , Female , Adipose Tissue/physiology , Adipose Tissue/metabolism , Adipose Tissue/cytology , Lactation/physiology , Pregnancy , Cell Transdifferentiation/physiology , Mammary Glands, Animal/physiology , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Adipocytes, White/physiology , Adipocytes, White/metabolism , Adipocytes, White/cytology , Cell Plasticity/physiology , Mammary Glands, Human/physiology , Mammary Glands, Human/growth & development , Mammary Glands, Human/cytology , Adipocytes/physiology , Adipocytes/cytology
11.
J Agric Food Chem ; 72(25): 14386-14401, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38869955

ABSTRACT

Heat stress is becoming the major factor regarding dairy cow health and milk quality because of global warming. Circular RNAs (circRNAs) represent a special type of noncoding RNAs, which are related to regulating many biological processes. Nonetheless, little is known concerning their effects on heat-stressed bovine mammary epithelial cells (BMECs). Here, this study found a novel circRNA, circ_002033, using RNA sequencing (RNA-seq) and explored the role and underlying regulatory mechanism in proliferation, apoptosis, and oxidative damage in a heat-stressed bovine mammary epithelial cell line (MAC-T). According to the previous RNA-seq analysis, the abundance of circ_002033 in mammary gland tissue of heat-stressed cows increased relative to nonheat-stressed counterparts. This study found that the knockdown of circ_002033 promoted proliferation and alleviated apoptosis and oxidative damage in heat-stressed MAC-T. Mechanistically, circ_002033 localizes to miR-199a-5p in the cytoplasm of MAC-T to regulate mitogen-activated protein kinase kinase 11 (MAP3K11) expression. Meanwhile, miR-199a-5p and MAP3K11 are also involved in regulating the proliferation and apoptosis of heat-stressed MAC-T. Importantly, circ_002033 knockdown promoted the expression of miR-199a-5p while decreasing that of MAP3K11, thereby enhancing proliferation while alleviating apoptosis and oxidative damage in heat-stressed MAC-T. In summary, we found that circ_002033 regulates the proliferation, apoptosis, and oxidative damage of heat-stressed BMECs through the miR-199a-5p/MAP3K11 axis, providing the theoretical molecular foundation for mitigating heat stress of dairy cows.


Subject(s)
Apoptosis , Cell Proliferation , Epithelial Cells , Heat-Shock Response , MAP Kinase Kinase Kinases , Mammary Glands, Animal , MicroRNAs , Oxidative Stress , RNA, Circular , Animals , Cattle , Epithelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinase Kinase 11 , Cell Line
12.
J Mammary Gland Biol Neoplasia ; 29(1): 13, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916673

ABSTRACT

Conflicting data exist as to how mammary epithelial cell proliferation changes during the reproductive cycle. To study the effect of endogenous hormone fluctuations on gene expression in the mouse mammary gland, we performed bulk RNAseq analyses of epithelial and stromal cell populations that were isolated either during puberty or at different stages of the adult virgin estrous cycle. Our data confirm prior findings that proliferative changes do not occur in every mouse in every cycle. We also show that during the estrous cycle the main gene expression changes occur in adipocytes and fibroblasts. Finally, we present a comprehensive overview of the Wnt gene expression landscape in different mammary gland cell types in pubertal and adult mice. This work contributes to understanding the effects of physiological hormone fluctuations and locally produced signaling molecules on gene expression changes in the mammary gland during the reproductive cycle and should be a useful resource for future studies investigating gene expression patterns in different cell types across different developmental timepoints.


Subject(s)
Epithelial Cells , Gene Expression Profiling , Mammary Glands, Animal , Sexual Maturation , Stromal Cells , Transcriptome , Animals , Female , Mice , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Stromal Cells/metabolism , Epithelial Cells/metabolism , Gene Expression Profiling/methods , Sexual Maturation/physiology , Cell Proliferation , Estrous Cycle/genetics
13.
J Agric Food Chem ; 72(26): 14769-14785, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38912664

ABSTRACT

Stigmasterol (ST), a phytosterol found in food, has various biological activities. However, the effect of ST on milk synthesis in dairy cows remains unclear. Therefore, bovine primary mammary epithelial cells (BMECs) were isolated, cultured, and treated with ST to determine the effect of ST on milk synthesis. The study revealed that 10 µM ST significantly increased milk synthesis in BMECs by activating the mammalian target of rapamycin (mTOR) signaling pathway. Further investigation revealed that this activation depends on the regulatory role of oxysterol binding protein 5 (ORP5). ST induces the translocation of ORP5 from the cytoplasm to the lysosome, interacts with the mTOR, recruits mTOR to target the lysosomal surface, and promotes the activation of the mTOR signaling pathway. Moreover, ST was found to increase ORP5 protein levels by inhibiting its degradation via the ubiquitin-proteasome pathway. Specifically, the E3 ubiquitin ligase membrane-associated cycle-CH-type finger 4 (MARCH4) promotes the ubiquitination and subsequent degradation of ORP5. ST mitigates the interaction between MARCH4 and ORP5, thereby enhancing the structural stability of ORP5 and reducing its ubiquitination. In summary, ST stabilizes ORP5 by inhibiting the interaction between MARCH4 and ORP5, thereby activating mTOR signaling pathway and enhancing milk synthesis.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , Milk , Signal Transduction , TOR Serine-Threonine Kinases , Ubiquitination , Animals , Cattle , TOR Serine-Threonine Kinases/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Ubiquitination/drug effects , Signal Transduction/drug effects , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Milk/chemistry , Milk/metabolism , Receptors, Steroid/metabolism , Receptors, Steroid/genetics
14.
J Mammary Gland Biol Neoplasia ; 29(1): 11, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761238

ABSTRACT

The transcription factor STAT3 is activated by multiple cytokines and other extrinsic factors. It plays a key role in immune and inflammatory responses and, when dysregulated, in tumourigenesis. STAT3 is also an indispensable mediator of the cell death process that occurs during post-lactational regression of the mammary gland, one of the most dramatic examples of physiological cell death in adult mammals. During this involution of the gland, STAT3 powerfully enhances the lysosomal system to efficiently remove superfluous milk-producing mammary epithelial cells via a lysosomal-mediated programmed cell death pathway. The lysosome is a membrane-enclosed  cytoplasmic organelle that digests and recycles cellular waste, with an important role as a signalling centre that monitors cellular metabolism. Here, we describe key strategies for investigating the role of STAT3 in regulating lysosomal function using a mammary epithelial cell culture model system. These include protocols for lysosome enrichment and enzyme activity assays, in addition to microscopic analyses of the vesicular compartment in cell lines. Collectively, these approaches provide the tools to investigate multiple aspects of lysosome biogenesis and function, and to define both direct and indirect roles for STAT3.


Subject(s)
Epithelial Cells , Lysosomes , Mammary Glands, Animal , STAT3 Transcription Factor , Lysosomes/metabolism , STAT3 Transcription Factor/metabolism , Female , Animals , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology , Mice , Signal Transduction
15.
Anim Biotechnol ; 35(1): 2344210, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38785376

ABSTRACT

The PPARGC1A gene plays a fundamental role in regulating cellular energy metabolism, including adaptive thermogenesis, mitochondrial biogenesis, adipogenesis, gluconeogenesis, and glucose/fatty acid metabolism. In a previous study, our group investigated seven SNPs in Mediterranean buffalo associated with milk production traits, and the current study builds on this research by exploring the regulatory influences of the PPARGC1A gene in buffalo mammary epithelial cells (BuMECs). Our findings revealed that knockdown of PPARGC1A gene expression significantly affected the growth of BuMECs, including proliferation, cell cycle, and apoptosis. Additionally, we observed downregulated triglyceride secretion after PPARGC1A knockdown. Furthermore, the critical genes related to milk production, including the STATS, BAD, P53, SREBF1, and XDH genes were upregulated after RNAi, while the FABP3 gene, was downregulated. Moreover, Silencing the PPARGC1A gene led to a significant downregulation of ß-casein synthesis in BuMECs. Our study provides evidence of the importance of the PPARGC1A gene in regulating cell growth, lipid, and protein metabolism in the buffalo mammary gland. In light of our previous research, the current study underscores the potential of this gene for improving milk production efficiency and overall dairy productivity in buffalo populations.


Subject(s)
Buffaloes , Epithelial Cells , Mammary Glands, Animal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Buffaloes/genetics , Epithelial Cells/metabolism , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Milk , Gene Expression Regulation , Lactation/genetics , Cell Proliferation/genetics , Gene Knockdown Techniques , Apoptosis/genetics
16.
Breast Cancer Res ; 26(1): 74, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702730

ABSTRACT

The transcription factor TRPS1 is a context-dependent oncogene in breast cancer. In the mammary gland, TRPS1 activity is restricted to the luminal population and is critical during puberty and pregnancy. Its function in the resting state remains however unclear. To evaluate whether it could be a target for cancer therapy, we investigated TRPS1 function in the healthy adult mammary gland using a conditional ubiquitous depletion mouse model where long-term depletion does not affect fitness. Using transcriptomic approaches, flow cytometry and functional assays, we show that TRPS1 activity is essential to maintain a functional luminal progenitor compartment. This requires the repression of both YAP/TAZ and SRF/MRTF activities. TRPS1 represses SRF/MRTF activity indirectly by modulating RhoA activity. Our work uncovers a hitherto undisclosed function of TRPS1 in luminal progenitors intrinsically linked to mechanotransduction in the mammary gland. It may also provide new insights into the oncogenic functions of TRPS1 as luminal progenitors are likely the cells of origin of many breast cancers.


Subject(s)
Mammary Glands, Animal , Repressor Proteins , Serum Response Factor , Stem Cells , Transcription Factors , Animals , Female , Mice , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Transcription Factors/metabolism , Transcription Factors/genetics , Stem Cells/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Serum Response Factor/metabolism , Serum Response Factor/genetics , Humans , Trans-Activators/metabolism , Trans-Activators/genetics
17.
J Cell Biochem ; 125(7): e30606, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38779980

ABSTRACT

The Hippo pathway, a signaling cascade involved in the regulation of organ size and several other processes, acts as a conduit between extracellular matrix (ECM) cues and cellular responses. We asked whether the basement membrane (BM), a specialized ECM component known to induce quiescence and differentiation in mammary epithelial cells, would regulate the localization, activity, and interactome of YAP, a Hippo pathway effector. To address this question, we used a broad range of experimental approaches, including 2D and 3D cultures of both mouse and human mammary epithelial cells, as well as the developing mouse mammary gland. In contrast to malignant cells, nontumoral cells cultured with a reconstituted BM (rBM) displayed higher concentrations of YAP in the cytoplasm. Incidentally, when in the nucleus of rBM-treated cells, YAP resided preferentially at the nuclear periphery. In agreement with our cell culture experiments, YAP exhibited cytoplasmic predominance in ductal cells of developing mammary epithelia, where a denser BM is found. Conversely, terminal end bud (TEB) cells with a thinner BM displayed higher nucleus-to-cytoplasm ratios of YAP. Bioinformatic analysis revealed that genes regulated by YAP were overrepresented in the transcriptomes of microdissected TEBs. Consistently, mouse epithelial cells exposed to the rBM expressed lower levels of YAP-regulated genes, although the protein level of YAP and Hippo components were slightly altered by the treatment. Mass spectrometry analysis identified a differential set of proteins interacting with YAP in cytoplasmic fractions of mouse epithelial cells in the absence or presence of rBM. In untreated cells, YAP interactants were enriched in processes related to ubiquitin-mediated proteolysis, whereas in cells exposed to rBM YAP interactants were mainly key proteins related to amino acid, amino sugar, and carbohydrate metabolism. Collectively, we unraveled that the BM induces YAP translocation or retention in the cytoplasm of nontumoral epithelial cells and that in the cytoplasm YAP seems to undertake novel functions in metabolic pathways.


Subject(s)
Adaptor Proteins, Signal Transducing , Basement Membrane , Cytoplasm , Epithelial Cells , Transcription Factors , YAP-Signaling Proteins , Animals , Humans , Mice , Epithelial Cells/metabolism , YAP-Signaling Proteins/metabolism , Female , Cytoplasm/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Basement Membrane/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology , Cell Nucleus/metabolism , Signal Transduction
18.
J Agric Food Chem ; 72(20): 11733-11745, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38725145

ABSTRACT

Amino acids are essential for the activation of the mechanistic target of rapamycin (mTOR), but the corresponding molecular mechanism is not yet fully understood. We previously found that Met stimulated eukaryotic elongation factor α (eEF1Bα) nuclear localization in bovine mammary epithelial cells (MECs). Herein, we explored the role and molecular mechanism of eEF1Bα in methionine (Met)- and leucine (Leu)-stimulated mTOR gene transcription and milk synthesis in MECs. eEF1Bα knockdown decreased milk protein and fat synthesis, cell proliferation, and mTOR mRNA expression and phosphorylation, whereas eEF1Bα overexpression had the opposite effects. QE-MS analysis detected that eEF1Bα was phosphorylated at Ser106 in the nucleus and Met and Leu stimulated p-eEF1Bα nuclear localization. eEF1Bα knockdown abrogated the stimulation of Met and Leu by mTOR mRNA expression and phosphorylation, and this regulatory role was dependent on its phosphorylation. Akt knockdown blocked the stimulation of Met and Leu by eEF1Bα and p-eEF1Bα expression. ChIP-PCR detected that p-eEF1Bα bound only to the -548 to -793 nt site in the mTOR promoter, and ChIP-qPCR further detected that Met and Leu stimulated this binding. eEF1Bα mediated Met and Leu' stimulation on mTOR mRNA expression and phosphorylation through inducing AT-rich interaction domain 1A (ARID1A) ubiquitination degradation, and this process depended on eEF1Bα phosphorylation. p-eEF1Bα interacted with ARID1A and ubiquitin protein ligase E3 module N-recognition 5 (UBR5), and UBR5 knockdown rescued the decrease of the ARID1A protein level by eEF1Bα overexpression. Both eEF1Bα and p-eEF1Bα were highly expressed in mouse mammary gland tissues during the lactating period. In summary, we reveal that Met and Leu stimulate mTOR transcriptional activation and milk protein and fat synthesis in MECs through eEF1Bα-UBR5-ARID1A signaling.


Subject(s)
Epithelial Cells , Leucine , Methionine , Milk , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Cattle , Female , Mice , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Leucine/pharmacology , Leucine/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Methionine/metabolism , Methionine/pharmacology , Milk/chemistry , Milk/metabolism , Peptide Elongation Factor 1/genetics , Peptide Elongation Factor 1/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
19.
EMBO J ; 43(12): 2308-2336, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760574

ABSTRACT

How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors. Here, using single-cell RNA sequencing from E13.5 to birth, we produced an atlas of matched mouse mammary epithelium and mesenchyme and reconstructed the differentiation trajectories of MaSCs toward basal and luminal fate. We show that murine MaSCs exhibit lineage commitment just prior to the first sprouting events of mammary branching morphogenesis at E15.5. We identify early molecular markers for committed and multipotent MaSCs and define their spatial distribution within the developing tissue. Furthermore, we show that the mammary embryonic mesenchyme is composed of two spatially restricted cell populations, and that dermal mesenchyme-produced FGF10 is essential for embryonic mammary branching morphogenesis. Altogether, our data elucidate the spatiotemporal signals underlying lineage specification of multipotent MaSCs, and uncover the signals from mesenchymal cells that guide mammary branching morphogenesis.


Subject(s)
Cell Lineage , Epithelial Cells , Mammary Glands, Animal , Mesenchymal Stem Cells , Animals , Mice , Mammary Glands, Animal/cytology , Mammary Glands, Animal/embryology , Mammary Glands, Animal/metabolism , Female , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Cell Differentiation , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 10/genetics , Morphogenesis , Single-Cell Analysis , Mesoderm/cytology , Mesoderm/metabolism , Mesoderm/embryology
20.
J Mammary Gland Biol Neoplasia ; 29(1): 10, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722417

ABSTRACT

Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.


Subject(s)
Epithelial Cells , Mammary Glands, Animal , STAT3 Transcription Factor , Animals , Female , Cattle , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/growth & development , Mice , Epithelial Cells/metabolism , STAT3 Transcription Factor/metabolism , Phosphorylation , Pregnancy , Parturition/physiology , Parturition/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL