Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 622
Filter
1.
BMC Genomics ; 25(1): 699, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020298

ABSTRACT

BACKGROUND: Cassava is one of three major potato crops and the sixth most important food crop globally. Improving yield remains a primary aim in cassava breeding. Notably, plant height significantly impacts the yield and quality of crops; however, the mechanisms underlying cassava plant height development are yet to be elucidated. RESULTS: In this study, we investigated the mechanisms responsible for cassava plant height development using phenotypic, anatomical, and transcriptomic analyses. Phenotypic and anatomical analysis revealed that compared to the high-stem cassava cultivar, the dwarf-stem cassava cultivar exhibited a significant reduction in plant height and a notable increase in internode tissue xylem area. Meanwhile, physiological analysis demonstrated that the lignin content of dwarf cassava was significantly higher than that of high cassava. Notably, transcriptome analysis of internode tissues identified several differentially expressed genes involved in cell wall synthesis and expansion, plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis between the two cassava cultivars. CONCLUSIONS: Our findings suggest that internode tissue cell division, secondary wall lignification, and hormone-related gene expression play important roles in cassava plant height development. Ultimately, this study provides new insights into the mechanisms of plant height morphogenesis in cassava and identifies candidate regulatory genes associated with plant height that can serve as valuable genetic resources for future crop dwarfing breeding.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Manihot , Manihot/genetics , Manihot/growth & development , Manihot/metabolism , Phenotype , Transcriptome , Lignin/metabolism , Lignin/biosynthesis
2.
Commun Biol ; 7(1): 835, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982288

ABSTRACT

Significant progress has been made in the field of plant genomics, as demonstrated by the increased use of high-throughput methodologies that enable the characterization of multiple genome-wide molecular phenotypes. These findings have provided valuable insights into plant traits and their underlying genetic mechanisms, particularly in model plant species. Nonetheless, effectively leveraging them to make accurate predictions represents a critical step in crop genomic improvement. We present AgroNT, a foundational large language model trained on genomes from 48 plant species with a predominant focus on crop species. We show that AgroNT can obtain state-of-the-art predictions for regulatory annotations, promoter/terminator strength, tissue-specific gene expression, and prioritize functional variants. We conduct a large-scale in silico saturation mutagenesis analysis on cassava to evaluate the regulatory impact of over 10 million mutations and provide their predicted effects as a resource for variant characterization. Finally, we propose the use of the diverse datasets compiled here as the Plants Genomic Benchmark (PGB), providing a comprehensive benchmark for deep learning-based methods in plant genomic research. The pre-trained AgroNT model is publicly available on HuggingFace at https://huggingface.co/InstaDeepAI/agro-nucleotide-transformer-1b  for future research purposes.


Subject(s)
Genome, Plant , Plants, Edible/genetics , Genomics/methods , Deep Learning , Manihot/genetics
3.
Plant Sci ; 346: 112163, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880339

ABSTRACT

A20/AN1 zinc-finger domain-containing genes are very promising candidates in improving plant tolerance to abiotic stresses, but considerably less is known about functions and mechanisms for many of them. In this study, Metip3 (5, and 7), cassava (Manihot esculenta) A20/AN1 genes carrying one A20 domain and one AN1 domain, were functionally characterized at different layers. Metip3 (5, and 7) proteins were all located in the nucleus. No interactions were found between these three proteins. Metip3 (5, and 7)-expressing Arabidopsis was more tolerant to multiple abiotic stresses by Na, Cd, Mn, Al, drought, high temperature, and low temperature. Metip3- and Metip5-expressing Arabidopsis was sensitive to Cu stress, while Metip7-expressing Arabidopsis was insensitive. The H2O2 production significantly decreased in all transgenic Arabidopsis, however, O2·- production significantly decreased in Metip3- and Metip5-expressing Arabidopsis but did not significantly changed in Metip7-expressing Arabidopsis under drought. Metip3 (5, and 7) expression-silenced cassava showed the decreased tolerance to drought and NaCl, presented significant decreases in superoxide dismutase and catalase activities and proline content, and displayed a significant increase in malondialdehyde content under drought. Taken together with transcriptome sequencing analysis, it is suggested that Metip5 gene can not only affect signal transduction related to plant hormone, mitogen activated protein kinases, and starch and sucrose metabolism, DRE-binding transcription factors, and antioxidants, conferring the drought tolerance, but also might deliver the signals from DREB2A INTERACTING PROTEIN1, E3 ubiquitin-protein ligases to proteasome, leading to the drought intolerance. The results are informative not only for further study on evolution of A20/AN1 genes but also for development of climate resilient crops.


Subject(s)
Arabidopsis , Manihot , Plant Proteins , Plants, Genetically Modified , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Manihot/genetics , Manihot/physiology , Stress, Physiological/genetics , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Droughts , Genes, Plant , Multigene Family
4.
Plant Genome ; 17(2): e20469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38880944

ABSTRACT

The starchy storage roots of cassava are commonly processed into a variety of products, including cassava granulated processed products (gari). The commercial value of cassava roots depends on the yield and quality of processed products, directly influencing the acceptance of new varieties by farmers, processors, and consumers. This study aims to estimate genetic advance through phenotypic selection and identify genomic regions associated and candidate genes linked with gari yield and quality. Higher single nucleotide polymorphism (SNP)-based heritability estimates compared to broad-sense heritability estimates were observed for most traits highlighting the influence of genetic factors on observed variation. Using genome-wide association analysis of 188 clones, genotyped using 53,150 genome-wide SNPs, nine SNPs located on seven chromosomes were significantly associated with peel loss, gari yield, color parameters for gari and eba, bulk density, swelling index, and textural properties of eba. Future research will focus on validating and understanding the functions of identified genes and their influence on gari yield and quality traits.


Subject(s)
Genome-Wide Association Study , Manihot , Polymorphism, Single Nucleotide , Manihot/genetics , Phenotype , Plant Roots/genetics
5.
Plant Genome ; 17(2): e20471, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923724

ABSTRACT

Regular measurement of realized genetic gain allows plant breeders to assess and review the effectiveness of their strategies, allocate resources efficiently, and make informed decisions throughout the breeding process. Realized genetic gain estimation requires separating genetic trends from nongenetic trends using the linear mixed model (LMM) on historical multi-environment trial data. The LMM, accounting for the year effect, experimental designs, and heterogeneous residual variances, estimates best linear unbiased estimators of genotypes and regresses them on their years of origin. An illustrative example of estimating realized genetic gain was provided by analyzing historical data on fresh cassava (Manihot esculenta Crantz) yield in West Africa (https://github.com/Biometrics-IITA/Estimating-Realized-Genetic-Gain). This approach can serve as a model applicable to other crops and regions. Modernization of breeding programs is necessary to maximize the rate of genetic gain. This can be achieved by adopting genomics to enable faster breeding, accurate selection, and improved traits through genomic selection and gene editing. Tracking operational costs, establishing robust, digitalized data management and analytics systems, and developing effective varietal selection processes based on customer insights are also crucial for success. Capacity building and collaboration of breeding programs and institutions also play a significant role in accelerating genetic gains.


Subject(s)
Manihot , Plant Breeding , Plant Breeding/methods , Manihot/genetics , Africa South of the Sahara , Crops, Agricultural/genetics , Genotype , Models, Genetic
6.
Viruses ; 16(6)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38932233

ABSTRACT

Disease resistance gene (R gene)-encoded nucleotide-binding leucine-rich repeat proteins (NLRs) are critical players in plant host defence mechanisms because of their role as receptors that recognise pathogen effectors and trigger plant effector-triggered immunity (ETI). This study aimed to determine the putative role of a cassava coiled-coil (CC)-NLR (CNL) gene MeRPPL1 (Manes.12G091600) (single allele) located on chromosome 12 in the tolerance or susceptibility to South African cassava mosaic virus (SACMV), one of the causal agents of cassava mosaic disease (CMD). A transient protoplast system was used to knock down the expression of MeRPPL1 by clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9). The MeRPPL1-targeting CRISPR vectors and/or SACMV DNA A and DNA B infectious clones were used to transfect protoplasts isolated from leaf mesophyll cells from the SACMV-tolerant cassava (Manihot esculenta) cultivar TME3. The CRISPR/Cas9 silencing vector significantly reduced MeRPPL1 expression in protoplasts whether with or without SACMV co-infection. Notably, SACMV DNA A replication was higher in protoplasts with lower MeRPPL1 expression levels than in non-silenced protoplasts. Mutagenesis studies revealed that protoplast co-transfection with CRISPR-MeRPPL1 silencing vector + SACMV and transfection with only SACMV induced nucleotide substitution mutations that led to altered amino acids in the highly conserved MHD motif of the MeRPPL1-translated polypeptide. This may abolish or alter the regulatory role of the MHD motif in controlling R protein activity and could contribute to the increase in SACMV-DNA A accumulation observed in MeRPPL1-silenced protoplasts. The results herein demonstrate for the first time a role for a CNL gene in tolerance to a geminivirus in TME3.


Subject(s)
Begomovirus , Manihot , Plant Diseases , Plant Proteins , Virus Replication , Manihot/virology , Manihot/genetics , Plant Diseases/virology , Plant Diseases/genetics , Begomovirus/genetics , Begomovirus/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Geminiviridae/genetics , Geminiviridae/physiology , CRISPR-Cas Systems , Disease Resistance/genetics , Protoplasts/virology , Protoplasts/metabolism , Leucine-Rich Repeat Proteins
7.
Plant J ; 119(2): 1014-1029, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805573

ABSTRACT

Cassava, a pivotal tropical crop, exhibits rapid growth and possesses a substantial biomass. Its stem is rich in cellulose and serves as a crucial carbohydrate storage organ. The height and strength of stems restrict the mechanised operation and propagation of cassava. In this study, the triple helix transcription factor MeGT2.6 was identified through yeast one-hybrid assay using MeCesA1pro as bait, which is critical for cellulose synthesis. Over-expression and loss-of-function lines were generated, and results revealed that MeGT2.6 could promote a significant increase in the plant height, stem diameter, cell size and thickness of SCW of cassava plant. Specifically, MeGT2.6 upregulated the transcription activity of MeGA20ox1 and downregulated the expression level of MeGA2ox1, thereby enhancing the content of active GA3, resulting in a large cell size, high plant height and long stem diameter in cassava. Moreover, MeGT2.6 upregulated the transcription activity of MeCesA1, which promoted the synthesis of cellulose and hemicellulose and produced a thick secondary cell wall. Finally, MeGT2.6 could help supply additional substrates for the synthesis of cellulose and hemicellulose by upregulating the invertase genes (MeNINV1/6). Thus, MeGT2.6 was found to be a multiple regulator; it was involved in GA metabolism and sucrose decomposition and the synthesis of cellulose and hemicellulose.


Subject(s)
Cellulose , Gene Expression Regulation, Plant , Gibberellins , Manihot , Plant Proteins , Manihot/genetics , Manihot/metabolism , Cellulose/metabolism , Cellulose/biosynthesis , Plant Proteins/metabolism , Plant Proteins/genetics , Gibberellins/metabolism , Cell Wall/metabolism , Cell Enlargement , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/growth & development , Polysaccharides/metabolism
8.
Sci Rep ; 14(1): 10587, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719851

ABSTRACT

Cassava root-rot incited by soil-borne pathogens is one of the major diseases that reduces root yield. Although the use of resistant cultivars is the most effective method of management, the genetic basis for root-rot resistance remains poorly understood. Therefore, our work analyzed the transcriptome of two contrasting genotypes (BRS Kiriris/resistant and BGM-1345/susceptible) using RNA-Seq to understand the molecular response and identify candidate genes for resistance. Cassava seedlings (resistant and susceptible to root-rot) were both planted in infested and sterilized soil and samples from Initial-time and Final-time periods, pooled. Two controls were used: (i) seedlings collected before planting in infested soil (absolute control) and, (ii) plants grown in sterilized soil (mock treatments). For the differentially expressed genes (DEGs) analysis 23.912 were expressed in the resistant genotype, where 10.307 were differentially expressed in the control treatment, 15 DEGs in the Initial Time-period and 366 DEGs in the Final Time-period. Eighteen candidate genes from the resistant genotype were related to plant defense, such as the MLP-like protein 31 and the peroxidase A2-like gene. This is the first model of resistance at the transcriptional level proposed for the cassava × root-rot pathosystem. Gene validation will contribute to screening for resistance of germplasm, segregating populations and/or use in gene editing in the pursuit to develop most promising cassava clones with resistance to root-rot.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Manihot , Plant Diseases , Plant Roots , Transcriptome , Manihot/genetics , Manihot/microbiology , Disease Resistance/genetics , Plant Roots/genetics , Plant Roots/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Gene Expression Profiling , Genotype , Plant Proteins/genetics , Plant Proteins/metabolism , Genes, Plant
9.
BMC Genomics ; 25(1): 448, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38802758

ABSTRACT

MeFtsZ2-1 is a key gene for plant plastid division, but the mechanism by which MeFtsZ2-1 affects pigment accumulation in cassava (Manihot esculenta Crantz) through plastids remains unclear. We found that MeFtsZ2-1 overexpression in cassava (OE) exhibited darker colors of leaves, with increased levels of anthocyanins and carotenoids. Further observation via Transmission Electron Microscopy (TEM) revealed no apparent defects in chloroplast structure but an increase in the number of plastoglobule in OE leaves. RNA-seq results showed 1582 differentially expressed genes (DEGs) in leaves of OE. KEGG pathway analysis indicated that these DEGs were enriched in pathways related to flavonoid, anthocyanin, and carotenoid biosynthesis. This study reveals the role of MeFtsZ2-1 in cassava pigment accumulation from a physiological and transcriptomic perspective, providing a theoretical basis for improving cassava quality.


Subject(s)
Manihot , Plant Leaves , Plant Proteins , Manihot/genetics , Manihot/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Gene Expression Profiling , Transcriptome , Anthocyanins/metabolism , Anthocyanins/biosynthesis , Carotenoids/metabolism , Chloroplasts/metabolism , Chloroplasts/genetics , Plastids/metabolism , Plastids/genetics
10.
BMC Plant Biol ; 24(1): 372, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714917

ABSTRACT

BACKGROUND: High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS: Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION: These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.


Subject(s)
Arabidopsis , Manihot , Plant Proteins , Plants, Genetically Modified , Potassium , Salt Stress , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Manihot/genetics , Manihot/metabolism , Manihot/physiology , Plants, Genetically Modified/genetics , Potassium/metabolism , Salt Stress/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Gene Expression Regulation, Plant , Salt Tolerance/genetics , Sodium/metabolism
11.
BMC Genomics ; 25(1): 436, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698332

ABSTRACT

BACKGROUND: Cassava mosaic disease (CMD), caused by Sri Lankan cassava mosaic virus (SLCMV) infection, has been identified as a major pernicious disease in Manihot esculenta Crantz (cassava) plantations. It is widespread in Southeast Asia, especially in Thailand, which is one of the main cassava supplier countries. With the aim of restricting the spread of SLCMV, we explored the gene expression of a tolerant cassava cultivar vs. a susceptible cassava cultivar from the perspective of transcriptional regulation and the mechanisms underlying plant immunity and adaptation. RESULTS: Transcriptomic analysis of SLCMV-infected tolerant (Kasetsart 50 [KU 50]) and susceptible (Rayong 11 [R 11]) cultivars at three infection stages-that is, at 21 days post-inoculation (dpi) (early/asymptomatic), 32 dpi (middle/recovery), and 67 dpi (late infection/late recovery)-identified 55,699 expressed genes. Differentially expressed genes (DEGs) between SLCMV-infected KU 50 and R 11 cultivars at (i) 21 dpi to 32 dpi (the early to middle stage), and (ii) 32 dpi to 67 dpi (the middle stage to late stage) were then identified and validated by real-time quantitative PCR (RT-qPCR). DEGs among different infection stages represent genes that respond to and regulate the viral infection during specific stages. The transcriptomic comparison between the tolerant and susceptible cultivars highlighted the role of gene expression regulation in tolerant and susceptible phenotypes. CONCLUSIONS: This study identified genes involved in epigenetic modification, transcription and transcription factor activities, plant defense and oxidative stress response, gene expression, hormone- and metabolite-related pathways, and translation and translational initiation activities, particularly in KU 50 which represented the tolerant cultivar in this study.


Subject(s)
Manihot , Mosaic Viruses , Manihot/classification , Manihot/genetics , Manihot/immunology , Manihot/virology , Mosaic Viruses/physiology , Plant Immunity , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/virology , Real-Time Polymerase Chain Reaction , High-Throughput Nucleotide Sequencing , RNA, Plant , Sequence Analysis, RNA
12.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731930

ABSTRACT

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Subject(s)
Gene Expression Regulation, Plant , Manihot , Plant Proteins , Plants, Genetically Modified , Promoter Regions, Genetic , Manihot/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Starch Synthase/genetics , Starch Synthase/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Ethylenes/metabolism
13.
Genomics ; 116(4): 110871, 2024 07.
Article in English | MEDLINE | ID: mdl-38806102

ABSTRACT

Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.


Subject(s)
Cold-Shock Response , DNA Methylation , Gene Expression Regulation, Plant , Manihot , Plant Proteins , Manihot/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Epigenesis, Genetic , Plant Leaves/genetics , Plant Leaves/metabolism , DNA Transposable Elements , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Plant Cell Rep ; 43(6): 153, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806727

ABSTRACT

KEY MESSAGE: MePMTR1 is involved in plant development and production as well as photosynthesis in plant. Melatonin is widely involved in plant growth and development as well as stress responses. Compared with the extending studies of melatonin in stress responses, the direct link between melatonin and plant development in the whole stages remains unclear. With the identification of phytomelatonin receptor PMTR1 in plants, melatonin signalling is becoming much clearer. However, the function of MePMTR1 in tropical crop cassava remains elusive. In this study, we found that overexpression of MePMTR1 showed larger biomass than wild type (WT), including higher number and area of leaves, weight, and accompanying with higher photosynthetic efficiency. Consistently, exogenous melatonin accelerated photosynthetic rate in Arabidopsis. In addition, MePMTR1-overexpressed plants exhibited more resistance to dark-induced senescence compared with WT, demonstrated by higher chlorophyll, lower hydrogen peroxide and superoxide content. In summary, this study illustrated that melatonin and its receptor regulate growth, development and senescence in plants, highlighting the potential application of melatonin and its receptor in improving crop yield and photosynthesis.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Manihot , Melatonin , Photosynthesis , Plants, Genetically Modified , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Melatonin/metabolism , Manihot/genetics , Manihot/growth & development , Manihot/metabolism , Receptors, Melatonin/metabolism , Receptors, Melatonin/genetics , Light , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Chlorophyll/metabolism , Darkness , Hydrogen Peroxide/metabolism
15.
New Phytol ; 242(6): 2734-2745, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581188

ABSTRACT

Cassava is one of the most important tropical crops, but it is seriously affected by cassava bacteria blight (CBB) caused by the bacterial pathogen Xanthomonas phaseoli pv manihotis (Xam). So far, how pathogen Xam infects and how host cassava defends during pathogen-host interaction remains elusive, restricting the prevention and control of CBB. Here, the illustration of HEAT SHOCK PROTEIN 90 kDa (MeHSP90.9) interacting proteins in both cassava and bacterial pathogen revealed the dual roles of MeHSP90.9 in cassava-Xam interaction. On the one hand, calmodulin-domain protein kinase 1 (MeCPK1) directly interacted with MeHSP90.9 to promote its protein phosphorylation at serine 175 residue. The protein phosphorylation of MeHSP90.9 improved the transcriptional activation of MeHSP90.9 clients (SHI-RELATED SEQUENCE 1 (MeSRS1) and MeWRKY20) to the downstream target genes (avrPphB Susceptible 3 (MePBS3) and N-aceylserotonin O-methyltransferase 2 (MeASMT2)) and immune responses. On the other hand, Xanthomonas outer protein C2 (XopC2) physically associated with MeHSP90.9 to inhibit its interaction with MeCPK1 and the corresponding protein phosphorylation by MeCPK1, so as to repress host immune responses and promote bacterial pathogen infection. In summary, these results provide new insights into genetic improvement of cassava disease resistance and extend our understanding of cassava-bacterial pathogen interaction.


Subject(s)
HSP90 Heat-Shock Proteins , Manihot , Plant Diseases , Plant Proteins , Phosphorylation , HSP90 Heat-Shock Proteins/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Manihot/microbiology , Manihot/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Xanthomonas/physiology , Xanthomonas/pathogenicity , Host-Pathogen Interactions , Protein Binding , Gene Expression Regulation, Plant , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Disease Resistance/genetics
16.
Genes (Basel) ; 15(3)2024 03 05.
Article in English | MEDLINE | ID: mdl-38540395

ABSTRACT

Cassava is susceptible to mites, especially Tetranychus cinnabarinus. Secondary metabolism products such as flavonoids play an important role as antimicrobial metabolites protecting plants against biotic stressors including fungal, pathogen, bacterial, and pest defense. The chalcone synthase (CHS) is the initial step of the phenylpropanoid pathway for producing flavonoids and is the gatekeeper of the pathway. Until recently, the CHS genes family has not been systematically studied in cassava. Thirty-nine CHS genes were identified from the cassava genome database. Based on phylogenetic and sequence composition analysis, these CHSs were divided into 3 subfamilies. Within the same subfamily, the gene structure and motif compositions of these CHS genes were found to be quite conserved. Duplication events, particularly segmental duplication of the cassava CHS genes, were identified as one of the main driving force of its expansion. Various cis-elements contained in the promoter might regulate the gene expression patterns of MeCHS. Protein-protein interaction (PPI) network analysis showed that MeCHS1 and MeCHS10 protein are more closely related to other family members. The expression of MeCHS genes in young leaves was higher than that in other tissues, and their expression varies even within the same tissue. Coincidentally, these CHS genes of most LAP subclasses were highly expressed in young leaves. The verified MeCHS genes showed consistent with the real-time reverse transcription quantitative PCR (RT-qPCR) and proteomic expression in protected and affected leaves respectively, indicating that these MeCHS genes play crucial roles in the response to T. cinnabarinus. This study is the first to comprehensively expatiate the information on MeCHS family members. These data will further enhance our understanding both the molecular mechanisms and the effects of CHS genes. In addition, the results will help to further clarify the effects on T. cinnabarinus and provide a theoretical basis for the potential functions of the specific CHS gene in resistance to mites and other biotic stress.


Subject(s)
Acyltransferases , Manihot , Manihot/genetics , Phylogeny , Proteomics , Genomics , Flavonoids/metabolism
17.
J Sci Food Agric ; 104(8): 4586-4595, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38381087

ABSTRACT

BACKGROUND: Cassava retting ability and the textural qualities of cooked fufu are important quality traits. Cassava retting is a complex process in which soaking causes tissue breakdown, starch release, and softening. The rate at which various traits linked to it evolve varies greatly during fufu processing. According to the literature, there is no standard approach for determining retting ability. The retting indices and textural properties of fufu were measured using both manual and instrumental approaches. RESULTS: Different protocols were developed to classify 64 and 11 cassava genotypes into various groups based on retting ability and textural qualities, respectively. The retting protocols revealed considerable genetic dissimilarities in genotype classification: foaming ability and water clarity should be measured at 24 h, while penetrometer, hardness, turbidity, pH, and total titratable acidity data are best collected after 36 h. The stepwise regression model revealed that pH, foaming ability, and dry matter content are the best multivariates (with the highest R2) for predicting cassava retting. These predictors were used to develop an index for assessing the retting ability of cassava genotypes. The retting index developed showed a significant relationship with dry matter content and fufu yield. The study also showed significant correlations between instrumental cohesiveness and sensory smoothness (r = -0.75), moldability (r = -0.62), and stretchability (r = 0.78). Instrumental cohesiveness can correctly estimate fufu smoothness (R2 = 0.56, P = 0.008) and stretchability (R2 = 0.60, P = 0.005). CONCLUSION: pH, foaming ability, and dry matter content are the best traits for predicting cassava retting ability, while instrumental cohesiveness can effectively estimate fufu smoothness and stretchability. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Manihot , Plant Breeding , Manihot/chemistry , Manihot/genetics , Manihot/metabolism , Genotype , Cooking , Plant Tubers/chemistry , Plant Tubers/metabolism , Starch/metabolism , Starch/chemistry , Flour/analysis , Food Handling/methods
18.
J Sci Food Agric ; 104(8): 4561-4572, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38319871

ABSTRACT

BACKGROUND: Consumers of boiled cassava in Africa, Latin America and Asia use specific preference criteria to evaluate its cooking quality, in terms of texture, colour and taste. To improve adoption rates of improved cassava varieties intended for consumption after boiling, these preference criteria need to be determined, quantified and integrated as post-harvest quality traits in the target product profile of boiled cassava, so that breeding programs may screen candidate varieties based on both agronomic traits and consumer preference traits. RESULTS: Surveys of various end-user groups identified seven priority quality attributes of boiled cassava covering root preparation, visual aspect, taste and texture. Three populations of contrasted cassava genotypes, from good-cooking to bad-cooking, in three countries (Uganda, Benin, Colombia) were then characterized according to these quality attributes by sensory quantitative descriptive analysis (QDA) and by standard instrumental methods. Consumers' preferences of the texture attributes mealiness and hardness were also determined. By analysis of correlations, the consumers' preferences scores were translated into thresholds of acceptability in terms of QDA scores, then in terms of instrumental measurements (water absorption during boiling and texture analysis). The thresholds of acceptability were used to identify among the Colombian and Benin populations promising genotypes for boiled cassava quality. CONCLUSION: This work demonstrates the steps of determining priority quality attributes for boiled cassava and establishing their corresponding quantitative thresholds of acceptability. The information can then be included in boiled cassava target product profiles used by cassava breeders, for better selection and adoption rates of new varieties. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Consumer Behavior , Cooking , Genotype , Manihot , Taste , Manihot/genetics , Manihot/chemistry , Humans , Colombia , Benin
20.
PeerJ ; 12: e16949, 2024.
Article in English | MEDLINE | ID: mdl-38410806

ABSTRACT

Whiteflies (Bemisia tabaci sensu lato) have a wide host range and are globally important agricultural pests. In Sub-Saharan Africa, they vector viruses that cause two ongoing disease epidemics: cassava brown streak disease and cassava mosaic virus disease. These two diseases threaten food security for more than 800 million people in Sub-Saharan Africa. Efforts are ongoing to identify target genes for the development of novel management options against the whitefly populations that vector these devastating viral diseases affecting cassava production in Sub-Saharan Africa. This study aimed to identify genes that mediate osmoregulation and symbiosis functions within cassava whitefly gut and bacteriocytes and evaluate their potential as key gene targets for novel whitefly control strategies. The gene expression profiles of dissected guts, bacteriocytes and whole bodies were compared by RNAseq analysis to identify genes with significantly enriched expression in the gut and bacteriocytes. Phylogenetic analyses identified three candidate osmoregulation gene targets: two α-glucosidases, SUC 1 and SUC 2 with predicted function in sugar transformations that reduce osmotic pressure in the gut; and a water-specific aquaporin (AQP1) mediating water cycling from the distal to the proximal end of the gut. Expression of the genes in the gut was enriched 23.67-, 26.54- and 22.30-fold, respectively. Genome-wide metabolic reconstruction coupled with constraint-based modeling revealed four genes (argH, lysA, BCAT & dapB) within the bacteriocytes as potential targets for the management of cassava whiteflies. These genes were selected based on their role and essentiality within the different essential amino acid biosynthesis pathways. A demonstration of candidate osmoregulation and symbiosis gene targets in other species of the Bemisia tabaci species complex that are orthologs of the empirically validated osmoregulation genes highlights the latter as promising gene targets for the control of cassava whitefly pests by in planta RNA interference.


Subject(s)
Hemiptera , Manihot , Viruses , Humans , Animals , Phylogeny , Manihot/genetics , Hemiptera/genetics , Vegetables , Water
SELECTION OF CITATIONS
SEARCH DETAIL