Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29.312
1.
Nat Commun ; 15(1): 4711, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830841

The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3. Similarly, we observe no immune response in the fetal liver, which instead displays metabolic changes, including increases in lipids containing docosahexaenoic acid, crucial for fetal brain development. The maternal liver and plasma display similar metabolic alterations, potentially increasing bioavailability of docosahexaenoic acid for the mother and fetus. Thus, our integrated temporal analysis shows that systemic inflammation in the mother leads to a metabolic perturbation in the fetus.


Fetus , Lipopolysaccharides , Liver , Lung , Placenta , Female , Pregnancy , Placenta/metabolism , Placenta/immunology , Animals , Fetus/immunology , Fetus/metabolism , Lung/immunology , Lung/metabolism , Liver/metabolism , Liver/immunology , Docosahexaenoic Acids/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Mice , Inflammation/immunology , Inflammation/metabolism , Mice, Inbred C57BL , Adaptation, Physiological/immunology , Fetal Development/immunology , Maternal-Fetal Exchange/immunology , Interleukin-6/metabolism , Interleukin-6/immunology
2.
Am J Reprod Immunol ; 91(5): e13861, 2024 May.
Article En | MEDLINE | ID: mdl-38716765

BACKGROUND: Maternal-fetal immunology is intricate, and the effects of mRNA-S maternal vaccination on immune regulation at the maternal-fetal interface require further investigation. Our study endeavors to elucidate these immunological changes, enhancing our comprehension of maternal and fetal health outcomes. By analyzing immune profiles and cytokine responses, we aim to provide valuable insights into the impact of mRNA-S vaccination on the delicate balance of immune regulation during pregnancy, addressing critical questions in the field of reproductive pharmacology. OBJECTIVES: This investigation sought to examine the prospective influence of mRNA-S-based vaccines and extracellular vesicles (EVs) containing the Spike (S) protein at the maternal-fetal interface. Our primary emphasis was on evaluating their effects on maternal decidua cells and fetal chorion trophoblast cells (hFM-CTCs). METHODS: We validated the generation of EVs containing the S protein from small human airway epithelial cell lines (HSAECs) following mRNA-S vaccine exposure. We assessed the expression of angiotensin-converting enzyme 2 (ACE2) gene and protein in fetal membranes and the placenta, with specific attention to decidual cells and fetal membrane chorion cells. To assess cellular functionality, these cells were exposed to both recombinant S protein and EVs loaded with S proteins (eSPs). RESULTS: Our findings revealed that cells and EVs subjected to mRNA-S-based vaccination exhibited altered protein expression levels of S proteins. At the feto-maternal interface, both placental and fetal membrane tissues demonstrated similar ACE-2 expression levels. Among individual cellular layers, syncytiotrophoblast cells in the placenta and chorion cells in the fetal membrane exhibited elevated ACE-2 expression. Notably, EVs derived from HSAECs activated the MAPK pathway in decidual cells. Additionally, decidual cells displayed a substantial increase in gene expression of chemokines like CXCL-10 and CXCL-11, as well as proinflammatory cytokines such as IL-6 in response to eSPs. However, the levels of Ccl-2 and IL-1ß remained unchanged in decidual cells under the same conditions. Conversely, hFM-CTCs demonstrated significant alterations in the proinflammatory cytokines and chemokines with respect to eSPs. CONCLUSION: In conclusion, our study indicates that mRNA-S-based maternal vaccination during pregnancy may influence the maternal-fetal interface's COVID-19 interaction and immune regulation. Further investigation is warranted to assess safety and implications.


Extracellular Vesicles , Trophoblasts , Humans , Female , Pregnancy , Trophoblasts/immunology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Decidua/immunology , Spike Glycoprotein, Coronavirus/immunology , Cytokines/metabolism , Vaccination , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Maternal-Fetal Exchange , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Cell Line , COVID-19 Vaccines/immunology , RNA, Messenger/metabolism , RNA, Messenger/genetics
3.
BMC Infect Dis ; 24(1): 509, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773493

PURPOSE: Pregnant women are at risk of severe SARS-CoV-2 infection, potentially leading to obstetric and neonatal complications. Placental transfer of antibodies directed to SARS-CoV-2 may be protective against neonatal COVID-19, but this remains to be studied. We aimed to determine the seroprevalence of SARS-CoV-2 antibodies in a population of unvaccinated pregnant women and to determine the placental transfer of these antibodies. METHODOLOGY: A total of 1197 unvaccinated women with mostly unknown pre-study SARS-CoV-2 infection status, were tested at delivery for SARS-CoV-2 spike protein IgG antibodies during the first year of the pandemic. Umbilical cord samples were collected and assessed for seropositivity if the mother was seropositive. Maternal characteristics, pregnancy and neonatal outcomes and data on SARS-CoV-2 infection were extracted from medical records. RESULTS: Specific IgG were detected in 258 women (21.6%). A significant placental transfer to the newborn was observed in 81.3% of cases. The earlier in the 2nd and 3rd trimesters that the mother had contracted the disease and the more symptomatic she was, the greater the likelihood of transplacental transfer of IgG to her newborn. CONCLUSION: Approximately one in five women had detectable anti-SARS-CoV-2 spike protein IgG antibodies at delivery during the first year of the pandemic, and these antibodies were significantly transferred to their fetuses. This research provides further evidence to better understand the dynamics of the placental transfer of SARS-CoV-2 IgG antibodies from mothers to their newborns, which is necessary to improve vaccination strategies.


Antibodies, Viral , COVID-19 , Immunoglobulin G , Pregnancy Complications, Infectious , SARS-CoV-2 , Humans , Female , Pregnancy , COVID-19/immunology , COVID-19/epidemiology , Seroepidemiologic Studies , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Immunoglobulin G/blood , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/immunology , Infant, Newborn , Spike Glycoprotein, Coronavirus/immunology , Placenta/immunology , Young Adult , Infectious Disease Transmission, Vertical , Maternal-Fetal Exchange/immunology
4.
Ecotoxicol Environ Saf ; 278: 116393, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38714083

Micro(nano)plastic, as a new type of environmental pollutant, have become a potential threat to the life and health of various stages of biology. However, it is not yet clear whether they will affect brain development in the fetal stage. Therefore, this study aims to explore the potential effects of nanoplastics on the development of fetal rat brains. To assess the allocation of NPs (25 nm and 50 nm) in various regions of the fetal brain, pregnant rats were exposed to concentrations (50, 10, 2.5, and 0.5 mg/kg) of PS-NPs. Our results provided evidence of the transplacental transfer of PS-NPs to the fetal brain, with a prominent presence observed in several cerebral regions, notably the cerebellum, hippocampus, striatum, and prefrontal cortex. This distribution bias might be linked to the developmental sequence of each brain region. Additionally, we explored the influence of prenatal exposure on the myelin development of the cerebellum, given its the highest PS-NP accumulation in offspring. Compared with control rats, PS-NPs exposure caused a significant reduction in myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) expression, a decrease in myelin thickness, an increase in cell apoptosis, and a decline in the oligodendrocyte population. These effects gave rise to motor deficits. In conclusion, our results identified the specific distribution of NPs in the fetal brain following prenatal exposure and revealed that prenatal exposure to PS-NPs can suppress myelin formation in the cerebellum of the fetus.


Brain , Myelin Sheath , Polystyrenes , Animals , Female , Pregnancy , Brain/drug effects , Brain/embryology , Brain/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Rats , Polystyrenes/toxicity , Environmental Pollutants/toxicity , Myelin Basic Protein/metabolism , Maternal Exposure , Nanoparticles/toxicity , Apoptosis/drug effects , Microplastics/toxicity , Rats, Sprague-Dawley , Maternal-Fetal Exchange , Fetus/drug effects
5.
Int J Mol Sci ; 25(10)2024 May 10.
Article En | MEDLINE | ID: mdl-38791261

This study, conducted by searching keywords such as "maternal lupus", "neonatal lupus", and "congenital heart block" in databases including PubMed and Scopus, provides a detailed narrative review on fetal and neonatal lupus. Autoantibodies like anti-Ro/SSA and anti-La/SSB may cross the placenta and cause complications in neonates, such as congenital heart block (CHB). Management options involve hydroxychloroquine, which is able to counteract some of the adverse events, although the drug needs to be used carefully because of its impact on the QTc interval. Advanced pacing strategies for neonates with CHB, especially in severe forms like hydrops, are also assessed. This review emphasizes the need for interdisciplinary care by rheumatologists, obstetricians, and pediatricians in order to achieve the best maternal and neonatal health in lupus pregnancies. This multidisciplinary approach seeks to improve the outcomes and management of the disease, decreasing the burden on mothers and their infants.


Lupus Erythematosus, Systemic , Placenta , Humans , Pregnancy , Female , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/congenital , Placenta/metabolism , Placenta/immunology , Infant, Newborn , Heart Block/congenital , Heart Block/therapy , Heart Block/immunology , Pregnancy Complications/immunology , Pregnancy Complications/therapy , Autoantibodies/immunology , Maternal-Fetal Exchange , Hydroxychloroquine/therapeutic use
6.
Reprod Toxicol ; 126: 108607, 2024 Jun.
Article En | MEDLINE | ID: mdl-38734317

Ethion is a class II moderately toxic organothiophosphate pesticide. The main objective of this study was to evaluate the maternal and foetal toxicity of ethion in rats. Pregnant rats were divided into 5 groups. Group I served as control. Group II, III, IV, and V were orally administered with 0.86, 1.71, 3.43, and 6.9 mg/kg of ethion respectively, from gestational day (GD) 6-19. Dams were sacrificed on GD 20. Maternal toxicity was assessed by body weight gain, foetal resorptions, oxidative stress, liver and kidney function tests, and histopathology. Foetal toxicity was assessed by physical status, gross, teratological and histopathological examination. Ethion caused dose-dependent reduction in maternal body weight gain, increased resorptions, and reduced gravid uterine weights. Elevated MDA levels and altered levels of GSH, SOD and catalase were recorded in pregnant dam serum and tissues. SGOT, SGPT, total bilirubin, urea, uric acid, and creatinine were elevated in ethion groups indicating liver and kidney toxicity. Histology of uterus revealed myometrial degeneration and mucosal gland atrophy in uterus of pregnant dams and degenerative changes in placenta. It showed histological alterations in liver, kidney, and lungs. There was reduction in the foetal body weights and placental weights, and degenerative changes in the foetal liver and kidney. Gross evaluation of foetuses showed subcutaneous hematoma. Skeletal evaluation showed partial ossification of skull bones, costal separation, and agenesis of tail vertebrae, sternebrae, metacarpals and metatarsals. The findings reveal that prenatal exposure to ethion caused maternal and foetal toxicity in rats.


Kidney , Liver , Animals , Female , Pregnancy , Rats , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Uterus/drug effects , Uterus/pathology , Oxidative Stress/drug effects , Ethylenethiourea/toxicity , Maternal Exposure , Fetus/drug effects , Fetus/pathology , Organ Size/drug effects , Rats, Wistar , Insecticides/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Placenta/drug effects , Placenta/pathology , Fetal Resorption/chemically induced , Maternal-Fetal Exchange , Fetal Development/drug effects
7.
Sci Rep ; 14(1): 10772, 2024 05 10.
Article En | MEDLINE | ID: mdl-38730052

We aimed to determine SARS-CoV-2 antibody seropositivity among pregnant women and the transplacental transfer efficiency of SARS-CoV-2-specific antibodies relative to malaria antibodies among SARS-CoV-2 seropositive mother-cord pairs. This cross-sectional study was conducted in Accra, Ghana, from March to May 2022. Antigen- specific IgG antibodies against SARS-CoV-2 (nucleoprotein and spike-receptor binding domain) and malarial antigens (circumsporozoite protein and merozoite surface protein 3) in maternal and cord plasma were measured by ELISA. Plasma from both vaccinated and unvaccinated pregnant women were tested for neutralizing antibodies using commercial kit. Of the unvaccinated pregnant women tested, 58.12% at antenatal clinics and 55.56% at the delivery wards were seropositive for both SARS-CoV-2 nucleoprotein and RBD antibodies. Anti-SARS-CoV-2 antibodies in cord samples correlated with maternal antibody levels (N antigen rs = 0.7155, p < 0.001; RBD rs = 0.8693, p < 0.001). Transplacental transfer of SARS-CoV-2 nucleoprotein antibodies was comparable to circumsporozoite protein antibodies (p = 0.9999) but both were higher than transfer rates of merozoite surface protein 3 antibodies (p < 0.001). SARS-CoV-2 IgG seropositivity among pregnant women in Accra is high with a boost of SARS-CoV-2 RBD-specific IgG in vaccinated women. Transplacental transfer of anti-SARS-CoV-2 and malarial antibodies was efficient, supporting vaccination of mothers as a strategy to protect infants against SARS-CoV-2.


Antibodies, Viral , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Humans , Female , Pregnancy , Ghana , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , Antibodies, Viral/immunology , Antibodies, Viral/blood , Adult , Cross-Sectional Studies , Immunoglobulin G/blood , Immunoglobulin G/immunology , Maternal-Fetal Exchange/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Infant , Infant, Newborn , Spike Glycoprotein, Coronavirus/immunology , Immunity, Maternally-Acquired , Young Adult , Fetal Blood/immunology , Antibodies, Protozoan/immunology , Antibodies, Protozoan/blood
8.
Article En | MEDLINE | ID: mdl-38782369

Pregnancy is a remarkable event where the semi-allogeneic fetus develops in the mother's uterus, despite genetic and immunological differences. The antigen handling and processing at the maternal-fetal interface during pregnancy appear to be crucial for the adaptation of the maternal immune system and for tolerance to the developing fetus and placenta. Maternal antigen-presenting cells (APCs), such as macrophages (Mφs) and dendritic cells (DCs), are present at the maternal-fetal interface throughout pregnancy and are believed to play a crucial role in this process. Despite numerous studies focusing on the significance of Mφs, there is limited knowledge regarding the contribution of DCs in fetomaternal tolerance during pregnancy, making it a relatively new and growing field of research. This review focuses on how the behavior of DCs at the maternal-fetal interface adapts to pregnancy's unique demands. Moreover, it discusses how DCs interact with other cells in the decidual leukocyte network to regulate uterine and placental homeostasis and the local maternal immune responses to the fetus. The review particularly examines the different cell lineages of DCs with specific surface markers, which have not been critically reviewed in previous publications. Additionally, it emphasizes the impact that even minor disruptions in DC functions can have on pregnancy-related complications and proposes further research into the potential therapeutic benefits of targeting DCs to manage these complications.


Dendritic Cells , Immune Tolerance , Maternal-Fetal Exchange , Placenta , Humans , Pregnancy , Dendritic Cells/immunology , Female , Maternal-Fetal Exchange/immunology , Placenta/immunology , Fetus/immunology , Animals , Macrophages/immunology , Pregnancy Complications/immunology
9.
Environ Sci Technol ; 58(19): 8117-8134, 2024 May 14.
Article En | MEDLINE | ID: mdl-38701366

Due to its widespread applications in various fields, antibiotics are continuously released into the environment and ultimately enter the human body through diverse routes. Meanwhile, the unreasonable use of antibiotics can also lead to a series of adverse outcomes. Pregnant women and developing fetuses are more susceptible to the influence of external chemicals than adults. The evaluation of antibiotic exposure levels through questionnaire surveys or prescriptions in medical records and biomonitoring-based data shows that antibiotics are frequently prescribed and used by pregnant women around the world. Antibiotics may be transmitted from mothers to their offspring through different pathways, which then adversely affect the health of offspring. However, there has been no comprehensive review on antibiotic exposure and mother-to-child transmission in pregnant women so far. Herein, we summarized the exposure levels of antibiotics in pregnant women and fetuses, the exposure routes of antibiotics to pregnant women, and related influencing factors. In addition, we scrutinized the potential mechanisms and factors influencing the transfer of antibiotics from mother to fetus through placental transmission, and explored the adverse effects of maternal antibiotic exposure on fetal growth and development, neonatal gut microbiota, and subsequent childhood health. Given the widespread use of antibiotics and the health threats posed by their exposure, it is necessary to comprehensively track antibiotics in pregnant women and fetuses in the future, and more in-depth biological studies are needed to reveal and verify the mechanisms of mother-to-child transmission, which is crucial for accurately quantifying and evaluating fetal health status.


Anti-Bacterial Agents , Maternal Exposure , Humans , Female , Pregnancy , Maternal-Fetal Exchange , Fetus/drug effects
10.
Am J Reprod Immunol ; 91(5): e13859, 2024 May.
Article En | MEDLINE | ID: mdl-38722063

Recurrent Spontaneous Abortion (RSA) is a common pregnancy complication, that has multifactorial causes, and currently, 40%-50% of cases remain unexplained, referred to as Unexplained RSA (URSA). Due to the elusive etiology and mechanisms, clinical management is exceedingly challenging. In recent years, with the progress in reproductive immunology, a growing body of evidence suggests a relationship between URSA and maternal-fetal immunology, offering hope for the development of tailored treatment strategies. This article provides an immunological perspective on the pathogenesis, diagnosis, and treatment of RSA. On one hand, it comprehensively reviews the immunological mechanisms underlying RSA, including abnormalities in maternal-fetal interface immune tolerance, maternal-fetal interface immune cell function, gut microbiota-mediated immune dysregulation, and vaginal microbiota-mediated immune anomalies. On the other hand, it presents the diagnosis and existing treatment modalities for RSA. This article offers a clear knowledge framework for understanding RSA from an immunological standpoint. In conclusion, while the "layers of the veil" regarding immunological factors in RSA are gradually being unveiled, our current research may only scratch the surface. In terms of immunological etiology, effective diagnostic tools for RSA are currently lacking, and the efficacy and safety of immunotherapies, primarily based on lymphocyte immunotherapy and intravenous immunoglobulin, remain contentious.


Abortion, Habitual , Humans , Female , Pregnancy , Abortion, Habitual/immunology , Immune Tolerance , Maternal-Fetal Exchange/immunology , Gastrointestinal Microbiome/immunology , Immunotherapy/methods
11.
Pharm Res ; 41(5): 899-910, 2024 May.
Article En | MEDLINE | ID: mdl-38684563

BACKGROUND: Evaluating drug transplacental clearance is vital for forecasting fetal drug exposure. Ex vivo human placenta perfusion experiments are the most suitable approach for this assessment. Various in silico methods are also proposed. This study aims to compare these prediction methods for drug transplacental clearance, focusing on the large molecular weight drug vancomycin (1449.3 g/mol), using maternal-fetal physiologically based pharmacokinetic (m-f PBPK) modeling. METHODS: Ex vivo human placenta perfusion experiments, in silico approaches using intestinal permeability as a substitute (quantitative structure property relationship (QSPR) model and Caco-2 permeability in vitro-in vivo correlation model) and midazolam calibration model with Caco-2 scaling were assessed for determining the transplacental clearance (CLPD) of vancomycin. The m-f PBPK model was developed stepwise using Simcyp, incorporating the determined CLPD values as a crucial input parameter for transplacental kinetics. RESULTS: The developed PBPK model of vancomycin for non-pregnant adults demonstrated excellent predictive performance. By incorporating the CLPD parameterization derived from ex vivo human placenta perfusion experiments, the extrapolated m-f PBPK model consistently predicted maternal and fetal concentrations of vancomycin across diverse doses and distinct gestational ages. However, when the CLPD parameter was derived from alternative prediction methods, none of the extrapolated maternal-fetal PBPK models produced fetal predictions in line with the observed data. CONCLUSION: Our study showcased that combination of ex vivo human placenta perfusion experiments and m-f PBPK model has the capability to predict fetal exposure for the large molecular weight drug vancomycin, whereas other in silico approaches failed to achieve the same level of accuracy.


Fetus , Maternal-Fetal Exchange , Models, Biological , Placenta , Vancomycin , Humans , Vancomycin/pharmacokinetics , Pregnancy , Female , Placenta/metabolism , Caco-2 Cells , Fetus/metabolism , Computer Simulation , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Perfusion , Adult , Quantitative Structure-Activity Relationship
12.
Reprod Sci ; 31(6): 1763-1766, 2024 Jun.
Article En | MEDLINE | ID: mdl-38653860

In human pregnancy, metformin administered to the mother crosses the placenta resulting in metformin exposure to the fetus. However, the effects of metformin exposure on the fetus are poorly understood and difficult to study in humans. Pregnant sheep are a powerful large animal model for studying fetal physiology. The objective of this study was to determine if maternally administered metformin at human dose-equivalent concentrations crosses the ovine placenta and equilibrates in the fetal circulation. To test this, metformin was administered to the pregnant ewe via continuous intravenous infusion or supplementation in the drinking water. Both administration routes increased maternal metformin concentrations to human dose-equivalent concentrations of ~ 10 µM, yet metformin was negligible in the fetus even after 3-4 days of maternal administration. In cotyledon and caruncle tissue, expression levels of the major metformin uptake transporter organic cation transporter 1 (OCT1) were < 1% of expression levels in the fetal liver, a tissue with abundant expression. Expression of other putative uptake transporters OCT2 and OCT3, and efflux transporters multidrug and toxin extrusion (MATE)1 and MATE2were more abundant. These results demonstrate that the ovine placenta is impermeable to maternal metformin administration. This is likely due to anatomical differences and increased interhaemal distance between the maternal and umbilical circulations in the ovine versus human placenta limiting placental metformin transport.


Hypoglycemic Agents , Maternal-Fetal Exchange , Metformin , Placenta , Metformin/pharmacokinetics , Metformin/administration & dosage , Animals , Female , Pregnancy , Sheep , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Placenta/metabolism , Placenta/drug effects , Fetus/drug effects , Fetus/metabolism , Fetal Blood/metabolism , Fetal Blood/chemistry
13.
Int J Infect Dis ; 144: 107047, 2024 Jul.
Article En | MEDLINE | ID: mdl-38609035

AIM/OBJECTIVE: This study investigates placental antibody transfer following recombinant pertussis vaccination in pregnancy in a real-world setting. METHODS: This postmarketing observational study recruited pregnant women vaccinated with monovalent recombinant acellular pertussis (aP) vaccine (aPgen; n = 199) or combined to tetanus-diphtheria (TdaPgen; n = 200), or Td-vaccine only (n = 54). Pregnancy, delivery, and neonatal outcomes were assessed. Cord blood was collected postdelivery and pertussis toxin (PT)-IgG, filamentous hemagglutinin (FHA)-IgG, and PT-neutralizing antibodies (PT-Nab) were assessed. RESULTS: No adverse pregnancy, delivery, or neonatal outcomes attributed to aPgen, TdaPgen, or Td vaccination were reported. High anti-PT antibody levels were detected in cord samples from women vaccinated with aPgen (geometric mean concentration [GMC] PT-IgG 206.1 IU/ml, 95% confidence intervals [CI]: 164.3-258.6; geometric mean titer [GMT] PT-Nab 105.3 IU/ml, 95% CI: 81.7-135.8) or TdaPgen (GMC PT-IgG 153.1 IU/ml, 95% CI: 129.1-181.5; GMT PT-Nab 81.5 IU/ml, 95% CI: 66.4-100.0). In the Td-only group, anti-PT antibodies were low (GMC PT-IgG 6.5 IU/ml, 95% CI: 4.9-8.8; GMT PT-Nab 3.8 IU/ml, 95% CI: 2.8-5.1). The same was found for FHA-IgG. Recombinant pertussis vaccination at <27 or 27-36 weeks gestation induced similar cord pertussis antibody levels. CONCLUSION: This first real-world study confirms that recombinant pertussis vaccination in the second or third trimester of pregnancy results in high levels of passive immunity in infants. Thai Clinical Trial Registry: TCTR20200528006.


Antibodies, Bacterial , Immunity, Maternally-Acquired , Whooping Cough , Humans , Female , Pregnancy , Adult , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Whooping Cough/prevention & control , Whooping Cough/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Fetal Blood/immunology , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Pertussis Vaccine/immunology , Pertussis Vaccine/administration & dosage , Young Adult , Maternal-Fetal Exchange/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage , Infant, Newborn , Pertussis Toxin/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Bordetella pertussis/immunology , Vaccination
15.
Immunol Rev ; 323(1): 288-302, 2024 May.
Article En | MEDLINE | ID: mdl-38445769

Maternal environmental exposures, particularly during gestation and lactation, significantly influence the immunological development and long-term immunity of offspring. Mammalian immune systems develop through crucial inputs from the environment, beginning in utero and continuing after birth. These critical developmental windows are essential for proper immune system development and, once closed, may not be reopened. This review focuses on the mechanisms by which maternal exposures, particularly to pathogens, diet, and microbiota, impact offspring immunity. Mechanisms driving maternal-offspring immune crosstalk include transfer of maternal antibodies, changes in the maternal microbiome and microbiota-derived metabolites, and transfer of immune cells and cytokines via the placenta and breastfeeding. We further discuss the role of transient maternal infections, which are common during pregnancy, in providing tissue-specific immune education to offspring. We propose a "maternal-driven immune education" hypothesis, which suggests that offspring can use maternal encounters that occur during a critical developmental window to develop optimal immune fitness against infection and inflammation.


Maternal Exposure , Humans , Female , Pregnancy , Animals , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/immunology , Immunity, Maternally-Acquired , Microbiota/immunology , Immune System/immunology , Immune System/growth & development , Maternal-Fetal Exchange/immunology , Placenta/immunology
16.
Arch Gynecol Obstet ; 309(6): 2279-2288, 2024 Jun.
Article En | MEDLINE | ID: mdl-38494514

The prevalence of maternal obesity rapidly increases, which represents a major public health concern worldwide. Maternal obesity is characteristic by metabolic dysfunction and chronic inflammation. It is associated with health problems in both mother and offspring. Increasing evidence indicates that the placenta is an axis connecting maternal obesity with poor outcomes in the offspring. In this brief review, we have summarized the current data regarding deregulated placental function in maternal obesity. The data show that maternal obesity induces numerous placental defects, including lipid and glucose metabolism, stress response, inflammation, immune regulation and epigenetics. These placental defects affect each other and result in a stressful intrauterine environment, which transduces and mediates the adverse effects of maternal obesity to the fetus. Further investigations are required to explore the exact molecular alterations in the placenta in maternal obesity, which may pave the way to develop specific interventions for preventing epigenetic and metabolic programming in the fetus.


Obesity, Maternal , Placenta , Humans , Pregnancy , Female , Placenta/metabolism , Obesity, Maternal/metabolism , Epigenesis, Genetic , Maternal-Fetal Exchange , Inflammation/metabolism , Placenta Diseases/physiopathology , Placenta Diseases/metabolism , Pregnancy Complications/metabolism , Pregnancy Complications/physiopathology , Obesity/metabolism , Obesity/physiopathology
17.
J Reprod Immunol ; 163: 104244, 2024 Jun.
Article En | MEDLINE | ID: mdl-38555747

Implantation and maintenance of pregnancy involve intricate immunological processes that enable the developing fetus to coexist with the maternal immune system. Progesterone, a critical hormone during pregnancy, is known to promote immune tolerance and prevent preterm labor. However, the mechanism by which progesterone mediates these effects remains unclear. In this study, we investigated the role of the non-classical progesterone receptor membrane component 1 (PGRMC1) in progesterone signaling at the maternal-fetal interface. Using JEG3 cells, a trophoblast model cell line, we observed that progesterone stimulation increased the expression of human leukocyte antigen-C (HLA-C) and HLA-G, key molecules involved in immune tolerance. We also found that progesterone upregulated the expression of the transcription factor ELF3, which is known to regulate trophoblast-specific HLA-C expression. Interestingly, JEG3 cells lacked expression of classical progesterone receptors (PRs) but exhibited high expression of PGRMC1, a finding we confirmed in primary trophoblasts by mining sc-RNA seq data from human placenta. To investigate the role of PGRMC1 in progesterone signaling, we used CRISPR/Cas9 technology to knockout PGRMC1 in JEG3 cells. PGRMC1-deficient cells showed a diminished response to progesterone stimulation. Furthermore, we found that the progesterone antagonist RU486 inhibited ELF3 expression in a PGRMC1-dependent manner, suggesting that RU486 acts as a progesterone antagonist by competing for receptor binding. Additionally, we found that RU486 inhibited cell invasion, an important process for successful pregnancy, and this inhibitory effect was dependent on PGRMC1. Our findings highlight the crucial role of PGRMC1 in mediating the immunoregulatory effects of progesterone at the maternal-fetal interface.


Membrane Proteins , Progesterone , Receptors, Progesterone , Trophoblasts , Humans , Receptors, Progesterone/metabolism , Female , Pregnancy , Progesterone/metabolism , Progesterone/pharmacology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Trophoblasts/metabolism , Trophoblasts/immunology , Placenta/immunology , Placenta/metabolism , Signal Transduction/immunology , Maternal-Fetal Exchange/immunology , Embryo Implantation/immunology
18.
J Clin Pharmacol ; 64(5): 568-577, 2024 May.
Article En | MEDLINE | ID: mdl-38305718

Nifedipine is used for treating mild to severe hypertension and preventing preterm labor in pregnant women. Nevertheless, concerns about nifedipine fetal exposure and safety are always raised. The aim of this study was to develop and validate a maternal-placental-fetal nifedipine physiologically based pharmacokinetic (PBPK) model and apply the model to predict maternal, placental, and fetal exposure to nifedipine at different pregnancy stages. A nifedipine PBPK model was verified with nonpregnant data and extended to the pregnant population after the inclusion of the fetoplacental multicompartment model that accounts for the placental tissue and different fetal organs within the Simcyp Simulator version 22. Model parametrization involved scaling nifedipine transplacental clearance based on Caco-2 permeability, and fetal hepatic clearance was obtained from in vitro to in vivo extrapolation encompassing cytochrome P450 3A7 and 3A4 activities. Predicted concentration profiles were compared with in vivo observations and the transplacental transfer results were evaluated using 2-fold criteria. The PBPK model predicted a mean cord-to-maternal plasma ratio of 0.98 (range, 0.86-1.06) at term, which agrees with experimental observations of 0.78 (range, 0.59-0.93). Predicted nifedipine exposure was 1.4-, 2.0-, and 3.0-fold lower at 15, 27, and 39 weeks of gestation when compared with nonpregnant exposure, respectively. This innovative PBPK model can be applied to support maternal and fetal safety assessment for nifedipine at various stages of pregnancy.


Maternal-Fetal Exchange , Models, Biological , Nifedipine , Placenta , Nifedipine/pharmacokinetics , Nifedipine/administration & dosage , Humans , Pregnancy , Female , Placenta/metabolism , Caco-2 Cells , Fetus/metabolism , Adult , Cytochrome P-450 CYP3A/metabolism
19.
Toxicol Lett ; 394: 66-75, 2024 Apr.
Article En | MEDLINE | ID: mdl-38423482

The placenta is a membrane that separates the fetus from the maternal circulation, and in addition to protecting the fetus, plays a key role in fetal growth and development. With increasing drug use in pregnancy, it is imperative that reliable models of estimating placental permeability and safety be established. In vitro methods and animal models such as rodent placenta are limited in application since the species-specific nature of the placenta prevents meaningful extrapolations to humans. In this regard, in silico approaches such as quantitative structure-property relationships (QSPRs) are useful alternatives. However, despite evidence that drug transport across the placenta is stereoselective (i.e., governed by the spatial arrangement of the atoms in a molecule), many QSPR models for placental transfer have been built using 2D descriptors that do not account for chirality and stereochemistry. In this study, we apply a chirality-sensitive and proven QSPR methodology titled "EigenValue ANalySis" (EVANS) to build QSPR models for placental transfer. We deploy EVANS along with robust machine learning algorithms to build (i) regression models on a dataset of environmental chemicals (dataset PD I) followed by (ii) classification models on a set of drug-like compounds (dataset PD II). The best models were found to achieve state-of-the-art performance, with the support vector machine algorithm returning rtrain2=0.85,rtest2=0.75 for PD I, and the logistic regression algorithm giving accuracy 0.88 and F1 score 0.93 for PD II. The best models were interpreted with the Shapley Additive Explanations paradigm, and it was found that autocorrelation descriptors are crucial for modelling placental permeability. In conclusion, we demonstrate the need of a chirality-sensitive approach for modelling placental transfer of chemicals, and present two predictive QSPR models that may reliably be used for prediction of placental transfer.


Maternal-Fetal Exchange , Placenta , Animals , Pregnancy , Humans , Female , Placenta/metabolism , Fetus , Biological Transport , Quantitative Structure-Activity Relationship
20.
Am J Obstet Gynecol ; 230(5): B2-B5, 2024 May.
Article En | MEDLINE | ID: mdl-38417536

Guidelines for the management of first-trimester spontaneous and induced abortion vary in terms of rhesus factor D (RhD) testing and RhD immune globulin (RhIg) administration. These existing guidelines are based on limited data that do not convincingly demonstrate the safety of withholding RhIg for first-trimester abortions or pregnancy losses. Given the adverse fetal and neonatal outcomes associated with RhD alloimmunization, prevention of maternal sensitization is essential in RhD-negative patients who may experience subsequent pregnancies. In care settings in which RhD testing and RhIg administration are logistically and financially feasible and do not hinder access to abortion care, we recommend offering both RhD testing and RhIg administration for spontaneous and induced abortion at <12 weeks of gestation in unsensitized, RhD-negative individuals. Guidelines for RhD testing and RhIg administration in the first trimester must balance the prevention of alloimmunization with the individual- and population-level harms of restricted access to abortion.


Abortion, Induced , Abortion, Spontaneous , Maternal-Fetal Exchange , Female , Pregnancy , Immunoglobulins/immunology , Rh-Hr Blood-Group System/immunology , Abortion, Spontaneous/immunology , Time Factors , Societies, Medical
...