Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.380
Filter
1.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892271

ABSTRACT

This study investigated the effects of rumen bypass dandelion extract on the lactation performance, immune index, and mammary oxidative stress of lactating dairy cows fed a high-concentrate diet. This study used a complete randomized block design, and initial milk production, somatic cell counts, and parities were set as block factors. Sixty Holstein cows with similar health conditions and lactating periods (70 ± 15 d) were divided into three groups with 20 replicates per group. The treatments included the LCD group (low-concentrate diet, concentrate-forage = 4:6), HCD group (high-concentrate group, concentrate-forage = 6:4), and DAE group (dandelion aqueous extract group, HCD group with 0.5% DAE). The experimental period was 35 d, and cows were fed three times in the morning, afternoon, and night with free access to water. The results showed the following: (1) Milk production in the HCD and DAE groups was significantly higher (p < 0.05) than that in the LCD group from WK4, and the milk quality differed during the experimental period. (2) The HCD group's pH values significantly differed (p < 0.01) from those of the LCD and DAE groups. (3) In WK2 and WK4 of the experimental period, the somatic cell counts of dairy cows in the HCD group were significantly higher (p < 0.05) than those in the DAE group. (4) The serum concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and protein carbonyl (PC) in the HCD group were significantly higher (p < 0.05) than those in the LCD group. The activity of catalase (CAT) in the LCD and DAE groups was stronger (p < 0.01) than that in the HCD group. (5) The correlation analysis revealed significantly positive correlations between the plasma LPS concentration and serum concentrations of 8-OHdG (p < 0.01), PC (p < 0.01), and malondialdehyde (MDA, p < 0.05) and significantly negative correlations (p < 0.01) between the plasma LPS concentration and activities of CAT and superoxide dismutase. (6) Compared with that in the HCD and DAE groups, the mRNA expression of α, ß, and κ casein and acetyl CoA carboxylase in bovine mammary epithelial cells was significantly higher (p < 0.05) in the LCD group, and the mRNA expression of fatty acid synthetase and stearoyl CoA desaturase in the LCD group was significantly higher (p < 0.01) than that in the HCD group. (7) Compared with that in the LCD and HCD groups, the mRNA expression of Nrf2 was significantly higher (p < 0.01) in the DAE group, and the mRNA expression of cystine/glutamate transporter and NAD (P) H quinone oxidoreductase 1 in the DAE group was significantly higher (p < 0.05) than that in the HCD group. Overall, feeding a high-concentrate diet could increase the milk yield of dairy cows, but the milk quality, rumen homeostasis, and antioxidative capability were adversely affected. The supplementation of DAE in a high-concentrate diet enhanced antioxidative capability by activating the Nrf2 regulatory factor and improved rumen homeostasis and production performance.


Subject(s)
Lactation , Mammary Glands, Animal , Milk , Oxidative Stress , Plant Extracts , Taraxacum , Animals , Cattle , Oxidative Stress/drug effects , Female , Taraxacum/chemistry , Lactation/drug effects , Milk/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/drug effects , Plant Extracts/pharmacology , Diet/veterinary , Animal Feed/analysis
2.
Life Sci ; 350: 122672, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38705456

ABSTRACT

Non-esterified fatty acids (NEFAs), key to energy metabolism, may become pathogenic at elevated levels, potentially eliciting immune reactions. Our laboratory's findings of reduced L-histidine in ketotic states, induced by heightened NEFA concentrations, suggest an interrelation with NEFA metabolism. This observation necessitates further investigation into the mitigating role of L-histidine on the deleterious effects of NEFAs. Our study unveiled that elevated NEFA concentrations hinder the proliferation of Bovine Mammary Epithelial Cells (BMECs) and provoke inflammation in a dose-responsive manner. Delving into L-histidine's influence on BMECs, RNA sequencing revealed 2124 genes differentially expressed between control and L-histidine-treated cells, with notable enrichment in pathways linked to proliferation and immunity, such as cell cycle and TNF signaling pathways. Further analysis showed that L-histidine treatment positively correlated with an increase in EdU-555-positive cell rate and significantly suppressed IL-6 and IL-8 levels (p < 0.05) compared to controls. Crucially, concurrent treatment with high NEFA and L-histidine normalized the number of EdU-555-positive cells and cytokine expression to control levels. Investigating the underlying mechanisms, Gab2 (Grb2-associated binder 2) emerged as a central player; L-histidine notably reduced Gab2 expression, while NEFA had the opposite effect (p < 0.05). Gab2 overexpression escalated nitric oxide (NO) production and IL6 and IL8 expression. However, L-histidine addition to Gab2-overexpressing cells resulted in NO concentrations indistinguishable from controls. Our findings collectively indicate that L-histidine can counteract NEFA-induced inflammation in BMECs by inhibiting Gab2 expression, highlighting its therapeutic potential against NEFA-related metabolic disturbances.


Subject(s)
Adaptor Proteins, Signal Transducing , Fatty Acids, Nonesterified , Histidine , Inflammation , Animals , Fatty Acids, Nonesterified/metabolism , Cattle , Inflammation/metabolism , Histidine/pharmacology , Histidine/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Female , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Proliferation/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/drug effects , Cells, Cultured , Cytokines/metabolism
3.
J Agric Food Chem ; 72(19): 10879-10896, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38686994

ABSTRACT

Mammary gland aging is one of the most important problems faced by humans and animals. How to delay mammary gland aging is particularly important. Puerarin is a kind of isoflavone substance extracted from Pueraria lobata, which has anti-inflammatory, antioxidant, and other pharmacological effects. However, the role of puerarin in delaying lipopolysaccharide (LPS)-induced mammary gland aging and its underlying mechanism remains unclear. On the one hand, we found that puerarin could significantly downregulate the expression of senescence-associated secretory phenotype (SASP) and age-related indicators (SA-ß-gal, p53, p21, p16) in mammary glands of mice. In addition, puerarin mainly inhibited the p38MAPK signaling pathway to repair mitochondrial damage and delay mammary gland aging. On the other hand, puerarin could also delay the cellular senescence of mice mammary epithelial cells (mMECs) by targeting gut microbiota and promoting the secretion of gut microbiota metabolites. In conclusion, puerarin could not only directly act on the mMECs but also regulate the gut microbiota, thus, playing a role in delaying the aging of the mammary gland. Based on the above findings, we have discovered a new pathway for puerarin to delay mammary gland aging.


Subject(s)
Aging , Gastrointestinal Microbiome , Isoflavones , Mammary Glands, Animal , p38 Mitogen-Activated Protein Kinases , Isoflavones/pharmacology , Animals , Mice , Gastrointestinal Microbiome/drug effects , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Aging/drug effects , Humans , Pueraria/chemistry , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism , Bacteria/isolation & purification , Signal Transduction/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cellular Senescence/drug effects , MAP Kinase Signaling System/drug effects , Mice, Inbred C57BL
4.
Mol Nutr Food Res ; 68(9): e2300703, 2024 May.
Article in English | MEDLINE | ID: mdl-38676329

ABSTRACT

Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκß) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.


Subject(s)
Galactogogues , Lactation , Polyphenols , Lactation/drug effects , Polyphenols/pharmacology , Female , Humans , Galactogogues/pharmacology , Animals , Dietary Supplements , Mammary Glands, Animal/drug effects , Signal Transduction/drug effects , Mammary Glands, Human/drug effects , Mammary Glands, Human/metabolism
5.
Pestic Biochem Physiol ; 201: 105866, 2024 May.
Article in English | MEDLINE | ID: mdl-38685242

ABSTRACT

Pea Albumin 1, subunit b (PA1b) is a 37 amino acid peptide. It was extracted from pea seeds and showed significant insecticidal activity against certain insects, such as the mosquitoes Culex pipiens and Aedes aegyptii, cereal weevils (genus Sitophilus), and certain species of aphids. Considering that pea seeds are regularly consumed by humans and mammals, PA1b is assumed to be a promising bioinsecticide with no allergenicity or toxicity to hosts. To clarify this aspect, PA1b was applied to bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). The results revealed that LPS induced inflammatory cytokine tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL6) and monocyte chemoattractant protein 1 (MCP-1) secretion, while PA1b depressed these cytokines release via inhibiting NF-κB signaling activation. In addition, PA1b protected mammary epithelial cells from impairment caused by LPS, because it reduced cell membrane permeability and subsequently reconstructed mammary epithelial cell viability. Moreover, it inhibited cell apoptosis accompanied with alleviated oxidative stress. Furthermore, PA1b prevented opening of mitochondrial permeability transition pores, in turn up-regulated mitochondrial membrane potential and ATP production. Therefore, PA1b improved mitochondrial function, which contributed to re-construction of mammary epithelial cell viability. In conclusion, PA1b alleviates LPS-induced inflammation of bovine mammary epithelial cells via inhibiting NF-κB signaling activation and protects bovine mammary epithelial cells by improving mitochondrial function. PA1b is a good therapeutic survival factor for mammary epithelial cells.


Subject(s)
Epithelial Cells , Inflammation , Lipopolysaccharides , Animals , Lipopolysaccharides/pharmacology , Cattle , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Insecticides/toxicity , Insecticides/pharmacology , Female , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Membrane Potential, Mitochondrial/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Oxidative Stress/drug effects , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
PLoS One ; 19(4): e0300728, 2024.
Article in English | MEDLINE | ID: mdl-38683862

ABSTRACT

Feeding high-gain diets and an inadequate energy and protein ratio during pre-puberty may lead to impaired growth and mammary gland development of heifers. Thus, frequent application of bovine somatotropin (bST) may prevent future losses in productivity, improve mammary development and animal performance. We aimed to evaluate the effects of bST on digestibility, performance, blood metabolites, mammary gland development, and carcass composition of high-performance prepubertal Holstein × Gyr heifers. Thirty-four Holstein × Gyr heifers with an average initial body weight of 218 ± 49 kg and 14 ± 4 months of age were submitted to an 84-day trial evaluating the effects of no bST or bST injections. Treatments were randomly assigned to each animal within one of the tree blocks. The bST did not influence digestibility or performance parameters. Regarding blood results, IGF1 concentration presented an interaction between treatment and day, where bST heifers had the highest IGF1 concentration. Heifers receiving bST also showed increased ribeye area; however, only an experimental day effect for backfat thickness was observed, with greater accumulation of carcass fat on day 84. Heifers receiving bST had lower pixels/mm² on parenchyma, characteristic of greater parenchymal tissue. Moreover, heifers on bST treatment also had reduced pixels/mm2, characteristic of reduced fat pad tissue. Lastly, bST injections did not influence liver and muscle gene expression, nor most genes evaluated in mammary gland tissue, except for IGFBP3 expression, which was greater for bST heifers. In summary, we confirm the efficacy of bST injections to overcome the detrimental effects of high-gain diets on mammary gland growth and to improve lean carcass gain of prepubertal Holstein × Gyr heifers.


Subject(s)
Growth Hormone , Animals , Cattle , Female , Growth Hormone/blood , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/drug effects , Insulin-Like Growth Factor I/metabolism , Diet/veterinary , Animal Feed/analysis , Sexual Maturation/drug effects , Body Composition/drug effects , Animal Nutritional Physiological Phenomena , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor Binding Protein 3/metabolism
7.
J Ethnopharmacol ; 329: 117854, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583733

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mammary gland hyperplasia, a prevalent benign breast condition, often serves as a precursor to various other breast diseases. He-Zi-3 soup (HZ-3), a traditional Mongolian remedy, is utilized for treating this condition. AIM OF THE STUDY: To explore the effect and underlying mechanism of HZ-3, a Mongolian medicinal preparation, on mammary gland hyperplasia. MATERIALS AND METHODS: This study aimed to assess the impact of different doses of HZ-3 in a rat model of mammary hyperplasia. The active components within HZ-3 drug serum were identified and analyzed through network pharmacology and target prediction. To elucidate the underlying mechanism of HZ-3 in addressing mammary hyperplasia, we conducted a series of investigations on estradiol-induced mammary hyperplasia in model rates. Assessments included measurements of papilla width and height, hematoxylin and eosin staining, Masson staining, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry. RESULTS: Our investigation revealed the identification of 21 compounds, primarily terpenoids, through serum medicinal chemistry screening. Utilizing network pharmacological analysis, we observed predominant regulation through the estrogen pathway, closely associated with key genes including esr1,esr2, ncoa1, krt 19, ctsd, ebag 9, and bcl-2. Assessments encompassing nipple height and width, histological examination, immunohistochemical analysis, and serum hormone levels via enzyme-linked immunosorbent assay demonstrated the inhibitory effect of HZ-3 on mammary hyperplasia in rat models. RT-qPCR and Western blot analyses corroborated these findings, affirming the suppression of mammary hyperplasia by HZ-3 through the activation of estrogen pathway signaling.


Subject(s)
Hyperplasia , Mammary Glands, Animal , Rats, Sprague-Dawley , Animals , Female , Hyperplasia/drug therapy , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Rats , Estrogens/pharmacology , Progestins/pharmacology , Medicine, Mongolian Traditional , Estradiol/blood , Estradiol/pharmacology , Plant Extracts/pharmacology
8.
Res Vet Sci ; 172: 105253, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579632

ABSTRACT

The aim of the study was to examine the effects of repeated administrations of antioxidant multiminerals and vitamins in transition buffaloes on udder defense mechanism, antioxidant activity and occurrence of intramammary infection (IMI) in early lactation period. Forty clinically healthy pregnant buffaloes were enrolled 45 days before expected date of calving and randomly allocated into five different supplementation groups (n = 8): only basal ration (control), vitamin E and selenium (VES), multiminerals (MM), ascorbic acid (AA) and chromium (Cr) picolinate in basal diet. The udder defense mechanism was monitored by measuring phagocytic activity (PA), myeloperoxidase (MPO) and nitric oxide (NO) productions in milk leukocytes, antioxidant activity was evaluated by measuring total antioxidant capacity (TAC) in plasma and occurrence of IMI was assessed by milk cytology, bacterial count in milk and visible clinical signs of udder until day 28 post-calving. The results showed that the VES and MM supplementations exhibited significantly higher PA, MPO and NO productions of milk leukocytes till first week of lactation whereas, elevated mean TAC in plasma was maintained from day -7 to 1 of calving in MM supplementation group as compared to control group. Statistically, no significant difference in occurrences of subclinical or clinical IMI was noted across the groups until four weeks of lactation. Taken together, it is concluded that repeated administrations of VES and MM to transition buffaloes could be an effective strategy to maintain good udder health by augmenting milk leukocyte functions and antioxidant status and preventing incidence of IMI in early lactation.


Subject(s)
Antioxidants , Buffaloes , Dietary Supplements , Lactation , Mammary Glands, Animal , Vitamins , Animals , Female , Antioxidants/administration & dosage , Antioxidants/metabolism , Lactation/drug effects , Vitamins/administration & dosage , Vitamins/pharmacology , Mammary Glands, Animal/drug effects , Milk/chemistry , Diet/veterinary , Animal Feed/analysis , Minerals/administration & dosage , Pregnancy , Random Allocation
9.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673850

ABSTRACT

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Subject(s)
Isothiocyanates , NF-E2-Related Factor 2 , Quassins , Sulfoxides , Transcriptome , Animals , Cattle , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Isothiocyanates/pharmacology , Quassins/pharmacology , Sulfoxides/pharmacology , Transcriptome/drug effects , Female , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Antioxidants/pharmacology , Antioxidants/metabolism , Computer Simulation , Oxidative Stress/drug effects , Gene Expression Regulation/drug effects
10.
Toxicol Appl Pharmacol ; 485: 116876, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437955

ABSTRACT

BACKGROUND: Olanzapine antagonizes dopamine receptors and is prescribed to treat multiple psychiatric conditions. The main side effect of concern for olanzapine is weight gain and metabolic syndrome. Olanzapine induces hyperprolactinemia, however its effect on the mammary gland is poorly documented. METHODS: Rats received olanzapine by gavage or in drinking water at 1, 3, and 6 mg/kg/day for 5-40 days or 100 days, with and without coadministration of bromocriptine or aripiprazole and using once daily or continuous administration strategies. Histomorphology of the mammary gland, concentrations of prolactin, estradiol, progesterone, and olanzapine in serum, mammary gland and adipose tissue, and mRNA and protein expressions of prolactin receptors were analyzed. RESULTS: In adult and prepubescent female rats and male rats, olanzapine induced significant development of mammary glands in dose- and time-dependent manners, with histopathological hyperplasia of mammary ducts and alveoli with lumen dilation and secretion, marked increase of mammary prolactin receptor expression, a marker of breast tissue, and with mild increase of circulating prolactin. This side effect can be reversed after medication withdrawal, but long-term olanzapine treatment for 100 days implicated tumorigenic potentials indicated by usual ductal epithelial hyperplasia. Olanzapine induced mammary development was prevented with the coaddition of the dopamine agonist bromocriptine or partial agonist aripiprazole, or by continuous administration of medication instead of a once daily regimen. CONCLUSIONS: These results shed light on the previously overlooked effect of olanzapine on mammary development and present experimental evidence to support current clinical management strategies of antipsychotic induced side effects in the breast.


Subject(s)
Antipsychotic Agents , Aripiprazole , Benzodiazepines , Bromocriptine , Mammary Glands, Animal , Olanzapine , Prolactin , Animals , Olanzapine/toxicity , Female , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Aripiprazole/toxicity , Rats , Prolactin/blood , Antipsychotic Agents/toxicity , Antipsychotic Agents/adverse effects , Benzodiazepines/toxicity , Male , Rats, Sprague-Dawley , Receptors, Prolactin/metabolism , Estradiol/blood , Dose-Response Relationship, Drug , Progesterone/blood , Quinolones/toxicity , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue/pathology , Piperazines/toxicity
11.
J Dairy Res ; 91(1): 73-75, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361414

ABSTRACT

The study was carried out in dairy cows to elucidate whether treatment of clinical mastitis quarters with Spectramast® LC (ceftiofur hydrochloride, 125 mg, Zoetis) created a reason for discarding milk from adjacent untreated healthy quarters. The antibiotic was infused once daily in the affected mammary quarter for four days. Forty-nine cows were evaluated after diagnosis of clinical mastitis in three or fewer udder quarters. In all cases, quarters that did not receive treatment had milk samples collected one day after the end of treatment. All milk samples from untreated quarters were below the maximum permissible limit for the presence of antibiotic residues after analysis with the BetaStar S Combo test. Pharmacokinetic and pharmacodynamic characteristics may explain this finding. We conclude that it is feasible to use milk from untreated quarters of animals that have been treated with Spectramast® LC. We also reiterate the need to carry out tests with other pharmacological bases, and that the results found in this experiment cannot be extrapolated to other drugs.Dairy cattle have considerable importance in the development of the Brazilian economy, being directly linked to economic and social progress. In the first half of 2020, 12.1 billion liters of milk were produced in Brazil and in 2019, there was a new record of 25.01 billion liters produced (IBGE, 2020). This production comes from a wide variety of production systems, coming from smallholder farmers as well as from large companies that use the latest technologies available on the market. Dairy production is a complex activity. For one to obtain economical success, several aspects must be monitored. Maintaining the health of animals is a top priority, and the literature suggests that various diseases are a common challenge for dairy producers. Mastitis is the main disease that affects dairy cows, responsible for considerable economic loss and significant zootechnical and productive challenges (Ruegg, ). It is considered the second leading cause of cow culling in dairy herds, behind reproductive problems. Mastitis is characterized by infection of the mammary gland and may or may not occur with inflammation, generating changes in the mammary tissue and properties of the milk. It is classifield into clinical or subclinical mastitis, according to presence or absence of clinical signs, and into contagious or environmental based on the causative agent (Correa et al., ).


Subject(s)
Anti-Bacterial Agents , Cephalosporins , Drug Residues , Mastitis, Bovine , Milk , Mastitis, Bovine/drug therapy , Animals , Cattle , Female , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/analysis , Milk/chemistry , Drug Residues/analysis , Cephalosporins/therapeutic use , Cephalosporins/analysis , Cephalosporins/pharmacokinetics , Mammary Glands, Animal/drug effects , Brazil
12.
Br J Nutr ; 130(10): 1665-1677, 2023 11 28.
Article in English | MEDLINE | ID: mdl-36946032

ABSTRACT

The G protein-coupled receptors (GPCR) sensing nutritional signals (amino acids, fatty acids, glucose, etc.) are not fully understood. In this research, we used transcriptome sequencing to analyse differentially expressed genes (DEG) in mouse mammary gland tissues at puberty, lactation and involution stages, in which eight GPCR were selected out and verified by qRT-PCR assay. It was further identified the role of GPR110-mediating nutrients including palmitic acid (PA) and methionine (Met) to improve milk synthesis using mouse mammary epithelial cell line HC11. PA but not Met affected GPR110 expression in a dose-dependent manner. GPR110 knockdown decreased milk protein and fat synthesis and cell proliferation and blocked the stimulation of PA on mechanistic target of rapamycin (mTOR) phosphorylation and sterol-regulatory element binding protein 1c (SREBP-1c) expression. In summary, these experimental results disclose DEG related to lactation and reveal that GPR110 mediates PA to activate the mTOR and SREBP-1c pathways to promote milk protein and fat synthesis.


Subject(s)
Lactation , Mammary Glands, Animal , Milk Proteins , Animals , Female , Mice , Epithelial Cells/metabolism , Lactation/genetics , Lactation/metabolism , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Methionine/metabolism , Milk Proteins/metabolism , Palmitic Acid/pharmacology , Receptors, G-Protein-Coupled/genetics , Sexual Maturation , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcriptome
13.
Gynecol Endocrinol ; 38(2): 181-185, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34463181

ABSTRACT

AIMS: To evaluate the concentration of hyaluronan acid and proliferation/cellular death in mammary gland of ovariectomized female rat after estroprogestative therapy. MATERIALS AND METHODS: Forty ovariectomized female rats were divided into four groups with 10 animals/each: OG (vehicle); EG: (Estradiol, 7 days of treatment), PG (Progesterone acetate, 23 days of treatment), and EPG: (Estradiol, 7 days of treatment, and next Progesterone acetate, 23 days of treatment). Twenty-four hours after the last treatment, all animals were euthanized, the mammary gland removed, then, a fragment was immersed in acetone to quantifying of the hyaluronan acid biochemical method (ELISA-Like fluorometric assay), and a fragment fixed for 24 h in 10% formaldehyde in phosphate-buffered saline (PBS) processed for immunohistochemistry method for detection of the cell marker proliferation (Ki67) and cellular marker death by DNA fragmentation the TUNEL method. RESULTS: The estradiol-treatment alone (EG) or associated with progesterone (EPG) affected the concentration of hyaluronan acid, increased cell proliferation, and decreased cell death compared to OG and PG (p < .05) in the mammary tissue. CONCLUSIONS: Our results suggest that the excessive reduction of HA in mammary tissue, as occurred with progesterone treatment, can lead to a breakdown of the extracellular matrix. These changes may be indicative of mammary pathology such as the development of tumor.


Subject(s)
Estradiol , Hyaluronic Acid , Mammary Glands, Animal , Progesterone , Animals , Cell Death , Cell Proliferation , Estradiol/pharmacology , Female , Hyaluronic Acid/analysis , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Progesterone/pharmacology , Rats
14.
Environ Toxicol Pharmacol ; 89: 103785, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34896274

ABSTRACT

In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Lactation , Mammary Glands, Animal/drug effects , Phenols/toxicity , Animals , Epithelial Cells/drug effects , Female , Gerbillinae , Inflammation , Mammary Glands, Animal/growth & development , Matrix Metalloproteinases/metabolism , Pregnancy , Stromal Cells/metabolism , Weaning
15.
Endocrinology ; 163(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-34918063

ABSTRACT

Successful lactation and the risk for developing breast cancer depend on growth and differentiation of the mammary gland (MG) epithelium that is regulated by ovarian steroids (17ß-estradiol [E] and progesterone [P]) and pituitary-derived prolactin (PRL). Given that the MG of pigs share histomorphogenic features present in the normal human breast, we sought to define the transcriptional responses within the MG of pigs following exposure to all combinations of these hormones. Hormone-ablated female pigs were administered combinations of E, medroxyprogesterone 17-acetate (source of P), and either haloperidol (to induce PRL) or 2-bromo-α-ergocryptine. We subsequently monitored phenotypic changes in the MG including mitosis, receptors for E and P (ESR1 and PGR), level of phosphorylated STAT5 (pSTAT5), and the frequency of terminal ductal lobular unit (TDLU) subtypes; these changes were then associated with all transcriptomic changes. Estrogen altered the expression of approximately 20% of all genes that were mostly associated with mitosis, whereas PRL stimulated elements of fatty acid metabolism and an inflammatory response. Several outcomes, including increased pSTAT5, highlighted the ability of E to enhance PRL action. Regression of transcriptomic changes against several MG phenotypes revealed 1669 genes correlated with proliferation, among which 29 were E inducible. Additional gene expression signatures were associated with TDLU formation and the frequency of ESR1 or PGR. These data provide a link between the hormone-regulated genome and phenome of the MG in a species having a complex histoarchitecture like that in the human breast, and highlight an underexplored synergy between the actions of E and PRL during MG development.


Subject(s)
Estrogens/physiology , Mammary Glands, Animal/growth & development , Progesterone/physiology , Prolactin/physiology , Swine, Miniature/physiology , Transcriptome/physiology , Animals , Bromocriptine/administration & dosage , Drug Synergism , Estradiol/administration & dosage , Estrogen Receptor alpha/analysis , Estrogen Receptor alpha/genetics , Estrogens/deficiency , Female , Haloperidol/administration & dosage , Mammary Glands, Animal/chemistry , Mammary Glands, Animal/drug effects , Medroxyprogesterone Acetate/administration & dosage , Models, Animal , Morphogenesis/drug effects , Morphogenesis/genetics , Ovariectomy , Progesterone/deficiency , Prolactin/deficiency , Receptors, Progesterone/analysis , Receptors, Progesterone/genetics , Swine , Transcriptome/drug effects
16.
Aging (Albany NY) ; 13(23): 25377-25392, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34890369

ABSTRACT

Mammary gland fibrosis is a chronic and irreversible disease. Tartary buckwheat flavonoids (TBF) are a natural product of flavonoid extracts from buckwheat and have a wide range of biological activities. The purpose of this experiment was to explore whether HFD during pregnancy and lactation induces fibrosis of the mammary tissue and whether TBF alleviates the damage caused by HFD, along with its underlying mechanism. The HFD significantly increased the levels of TNF-α, IL-6, IL-1ß, and MPO; significantly damaged the integrity of the blood-milk barrier; significantly increased the levels of collagen 1, vimentin and α-SMA, and reduced the level of E-cadherin. However, these effects were alleviated by TBF. Mechanistic studies showed that TBF inhibited the activation of AKT/NF-κB signaling and predicted the AKT amino acid residues that formed hydrogen bonds with TBF; in addition, these studies not only revealed that TBF promoted the expression of the tight junction proteins (TJs) claudin-3, occludin and ZO-1 and inhibited the activation of TGF-ß/Smad signaling but also predicted the Smad MH2 amino acid residues that formed hydrogen bonds with TBF. Conclusion: HFD consumption during pregnancy and lactation induced the tendency of mammary fibrosis. TBF alleviated the tendency of mammary fibrosis by inhibiting the activation of AKT/NF-κB, repairing the blood-milk barrier and inhibiting the activation of TGF-ß/Smad signaling.


Subject(s)
Diet, High-Fat/adverse effects , Fagopyrum/chemistry , Flavonoids/pharmacology , Mammary Glands, Animal/pathology , Plant Extracts/pharmacology , Animals , Blotting, Western , Female , Fibrosis , Lactation/drug effects , Male , Mammary Glands, Animal/drug effects , Mice, Inbred ICR , Pregnancy/drug effects
17.
Oxid Med Cell Longev ; 2021: 5048375, 2021.
Article in English | MEDLINE | ID: mdl-34938382

ABSTRACT

Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.


Subject(s)
Gene Expression Regulation/drug effects , Inflammation/prevention & control , Mammary Glands, Animal/drug effects , Mastitis/prevention & control , Reactive Oxygen Species/metabolism , Selenium/pharmacology , Taurine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Cattle , Drug Therapy, Combination , Female , Free Radical Scavengers , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides/toxicity , Mammary Glands, Animal/immunology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mastitis/chemically induced , Mastitis/immunology , Mastitis/metabolism , Mice , Mice, Inbred ICR , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
18.
Int J Mol Sci ; 22(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34884959

ABSTRACT

Thoracic pair of mammary glands from steroid hormone-pretreated mice respond to hormones structurally and functionally in organ culture. A short exposure of glands for 24 h to 7,12 Dimethylbenz(a)anthracene (DMBA) during a 24-day culture period induced alveolar or ductal lesions. Methods: To differentiate the functional significance of ERα and ERß, we employed estrogen receptor (ER) knockout mice. We compared the effects of DMBA on the development of preneoplastic lesions in the glands in the absence of ERα (αERKO) and ERß (ßERKO) using an MMOC protocol. Glands were also subjected to microarray analyses. We showed that estradiol can be replaced by EGF for pretreatment of mice. The carcinogen-induced lesions developed under both steroids and EGF pretreatment protocols. The glands from αERKO did not develop any lesions, whereas in ßERKO mice in which ERα is intact, mammary alveolar lesions developed. Comparison of microarrays of control, αERKO and ßERKO mice showed that ERα was largely responsible for proliferation and the MAP kinase pathways, whereas ERß regulated steroid metabolism-related genes. The results indicate that ERα is essential for the development of precancerous lesions. Both subtypes, ERα and Erß, differentially regulated gene expression in mammary glands in organ cultures.


Subject(s)
Anthracenes/adverse effects , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Mammary Glands, Animal/cytology , Organ Culture Techniques/methods , Piperidines/adverse effects , Precancerous Conditions/pathology , Animals , Epidermal Growth Factor/administration & dosage , Epidermal Growth Factor/pharmacology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/pathology , Mice , Mice, Knockout , Oligonucleotide Array Sequence Analysis , Precancerous Conditions/chemically induced , Precancerous Conditions/genetics , Signal Transduction/drug effects
19.
Life Sci ; 285: 120010, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34606849

ABSTRACT

AIMS: Hormone receptors are the main markers applied for prognosis of breast cancer subtypes. Among modulators, exogenous chemical agents known as endocrine disruptors interact with certain receptors, triggering molecular pathways or increasing their expression. Bisphenol A (BPA), a xenoestrogen, interacts with several hormone receptors. Thus, our aim was to characterize the hormone receptor status in the mammary gland (MG) of aged female Mongolian gerbils exposed to BPA in pregnancy and lactation. METHODS: We evaluated the expression of receptors for estrogens (ERα and ERß), progesterone (PR), prolactin (PRL-R), HER2/ErbB2, and androgen (AR) in normal and hyperplastic mammary tissue and in carcinomas developed after BPA exposure. KEY FINDINGS: BPA-exposed MG presented increased ERα, whereas ERß, PR, and PRL-R showed lower expression. AR and HER2/ErbB2 showed similar expression in normal and hyperplastic tissue from control, vehicle, and BPA groups. Both receptors were found in cytoplasm and nucleus in BPA-induced carcinoma. We demonstrate the presence of EZH2 expression, an epigenetic and epithelial-mesenchymal transition (EMT) marker, with a high H-score in BPA-exposed MG, which was associated with poor prognosis of cancer. Co-localization of ERα and EZH2 was present in normal and carcinoma features, corroborating the installation of ERα-positive mammary cancer associated with the EMT process. Enhanced EZH2 in BPA-exposed mammary tissue could decrease ERß expression and promote tumorigenesis progress through HER2/ErbB2. SIGNIFICANCE: The present study proposes the Mongolian gerbil as an experimental model for mammary carcinogenesis studies, based on BPA disruption that triggers a phenotype of increased ERα/HER2 positivity and depletion of ERß/PR expression.


Subject(s)
Aging , Benzhydryl Compounds/adverse effects , Breast Neoplasms/chemically induced , Carcinogenesis/chemically induced , Endocrine Disruptors/adverse effects , Mammary Glands, Animal/drug effects , Maternal Exposure , Phenols/adverse effects , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Animals , Breast Neoplasms/metabolism , Carcinogenesis/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , Gerbillinae , Mammary Glands, Animal/metabolism , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/metabolism
20.
Mol Pharm ; 18(9): 3401-3417, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34482696

ABSTRACT

The need of pharmacological strategies to preclude breast cancer development motivated us to develop a non-aqueous microemulsion (ME) capable of forming a depot after administration in the mammary tissue and uptake of interstitial fluids for prolonged release of the retinoid fenretinide. The selected ME was composed of phosphatidylcholine/tricaprylin/propylene glycol (45:5:50, w/w/w) and presented a droplet diameter of 175.3 ± 8.9 nm. Upon water uptake, the ME transformed successively into a lamellar phase, gel, and a lamellar phase-containing emulsion in vitro as the water content increased and released 30% of fenretinide in vitro after 9 days. Consistent with the slow release, the ME formed a depot in cell cultures and increased fenretinide IC50 values by 68.3- and 13.2-fold in MCF-7 and T-47D cells compared to a solution, respectively. At non-cytotoxic concentrations, the ME reduced T-47D cell migration by 75.9% and spheroid growth, resulting in ∼30% smaller structures. The depot formed in vivo prolonged a fluorochrome release for 30 days without producing any sings of local irritation. In a preclinical model of chemically induced carcinogenesis, ME administration every 3 weeks for 3 months significantly reduced (4.7-fold) the incidence of breast tumors and increased type II collagen expression, which might contribute to limit spreading. These promising results support the potential ME applicability as a preventive therapy of breast cancer.


Subject(s)
Anticarcinogenic Agents/administration & dosage , Breast Neoplasms/prevention & control , Fenretinide/administration & dosage , Mammary Neoplasms, Experimental/prevention & control , Animals , Anticarcinogenic Agents/pharmacokinetics , Breast Neoplasms/chemically induced , Breast Neoplasms/pathology , Cell Survival/drug effects , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Drug Liberation , Drug Screening Assays, Antitumor , Emulsions , Female , Fenretinide/pharmacokinetics , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/pathology , Methylnitrosourea/administration & dosage , Methylnitrosourea/toxicity , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...