Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.729
Filter
2.
Anal Methods ; 16(31): 5475-5481, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39037397

ABSTRACT

Tuberculosis (TB) represents a major public health threat, with millions of new cases reported worldwide each year. A major hurdle to curtailing the spread of this disease is the need for low-cost, point-of-care (PoC) diagnostics. Mannose-capped lipoarabinomannan, a significant component of the Mycobacterium tuberculosis bacillus, has been heavily studied as a biomarker for TB, but with little success due to its complexation with endogenous components of body fluids in a manner that sterically interferes with its detection by ELISA and other immunoassays. Recent work by our group and others has shown that complexation can be disrupted with protein-denaturing protocols. By way of followup, we recently described an enzymatic digestion (Proteinase K) sample pretreatment that enables quantitative recovery of ManLAM spiked into healthy human control serum. Herein, we report on the transfer of our benchtop sample pretreatment methodology to an automated microfluidic platform. We show that this platform can be configured to: (1) carry out the pretreatment process with very little user interaction and, (2) yield recoveries for ManLAm spiked into control serum which are statistically indistinguishable from those achieved by the benchtop process. Plans to integrate this device with a portable sample reader as a possible basis for a PoC TB diagnostic system and analyze patient samples are briefly discussed.


Subject(s)
Biomarkers , Lipopolysaccharides , Mannose , Tuberculosis , Humans , Lipopolysaccharides/blood , Biomarkers/blood , Tuberculosis/blood , Tuberculosis/diagnosis , Mannose/chemistry , Mannose/blood , Mycobacterium tuberculosis/isolation & purification , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods
3.
ACS Appl Mater Interfaces ; 16(31): 40499-40514, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39051468

ABSTRACT

Crohn's disease (CD) is a refractory chronic inflammatory bowel disease (IBD) with unknown etiology. Transmural inflammation, involving the intestine and mesentery, represents a characteristic pathological feature of CD and serves as a critical contributor to its intractability. Here, this study describes an oral pyroptosis nanoinhibitor loaded with tumor necrosis factor-α (TNF-α) deoxyribozymes (DNAzymes) (DNAzymes@degradable silicon nanoparticles@Mannose, Dz@MDSN), which can target macrophages at the site of inflammation and respond to reactive oxygen species (ROS) to release drugs. Dz@MDSN can not only break the inflammatory cycle in macrophages by degrading TNF-α mRNA but also reduce the production of ROS mainly from macrophages. Moreover, Dz@MDSN inhibits excessive pyroptosis in epithelial cells through ROS clearance, thereby repairing the intestinal barrier and reducing the translocation of intestinal bacteria to the mesentery. Consequently, these combined actions synergistically contribute to the suppression of inflammation within both the intestine and the mesentery. This study likely represents the first successful attempt in the field of utilizing nanomaterials to achieve transmural healing for CD, which also provides a promising treatment strategy for CD patients.


Subject(s)
Crohn Disease , DNA, Catalytic , Pyroptosis , Tumor Necrosis Factor-alpha , Crohn Disease/drug therapy , Crohn Disease/pathology , Crohn Disease/metabolism , Pyroptosis/drug effects , Tumor Necrosis Factor-alpha/metabolism , Humans , Animals , Administration, Oral , Mice , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism , DNA, Catalytic/pharmacology , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Macrophages/drug effects , Macrophages/metabolism , Silicon/chemistry , Silicon/pharmacology , Mannose/chemistry , Mannose/pharmacology , RAW 264.7 Cells , Male
4.
Nano Lett ; 24(31): 9494-9504, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39058893

ABSTRACT

Chronic diabetic wound patients usually show high glucose levels and systemic immune disorder, resulting in high reactive oxygen species (ROS) levels and immune cell dysfunction, prolonged inflammation, and delayed wound healing. Herein, we prepared an antioxidant and immunomodulatory polymer vesicle for diabetic wound treatment. This vesicle is self-assembled from poly(ε-caprolactone)36-block-poly[lysine4-stat-(lysine-mannose)22-stat-tyrosine)16] ([PCL36-b-P[Lys4-stat-(Lys-Man)22-stat-Tyr16]). Polytyrosine is an antioxidant polypeptide that can scavenge ROS. d-Mannose was introduced to afford immunomodulatory functions by promoting macrophage transformation and Treg cell activation through inhibitory cytokines. The mice treated with polymer vesicles showed 23.7% higher Treg cell levels and a 91.3% higher M2/M1 ratio than those treated with PBS. Animal tests confirmed this vesicle accelerated healing and achieved complete healing of S. aureus-infected diabetic wounds within 8 days. Overall, this is the first antioxidant and immunomodulatory vesicle for diabetic wound healing by scavenging ROS and regulating immune homeostasis, opening new avenues for effective diabetic wound healing.


Subject(s)
Antioxidants , Reactive Oxygen Species , Wound Healing , Animals , Reactive Oxygen Species/metabolism , Wound Healing/drug effects , Mice , Antioxidants/chemistry , Antioxidants/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Polymers/chemistry , Polymers/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Macrophages/drug effects , Macrophages/immunology , Humans , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Staphylococcus aureus/drug effects , Mannose/chemistry , Mannose/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/immunology
5.
Int J Pharm ; 662: 124540, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39074646

ABSTRACT

This study compared the effects of polyethylene glycol (PEG) shielding and mannose-conjugated ligands density on lipid nanoparticles (LNPs) for intracellular uptake to macrophages in vitro and accumulation in spleens in vivo. Fabricated phosphatidyl serine-incorporated LNPs (sLNPs) was physically decorated with mannose-conjugated DSPE-PEG (DPM) at different DPM/LNP molar ratios achieving the DPM density from 0 to 0.6 PEGs/nm2. We demonstrated that low PEG shielding sLNPs with mannose ligands (sLNP-DPMs) displayed superior uptake to macrophages (RAW 264.7 cells) compared with high PEG shielding sLNP-DPMs in vitro. However, high PEG shielding sLNP-DPMs showed significant spleen accumulation compared with low PEG shielding sLNP-DPMs in vivo after intravenous injection. In particular, high PEG shielding sLNPs coated with DSPE-methoxyPEG (DP) and DPM mixture at DP/DPM molar ratios of 5/5 exhibited greater accumulation in red pulp of spleens than naked sLNPs by 2.7-folds in vivo. These results suggested that the optimal PEG shielding and mannose densities per a particle might be different between in vitro cellular uptake to macrophages and in vivo spleen accumulation after systemic administration. Taken together, precision-tailored LNP-surface modifications achieved through optimization of PEG shielding and mannose density can greatly enhance accumulation of LNPs in red pulp of spleens, which could be applied for the delivery of nucleic acid-based drugs and vaccines to spleens in vivo.


Subject(s)
Macrophages , Mannose , Nanoparticles , Polyethylene Glycols , Spleen , Animals , Mannose/chemistry , Polyethylene Glycols/chemistry , Mice , Spleen/metabolism , Spleen/drug effects , RAW 264.7 Cells , Nanoparticles/chemistry , Macrophages/drug effects , Macrophages/metabolism , Lipids/chemistry , Male , Drug Carriers/chemistry , Phosphatidylethanolamines/chemistry , Tissue Distribution , Liposomes
7.
Org Biomol Chem ; 22(32): 6506-6519, 2024 08 14.
Article in English | MEDLINE | ID: mdl-38884368

ABSTRACT

Muramyl dipeptide (MDP) is the smallest essential peptidoglycan substructure capable of promoting both innate and adaptive immune responses. Herein, we report on the design, synthesis, and in vivo study of the adjuvant properties of two novel MDP analogs containing an achiral adamantyl moiety attached to the desmuramyl dipeptide (DMP) pharmacophore and additionally modified by one mannosyl subunit (derivative 7) or two mannosyl subunits (derivative 11). Mannose substructures were introduced in order to assess how the degree of mannosylation affects the immune response and nucleotide-binding oligomerization-domain-containing protein 2 (NOD2) binding affinity, compared to the reference compound ManAdDMP. Both mannosylated MDP analogs showed improved immunomodulating properties, while the di-mannosylated derivative 11 displayed the highest, statistically significant increase in anti-OVA IgG production. In this study, for the first time, the di-mannosylated DMP derivative was synthesized and immunologically evaluated. Derivative 11 stimulates a Th-2-polarized type of immune reaction, similar to the reference compound ManAdDMP and MDP. Molecular dynamics (MD) simulations demonstrate that 11 has a higher NOD2 binding affinity than 7, indicating that introducing the second mannose significantly contributes to the binding affinity. Mannose interacts with key amino acid residues from the LRR hydrophobic pocket of the NOD2 receptor and loop 2.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Adamantane , Adjuvants, Immunologic , Mannose , Adamantane/chemistry , Adamantane/analogs & derivatives , Mannose/chemistry , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemical synthesis , Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Animals , Molecular Dynamics Simulation , Mice , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/chemistry , Humans
8.
Enzyme Microb Technol ; 179: 110465, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852283

ABSTRACT

Enzymatic production of D-mannose attracts increasing attention because of the health effects and commercial values of D-mannose. Several kinds of epimerases or isomerases have been used for enzymatic production of D-mannose from D-glucose or D-fructose. D-Mannose epimerase (MEase), belonging to N-acyl-D-glucosamine 2-epimerase superfamily enzymes, catalyzes the C-2 epimerization between D-glucose and D-mannose. In this study, a novel MEase was identified from Cytophagaceae bacterium SJW1-29. Sequence and structure alignments indicate that it is highly conserved with the reported R. slithyformis MEase with the known crystal structure. It was a metal-independent enzyme, with an optimal pH of 8.0 and an optimal temperature of 40 °C. The specific activities on D-glucose and D-mannose were 2.90 and 2.96 U/mg, respectively. The Km, kcat, and kcat/Km on D-glucose were measured to be 194.9 mM, 2.72 s-1, and 0.014 mM-1 s-1, respectively. The purified enzyme produced 23.15 g/L of D-mannose from 100 g/L of D-glucose at pH 8.0 and 40 °C for 8 h, with a conversion rate of 23.15 %.


Subject(s)
Carbohydrate Epimerases , Glucose , Mannose , Mannose/metabolism , Glucose/metabolism , Substrate Specificity , Kinetics , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Hydrogen-Ion Concentration , Amino Acid Sequence , Cloning, Molecular , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Temperature , Models, Molecular , Sequence Alignment
9.
Mol Cell Proteomics ; 23(7): 100796, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38851451

ABSTRACT

Protein O-linked mannose (O-Man) glycosylation is an evolutionary conserved posttranslational modification that fulfills important biological roles during embryonic development. Three nonredundant enzyme families, POMT1/POMT2, TMTC1-4, and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins, and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knockout of O-Man glycosyltransferase genes. We established a human cell library for the analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway, and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man-glycosylated adhesion molecules and receptors.


Subject(s)
Mannose , Humans , Glycosylation , Mannose/metabolism , Substrate Specificity , Glycoproteins/metabolism , Proteomics/methods , Cell Line , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Protein Processing, Post-Translational , Cell Engineering/methods
10.
J Control Release ; 372: 587-608, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38942083

ABSTRACT

Tumor-associated macrophages (TAMs) constitute 50-80% of stromal cells in most solid tumors with high mortality and poor prognosis. Tumor-infiltrating dendritic cells (TIDCs) and TAMs are key components mediating immune responses within the tumor microenvironment (TME). Considering their refractory properties, simultaneous remodeling of TAMs and TIDCs is a potential strategy of boosting tumor immunity and restoring immunosurveillance. In this study, mannose-decorated poly(lactic-co-glycolic acid) nanoparticles loading with R848 (Man-pD-PLGA-NP@R848) were prepared to dually target TAMs and TIDCs for efficient tumor immunotherapy. The three-dimensional (3D) cell culture model can simulate tumor growth as influenced by the TME and its 3D structural arrangement. Consequently, cancer spheroids enriched with tumor-associated macrophages (TAMs) were fabricated to assess the therapeutic effectiveness of Man-pD-PLGA-NP@R848. In the TME, Man-pD-PLGA-NP@R848 targeted both TAMs and TIDCs in a mannose receptor-mediated manner. Subsequently, Man-pD-PLGA-NP@R848 released R848 to activate Toll-like receptors 7 and 8, following dual-reprograming of TIDCs and TAMs. Man-pD-PLGA-NP@R848 could uniquely reprogram TAMs into antitumoral phenotypes, decrease angiogenesis, reprogram the immunosuppressive TME from "cold tumor" into "hot tumor", with high CD4+ and CD8+ T cell infiltration, and consequently hinder tumor development in B16F10 tumor-bearing mice. Therefore, dual-reprograming of TIDCs and TAMs with the Man-pD-PLGA-NP@R848 is a promising cancer immunotherapy strategy.


Subject(s)
Imidazoles , Immunotherapy , Mannose , Mice, Inbred C57BL , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Tumor-Associated Macrophages , Animals , Imidazoles/administration & dosage , Imidazoles/chemistry , Toll-Like Receptor 8/agonists , Immunotherapy/methods , Toll-Like Receptor 7/agonists , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Mannose/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Tumor Microenvironment/drug effects , Dendritic Cells/immunology , Dendritic Cells/drug effects , Cell Line, Tumor , Mice , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Female , Humans , Membrane Glycoproteins
11.
Int J Biol Macromol ; 274(Pt 2): 133516, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944078

ABSTRACT

The recent challenge in enhancing the targeted delivery of anticancer drugs to cancer cells is improving the bioavailability and therapeutic efficacy of drug delivery systems while minimizing their systemic side effects. In this study, the MIL-88(Fe) metal-organic framework was synthesized using the in situ method in the presence of hydroxyapatite nanoparticles (HAP) toward the HAP/MIL-88(Fe) (HM) nanocomposite preparation. It was then functionalized with mannose (M) as an anticancer receptor through the Steglich esterification method. Various analyses confirmed the successful synthesis of MHM. For drug release investigation, 5-Fu was loaded into the MHM, which was then coated with a hyaluronic acid (HA) hydrogel film. Characterization analyses verified the structure of the resulting HA/5-Fu-MHM hydrogel film. In vitro drug release experiments showed that the release of 5-Fu drug from HA/5-Fu-MHM could be controlled with pH, reducing its release rate in the acidic environment of the stomach while increasing it in the intestinal environment. Cytotoxicity results of the HA/5-Fu-MHM hydrogel film against HT29 cancer cells showed enhanced cytotoxicity due to the mannose and hyaluronic acid in its structure, which triggers a dual-targeted drug delivery system. The obtained results indicate that the prepared hydrogel films can be a promising bio-platform for colon cancer treatment.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Drug Liberation , Durapatite , Fluorouracil , Hyaluronic Acid , Hydrogels , Mannose , Metal-Organic Frameworks , Hyaluronic Acid/chemistry , Humans , Durapatite/chemistry , Metal-Organic Frameworks/chemistry , Mannose/chemistry , Fluorouracil/pharmacology , Fluorouracil/chemistry , Fluorouracil/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Hydrogels/chemistry , Drug Carriers/chemistry , HT29 Cells , Administration, Oral
12.
Nat Commun ; 15(1): 5123, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879612

ABSTRACT

Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-ß-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.


Subject(s)
Bacterial Proteins , Bacteroides thetaiotaomicron , Gastrointestinal Microbiome , Polysaccharides , Polysaccharides/metabolism , Humans , Bacteroides thetaiotaomicron/metabolism , Bacteroides thetaiotaomicron/enzymology , Bacteroides thetaiotaomicron/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Substrate Specificity , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Mannose/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/metabolism , Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/genetics , Multigene Family
13.
Int J Pharm ; 660: 124379, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38925235

ABSTRACT

Nanogels are aqueous dispersions of hydrogel particles formed by physically or chemically cross-linked polymer networks of nanoscale size. Herein, we devised a straightforward technique to fabricate a novel class of physically cross-linked nanogels via a self-assembly process in water involving α-cyclodextrin and a mannose molecule that was hydrophobically modified using an alkyl chain. The alkyl chain-modified mannose was synthesized in five steps, starting with D-mannose. Subsequently, nanogels were formed by subjecting α-cyclodextrin and the hydrophobically modified mannose to magnetic stirring in water. By adjusting the mole ratio between the hydrophobically modified mannose and α-cyclodextrin, nanogels with an average 100-150 nm diameter were obtained. Physicochemical and structural analyses by 1H NMR and X-ray diffraction unveiled a supramolecular and hierarchical mechanism underlying the creation of these nanogels. The proposed mechanism of nanogel formation involves two distinct steps: initial interaction of hydrophobically modified mannose with α-cyclodextrin resulting in the formation of inclusion complexes, followed by supramolecular interactions among these complexes, ultimately leading to nanogel formation after 72 h of stirring. We demonstrated the nanogels' ability to encapsulate a short peptide ([p-tBuF2, R5]SHf) as a water-soluble drug model. This discovery holds promise for potentially utilizing these nanogels in drug delivery applications.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Mannose , alpha-Cyclodextrins , Mannose/chemistry , alpha-Cyclodextrins/chemistry , Nanogels/chemistry , Peptides/chemistry , Polyethylene Glycols/chemistry , Particle Size , Solubility
14.
Carbohydr Polym ; 339: 122268, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823931

ABSTRACT

The influence of locust bean gum (LBG) galactomannans (GMs) molecular weight (Mw) to assemble microparticulate systems was evaluated, and carriers for deep lung delivery were developed. A commercial batch of LBG with a mannose/galactose (M/G) ratio of 2.4 (batch 1) was used to study the influence of different microwave partial acid hydrolysis conditions on carbohydrate composition, glycosidic linkages, and aqueous solutions viscosity. The microwave treatment did not affect the composition, presenting 4-Man (36-42 %), 4,6-Man (27-35 %), and T-Gal (24-25 %) as the main glycosidic linkages. Depolymerization led to a viscosity reduction (≤0.005 Pa·s) with no major impact on polysaccharide debranching. The structural composition of the LBG galactomannans were further elucidated with sequence-specific proteins using carbohydrate microarray technologies. A second batch of LBG (M/G 3.3) was used to study the impact of GMs with different Mw on microparticle assembling, characteristics, and insulin release kinetics. The low-Mw GMs microparticles led to a faster release (20 min) than the higher-Mw (40 min) ones, impacting the release kinetics. All microparticles exhibited a safety profile to cells of the respiratory tract. However, only the higher-Mw GMs allowed the assembly of microparticles with sizes suitable for this type of administration.


Subject(s)
Galactose , Mannans , Molecular Weight , Plant Gums , Mannans/chemistry , Galactose/chemistry , Galactose/analogs & derivatives , Plant Gums/chemistry , Humans , Lung/metabolism , Drug Carriers/chemistry , Particle Size , Viscosity , Insulin/chemistry , Insulin/administration & dosage , Drug Liberation , Galactans/chemistry , Mannose/chemistry , Animals
15.
Glycobiology ; 34(8)2024 06 22.
Article in English | MEDLINE | ID: mdl-38869882

ABSTRACT

Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.


Subject(s)
Mannose , Polysaccharides , Humans , Female , Polysaccharides/metabolism , Polysaccharides/chemistry , Mannose/metabolism , Mannose/chemistry , Middle Aged , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Glycomics , Breast/metabolism , Breast/chemistry , Breast/pathology , Fucose/metabolism , Fucose/chemistry , Adult , Tumor Microenvironment
16.
Clin Oral Investig ; 28(7): 360, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847917

ABSTRACT

OBJECTIVES: Lung cancer (LC) is the malignant tumor with the highest mortality rate worldwide, and precise early diagnosis can improve patient prognosis. The purpose of this study was to investigate whether alterations in the glycopatterns recognized by the Hippeastrum hybrid lectin (HHL) in salivary proteins are associated with the development of LC. MATERIALS AND METHODS: First, we collected saliva samples from LC (15 lung adenocarcinoma (ADC); 15 squamous cell carcinoma (SCC); 15 small cell lung cancer (SCLC)) and 15 benign pulmonary disease (BPD) for high-throughput detection of abundance levels of HHL-recognized glycopatterns using protein microarrays, and then validated the pooled samples from each group with lectin blotting analysis. Finally, the N-glycan profiles of salivary glycoproteins isolated from the pooled samples using HHL-magnetic particle conjugates were characterized separately using MALDI-TOF/TOF-MS. RESULTS: The results showed that the abundance level of glycopatterns recognized by HHL in salivary proteins was elevated in LC compared to BPD. The proportion of mannosylated N-glycans was notably higher in ADC (31.7%), SCC (39.0%), and SCLC (46.6%) compared to BPD (23.3%). CONCLUSIONS: The altered salivary glycopatterns such as oligomannose, Manα1-3Man, or Manα1-6Man N-glycans recognized by HHL might serve as potential biomarkers for the diagnosis of LC patients. CLINICAL RELEVANCE: This study provides crucial information for studying changes in salivary to differentiate between BPD and LC and facilitate the discovery of biomarkers for LC diagnosis based on precise alterations of mannosylated N-glycans in saliva.


Subject(s)
Lung Neoplasms , Saliva , Humans , Male , Saliva/chemistry , Female , Middle Aged , Aged , Protein Array Analysis , Polysaccharides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Glycoproteins , Biomarkers, Tumor , Salivary Proteins and Peptides/metabolism , Mannose , Plant Lectins/chemistry , Carcinoma, Squamous Cell
17.
Mil Med Res ; 11(1): 28, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711073

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) is a multifaceted condition characterized by heterogeneity, wherein the balance between catabolism and anabolism in the extracellular matrix of nucleus pulposus (NP) cells plays a central role. Presently, the available treatments primarily focus on relieving symptoms associated with IVDD without offering an effective cure targeting its underlying pathophysiological processes. D-mannose (referred to as mannose) has demonstrated anti-catabolic properties in various diseases. Nevertheless, its therapeutic potential in IVDD has yet to be explored. METHODS: The study began with optimizing the mannose concentration for restoring NP cells. Transcriptomic analyses were employed to identify the mediators influenced by mannose, with the thioredoxin-interacting protein (Txnip) gene showing the most significant differences. Subsequently, small interfering RNA (siRNA) technology was used to demonstrate that Txnip is the key gene through which mannose exerts its effects. Techniques such as colocalization analysis, molecular docking, and overexpression assays further confirmed the direct regulatory relationship between mannose and TXNIP. To elucidate the mechanism of action of mannose, metabolomics techniques were employed to pinpoint glutamine as a core metabolite affected by mannose. Next, various methods, including integrated omics data and the Gene Expression Omnibus (GEO) database, were used to validate the one-way pathway through which TXNIP regulates glutamine. Finally, the therapeutic effect of mannose on IVDD was validated, elucidating the mechanistic role of TXNIP in glutamine metabolism in both intradiscal and orally treated rats. RESULTS: In both in vivo and in vitro experiments, it was discovered that mannose has potent efficacy in alleviating IVDD by inhibiting catabolism. From a mechanistic standpoint, it was shown that mannose exerts its anti-catabolic effects by directly targeting the transcription factor max-like protein X-interacting protein (MondoA), resulting in the upregulation of TXNIP. This upregulation, in turn, inhibits glutamine metabolism, ultimately accomplishing its anti-catabolic effects by suppressing the mitogen-activated protein kinase (MAPK) pathway. More importantly, in vivo experiments have further demonstrated that compared with intradiscal injections, oral administration of mannose at safe concentrations can achieve effective therapeutic outcomes. CONCLUSIONS: In summary, through integrated multiomics analysis, including both in vivo and in vitro experiments, this study demonstrated that mannose primarily exerts its anti-catabolic effects on IVDD through the TXNIP-glutamine axis. These findings provide strong evidence supporting the potential of the use of mannose in clinical applications for alleviating IVDD. Compared to existing clinically invasive or pain-relieving therapies for IVDD, the oral administration of mannose has characteristics that are more advantageous for clinical IVDD treatment.


Subject(s)
Cell Cycle Proteins , Glutamine , Intervertebral Disc Degeneration , Mannose , Intervertebral Disc Degeneration/drug therapy , Mannose/pharmacology , Mannose/therapeutic use , Animals , Rats , Glutamine/pharmacology , Glutamine/metabolism , Male , Rats, Sprague-Dawley , Humans , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism
18.
Carbohydr Res ; 540: 109138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703662

ABSTRACT

High-mannose-type glycan structure of N-glycoproteins plays important roles in the proper folding of proteins in sorting glycoprotein secretion and degradation of misfolded proteins in the endoplasmic reticulum (ER). The Glc1Man9GlcNAc2 (G1M9)-type N-glycan is one of the most important signaling molecules in the ER. However, current chemical synthesis strategies are laborious, warranting more practical approaches for G1M9-glycopeptide development. Wang et al. reported the procedure to give G1M9-Asn-Fmoc through chemical modifications and purifications from 40 chicken eggs, but only 3.3 mg of G1M9-glycopeptide was obtained. Therefore, better methods are needed to obtain more than 10 mg of G1M9-glycopeptide. In this study, we report the preparation of G1M9-glycopeptide (13.2 mg) linking Asn-Gly-Thr triad as consensus sequence from 40 chicken eggs. In this procedure, λ-carrageenan treatment followed by papain treatment was used to separate the Fc region of IgY antibody that harbors high-mannose glycans. Moreover, cotton hydrophilic interaction liquid chromatography was adapted for easy purification. The resulting G1M9-Asn(Fmoc)-Gly-Thr was identified by nuclear magnetic resonance and mass spectroscopy. G1M9-Asn(Fmoc)-Gly, G1M9-Asn(Fmoc), and G1M9-OH were also detected by mass spectroscopy. Here, our developed G1M9-tripeptide might be useful for the elucidation of glycoprotein functions as well as the specific roles of the consensus sequence.


Subject(s)
Chickens , Egg Yolk , Oligosaccharides , Animals , Egg Yolk/chemistry , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Asparagine/chemistry , Mannose/chemistry , Threonine/chemistry , Consensus Sequence , Glycine/chemistry , Glycopeptides/chemistry
19.
Mol Genet Metab ; 142(2): 108488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735264

ABSTRACT

INTRODUCTION: Fucokinase deficiency-related congenital disorder of glycosylation (FCSK-CDG) is a rare autosomal recessive inborn error of metabolism characterized by a decreased flux through the salvage pathway of GDP-fucose biosynthesis due to a block in the recycling of L-fucose that exits the lysosome. FCSK-CDG has been described in 5 individuals to date in the medical literature, with a phenotype comprising global developmental delays/intellectual disability, hypotonia, abnormal myelination, posterior ocular disease, growth and feeding failure, immune deficiency, and chronic diarrhea, without clear therapeutic recommendations. PATIENT AND METHODS: In a so far unreported FCSK-CDG patient, we studied proteomics and glycoproteomics in vitro in patient-derived fibroblasts and also performed in vivo glycomics, before and after treatment with either D-Mannose or L-Fucose. RESULTS: We observed a marked increase in fucosylation after D-mannose supplementation in fibroblasts compared to treatment with L-Fucose. The patient was then treated with D-mannose at 850 mg/kg/d, with resolution of the chronic diarrhea, resolution of oral aversion, improved weight gain, and observed developmental gains. Serum N-glycan profiles showed an improvement in the abundance of fucosylated glycans after treatment. No treatment-attributed adverse effects were observed. CONCLUSION: D-mannose is a promising new treatment for FCSK-CDG.


Subject(s)
Congenital Disorders of Glycosylation , Fibroblasts , Mannose , Humans , Congenital Disorders of Glycosylation/drug therapy , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Congenital Disorders of Glycosylation/metabolism , Mannose/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Male , Fucose/metabolism , Glycosylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Female , Proteomics
20.
Zhonghua Yi Xue Za Zhi ; 104(17): 1521-1528, 2024 May 07.
Article in Chinese | MEDLINE | ID: mdl-38706060

ABSTRACT

Objective: To investigate the therapeutic effect of sodium oligomannate on experimental autoimmune encephalomyelitis (EAE) mice and its effect on intestinal flora and microglia polarization. Methods: Fifty female C57BL/6 mice were randomly divided by the random number table method into the control group, EAE model group and low-dose, medium-dose and high-dose group of sodium oligomannate with 10 mice each. The EAE model group and each dose group of sodium oligomannate were induced by subcutaneous multi-point injection of MOG35-55 peptide for the EAE model. Mice in the low-dose, medium-dose and high-dose group of sodium oligomannate were gavaged sodium oligomannate 40, 80, and 160 mg/kg twice a day, respectively, starting from the day after modeling. The intervention continued until the mice were euthanized. Observe the incidence of disease, infiltration of inflammatory cells in spinal cord tissue, and demyelination in each group of mice.. The mice feces were collected and tested for intestinal flora by 16S rRNA sequencing. Immunofluorescence staining was used to observe the expression of Iba-1 protein, an activation indicator of microglia, in spinal cord tissue. The protein levels of M1 type markers iNOS, CD16, and M2 type markers Arg1 and CD206 were tsested in the spinal cord by Western blotting and immunofluorescence staining. Results: None of the mice in the control group developed any disease, while the mice in other groups showed varying degrees of disease, including tail sag, unstable walking, and hind limb weakness. Compared with the EAE model group, the incubation period was prolonged, the peak was delayed and the peak neurological dysfunction score was reduced (3.6±0.6 vs 3.0±0.6, 2.8±0.5, 1.8±0.6, P<0.05) in all sodium oligomannate groups, with milder symptoms at higher doses. The differences in pairwise comparisons between the groups were all statistically significant (all P<0.05). In the control group, no inflammatory cell infiltration or demyelinating changes were observed in spinal cord tissue. In the EAE model group, inflammatory cell infiltration and demyelination changes were evident in the spinal cord tissues at the onset peak. Compared with the EAE model group, inflammatory cell infiltration and demyelination were ameliorated in all sodium oligomannate groups. Compared with the control group, the relative abundance of Bacteroidota decreased and that of Firmicutes increased in the EAE model group. Compared with the EAE model group, the relative abundance of Bacteroidota increased and that of Firmicutes decreased, the ratio of Bacteroidetes to Firmicutes increased (0.20±0.05 vs 0.37±0.02,0.61±0.03,0.91±0.08,P<0.01) in the respective dose groups. The difference in pairwise comparison between groups was statistically significant (P<0.01), with greater changes at higher doses. Compared with the control group, the levels of Iba-1、CD16 and iNOS increased, while the levels of Arg-1 and CD206 decreased in the EAE model group. Compared with the EAE model group, the levels of Iba-1、CD16 and iNOS decreased, while the levels of Arg-1 and CD206 increased in all sodium oligomannate groups(P<0.01), with greater changes at higher doses. The difference between groups was statistically significant (P<0.01). Conclusions: Sodium oligomannate has a therapeutic effect on EAE and is dose-dependent. Its mechanism of action may be related toimproving intestinal microecology and the modulation of microglial polarization.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Gastrointestinal Microbiome , Mice, Inbred C57BL , Microglia , Spinal Cord , Animals , Mice , Female , Disease Models, Animal , Mannose
SELECTION OF CITATIONS
SEARCH DETAIL