Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Curr Biol ; 33(19): 4098-4110.e3, 2023 10 09.
Article En | MEDLINE | ID: mdl-37699395

The mating of fungi depends on pheromones that mediate communication between two mating types. Most species use short peptides as pheromones, which are either unmodified (e.g., α-factor in Saccharomyces cerevisiae) or C-terminally farnesylated (e.g., a-factor in S. cerevisiae). Peptide pheromones have been found by genetics or biochemistry in a small number of fungi, but their short sequences and modest conservation make it impossible to detect homologous sequences in most species. To overcome this problem, we used a four-step computational pipeline to identify candidate a-factor genes in sequenced genomes of the Saccharomycotina, the fungal clade that contains most of the yeasts: we require that candidate genes have a C-terminal prenylation motif, are shorter than 100 amino acids long, and contain a proteolytic-processing motif upstream of the potential mature pheromone sequence and that closely related species contain highly conserved homologs of the potential mature pheromone sequence. Additional manual curation exploits the observation that many species carry more than one a-factor gene, encoding identical or nearly identical pheromones. From 332 Saccharomycotina genomes, we identified strong candidate pheromone genes in 241 genomes, covering 13 clades that are each separated from each other by at least 100 million years, the time required for evolution to remove detectable sequence homology among small pheromone genes. For one small clade, the Yarrowia, we demonstrated that our algorithm found the a-factor genes: deleting all four related genes in the a-mating type of Yarrowia lipolytica prevents mating.


Ascomycota , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Pheromones/metabolism , Peptides/metabolism , Ascomycota/metabolism , Genes, Fungal , Mating Factor/genetics , Mating Factor/metabolism
2.
Enzyme Microb Technol ; 168: 110256, 2023 Aug.
Article En | MEDLINE | ID: mdl-37196384

Extracellular protein production is primarily preferred to facilitate the downstream processes in recombinant protein production. Secretion of recombinant proteins is mediated by the processing of signal peptides in their N-terminal portion by the secretory mechanism of host expression systems. These molecular elements involved in secretion are functionally interchangeable between different species and secretion sequence screening is one of the widely used approaches to improve extracellular protein production. In this study, α-mating and protein internal repeats (PIR) secretion sequences isolated from different yeasts (Kluyveromyces lactis, Kluyveromyces marxianus and Hansenula polymorpha) were tested in Pichia pastoris for the production of two different proteins (α-amylase and xylanase) and compared with the well-known secretory signals, S. cerevisiae α-mating factor (Sc-MF) and P. pastoris protein internal repeats PIR (PpPIR). The results obtained showed the potential of signal sequences tested. Among the tested peptides, the highest yields were achieved with H. polymorpha protein internal repeats (HpPIR) and K. lactis α-mating factor (Kl-MF) for xylanase and K. marxianus protein internal repeats (KmPIR) and K. lactis α-mating factor (Kl-MF) for amylase. In further studies, these sequences can be evaluated as alternatives in the production of different proteins in P. pastoris and in the production of recombinant proteins in different expression systems.


Protein Sorting Signals , Saccharomyces cerevisiae , Protein Sorting Signals/genetics , Saccharomyces cerevisiae/metabolism , Mating Factor/genetics , Mating Factor/metabolism , Pichia/genetics , Pichia/metabolism , Recombinant Proteins/metabolism
3.
J Microbiol ; 60(8): 843-848, 2022 Aug.
Article En | MEDLINE | ID: mdl-35835957

Decapping of mRNA is a key regulatory step for mRNA decay and translation. The RNA helicase, Dhh1, is known as a decapping activator and translation repressor in yeast Saccharomyces cerevisiae. Dhh1 also functions as a gene-specific positive regulator in the expression of Ste12, a mating-specific transcription factor. A previous study showed that the N-erminal phosphorylation of Dhh1 regulates its association with the mRNA-binding protein, Puf6, to affect the protein translation of Ste12. Here, we investigated the roles of the phosphorylated residues of Dhh1 in yeast mating process and Ste12 expression. The phospho-deficient mutation, DHH1-T10A, was associated with decreased diploid formation during mating and decreased level of the Ste12 protein in response to α-mating pheromone. A kinase overexpression analysis revealed that Ste12 protein expression was affected by overexpression of Fus3 MAP kinase or Tpk2 kinase. Tpk2 was shown to be responsible for phosphorylation of Dhh1 at Thr10. Our study shows that overexpression of Fus3 or Tpk2 alters the Dhh1-Puf6 protein interaction and thereby affects Ste12 protein expression.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Mating Factor/genetics , Mating Factor/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Protein Kinases/genetics , RNA, Messenger/genetics , RNA-Binding Proteins , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors
4.
Microb Biotechnol ; 15(9): 2364-2378, 2022 09.
Article En | MEDLINE | ID: mdl-35656803

In our previous study, we serendipitously discovered that protein secretion in the methylotrophic yeast Pichia pastoris is enhanced by a mutation (V50A) in the mating factor alpha (MFα) prepro-leader signal derived from Saccharomyces cerevisiae. In the present study, we investigated 20 single-amino-acid substitutions, including V50A, located within the MFα signal peptide, indicating that V50A and several single mutations alone provided significant increase in production of the secreted proteins. In addition to hydrophobicity index analysis, both an unfolded protein response (UPR) biosensor analysis and a microscopic observation showed a clear difference on the levels of UPR induction and mis-sorting of secretory protein into vacuoles among the wild-type and mutated MFα signal peptides. This work demonstrates the importance of avoiding entry of secretory proteins into the intracellular protein degradation pathways, an observation that is expected to contribute to the engineering of strains with increased production of recombinant secreted proteins.


Fungal Proteins , Pichia , Amino Acid Sequence , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mating Factor/genetics , Mating Factor/metabolism , Mutation , Pichia/genetics , Pichia/metabolism , Protein Sorting Signals/genetics , Proteolysis , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomycetales
5.
World J Microbiol Biotechnol ; 37(11): 197, 2021 Oct 16.
Article En | MEDLINE | ID: mdl-34654975

The human granulocyte colony-stimulating factor (G-CSF) is one of the hematopoietic growth factors administered for chemotherapy induced neutropenia and is currently produced through recombinant route in Escherichia coli. The methylotrophic unicellular yeast Pichia pastoris (syn. Komagataella phaffii) makes a good host for production of human therapeutics as the proteins are low-mannose glycosylated, disulfide bonded and correctly folded on their way to the cell exterior. Given the low level of production of G-CSF in P. pastoris, the present study examined modification of the Saccharomyces cerevisiae derived α-mating type secretory signal sequence to enhance its production. The substitution of Glu, at the P1' position of the Kex2 cleavage site, by Val/Ala led to extracellular production of ~ 60 mg/L of G-CSF in the extracellular medium. Production was further increased to ~ 100 mg/L by putting these mutations against rarely occurring methanol slow utilization P. pastoris X-33 host. Analysis of the modelled structure of the signal peptide indicated exposed loop structures, created by presence of Val/Ala, that favour cleavage by the Kex2 peptidase thereby leading to enhanced production of G-CSF. The conformational changes, induced on account of binding between the signal sequence and the cargo protein (G-CSF), also appear to play an important role in the final yield of the extracellular protein.


Granulocyte Colony-Stimulating Factor/biosynthesis , Mating Factor/chemistry , Proprotein Convertases/metabolism , Protein Sorting Signals/genetics , Saccharomycetales/genetics , Granulocyte Colony-Stimulating Factor/genetics , Humans , Mating Factor/genetics , Mating Factor/metabolism , Proprotein Convertases/genetics , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomycetales/metabolism , Transformation, Genetic
6.
Genome Biol Evol ; 13(5)2021 05 07.
Article En | MEDLINE | ID: mdl-33837781

The tight interaction between pathogens and their hosts results in reciprocal selective forces that impact the genetic diversity of the interacting species. The footprints of this selection differ between pathosystems because of distinct life-history traits, demographic histories, or genome architectures. Here, we studied the genome-wide patterns of genetic diversity of 22 isolates of the causative agent of the corn smut disease, Ustilago maydis, originating from five locations in Mexico, the presumed center of origin of this species. In this species, many genes encoding secreted effector proteins reside in so-called virulence clusters in the genome, an arrangement that is so far not found in other filamentous plant pathogens. Using a combination of population genomic statistical analyses, we assessed the geographical, historical, and genome-wide variation of genetic diversity in this fungal pathogen. We report evidence of two partially admixed subpopulations that are only loosely associated with geographic origin. Using the multiple sequentially Markov coalescent model, we inferred the demographic history of the two pathogen subpopulations over the last 0.5 Myr. We show that both populations experienced a recent strong bottleneck starting around 10,000 years ago, coinciding with the assumed time of maize domestication. Although the genome average genetic diversity is low compared with other fungal pathogens, we estimated that the rate of nonsynonymous adaptive substitutions is three times higher in genes located within virulence clusters compared with nonclustered genes, including nonclustered effector genes. These results highlight the role that these singular genomic regions play in the evolution of this pathogen.


Basidiomycota/genetics , Basidiomycota/classification , Basidiomycota/pathogenicity , Biological Evolution , Genetic Variation , Mating Factor/genetics , Mexico , Virulence , Zea mays/microbiology
7.
Yeast ; 38(8): 471-479, 2021 08.
Article En | MEDLINE | ID: mdl-33811363

Zygosaccharomyces sp. is an industrially important yeast for the production traditional fermented foods in Japan. At present, however, there is no easy method for mating Zygosaccharomyces sp. strains in the laboratory; furthermore, little is known about the expression of mating-type-specific genes in this yeast. Here, mating was observed when Zygosaccharomyces sp. was subjected to nitrogen-starvation conditions. The expression of mating-type-specific genes, Zygo STE6 and Zygo MFα1, was induced under nitrogen-starvation conditions, as confirmed by lacZ reporter assay. This expression was mating-type-specific: Zygo STE6 was expressed specifically for mating-type a, whereas and Zygo MFα1 was expressed specifically for mating-type α. Yeast strains Zygosaccharomyces rouxii DL2 and DA2, derived from type strain Z. rouxii CBS732, did not show mating even under nitrogen-starvation conditions. Gene sequencing revealed that the Zygo STE12 in Z. rouxii CBS732 has a frameshift mutation. Under nitrogen starvation, mating was observed in both DL2 and DA2 transformed with the wild-type Zygo STE12. The expression of Zygo STE6 in Z. rouxii DL2 transformed with wild-type Zygo STE12 under nitrogen-starvation conditions was confirmed by lacZ reporter assay. Collectively, these results revealed that, under nitrogen-starvation conditions, Zygosaccharomyces sp. can mate and mating-type-specific genes are expressed. Furthermore, Zygo Ste12 is essential for both mating and the expression of mating-type-specific genes in Zygosaccharomyces sp.


Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Mating Factor/genetics , Zygosaccharomyces/genetics , Amino Acid Sequence , DNA, Fungal/genetics , Gene Expression , Nitrogen/metabolism , Saccharomycetales/genetics , Zygosaccharomyces/classification , Zygosaccharomyces/metabolism
8.
Cell Mol Life Sci ; 78(7): 3691-3707, 2021 Apr.
Article En | MEDLINE | ID: mdl-33687500

Saccharomyces cerevisiae plays an important role in the heterologous expression of an array of proteins due to its easy manipulation, low requirements and ability for protein post-translational modifications. The implementation of the preproleader secretion signal of the α-factor mating pheromone from this yeast contributes to increase the production yields by targeting the foreign protein to the extracellular environment. The use of this signal peptide combined with enzyme-directed evolution allowed us to achieve the otherwise difficult functional expression of fungal laccases in S. cerevisiae, obtaining different evolved α-factor preproleader sequences that enhance laccase secretion. However, the design of a universal signal peptide to enhance the production of heterologous proteins in S. cerevisiae is a pending challenge. We describe here the optimisation of the α-factor preproleader to improve recombinant enzyme production in S. cerevisiae through two parallel engineering strategies: a bottom-up design over the native α-factor preproleader (αnat) and a top-down design over the fittest evolved signal peptide obtained in our lab (α9H2 leader). The goal was to analyse the effect of mutations accumulated in the signal sequence throughout iterations of directed evolution, or of other reported mutations, and their possible epistatic interactions. Both approaches agreed in the positive synergism of four mutations (Aα9D, Aα20T, Lα42S, Dα83E) contained in the final optimised leader (αOPT), which notably enhanced the secretion of several fungal oxidoreductases and hydrolases. Additionally, we suggest a guideline to further drive the heterologous production of a particular enzyme based on combinatorial saturation mutagenesis of positions 86th and 87th of the αOPT leader fused to the target protein.


Hydrolases/metabolism , Mating Factor/metabolism , Oxidoreductases/metabolism , Protein Precursors/metabolism , Protein Sorting Signals/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Hydrolases/genetics , Mating Factor/genetics , Oxidoreductases/genetics , Protein Precursors/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics
9.
Dev Biol ; 475: 131-144, 2021 07.
Article En | MEDLINE | ID: mdl-33484706

Coup-TF, a member of the nuclear receptor super-family, is present in the pool of maternal mRNAs and proteins in the sea urchin egg. The presence of this protein seems to be essential for the execution of the early developmental program, leading to all three embryonic layers. Our results demonstrate that Pl-Coup-TF morphants, i.e. Pl-Coup-TF morpholino knockdown embryos, resemble blastulae that lack archenteron at 24 hpf (hours post fertilization), a stage at which normal embryos reach the end of gastrulation in Paracentrotus lividus. At 48 hpf, when normal embryos reach the pluteus larva stage, the morphants are seemingly underdeveloped and lack the characteristic skeletal rods. Nevertheless, the morphant embryos express vegetal endomesodermal marker genes, such as Pl-Blimp1, Pl-Endo16, Pl-Alx1 and Pl-Tbr as judged by in situ hybridization experiments. The anterior neuroectoderm genes, Pl-FoxQ2, Pl-Six3 and Pl-Pax6, are also expressed in the morphant embryos, but Pl-Hbn and Pl-Fez mRNAs, which encode proteins significant for the differentiation of serotonergic neurons, are not detected. Consequently, Pl-Coup-TF morphants at 48 hpf lack serotonergic neurons, whereas normal 48 hpf plutei exhibit the formation of two bilateral pairs of such neurons in the apical organ. Furthermore, genes indicative of the ciliary band formation, Pl-Hnf6, Pl-Dri, Pl-FoxG and Pl-Otx, are not expressed in Pl-Coup-TF morphants, suggesting the disruption of this neurogenic territory as well. In addition, the Pl-SynB gene, a marker of differentiated neurons, is silent leading to the hypothesis that Pl-Coup-TF morphants might lack all types of neurons. On the contrary, the genes expressing signaling molecules, which establish the ventral/dorsal axis, Pl-Nodal and Pl-Lefty show the characteristic ventral lateral expression pattern, Pl-Bmp2/4, which activates the dorsal ectoderm GRN is down-regulated and Pl-Chordin is aberrantly over-expressed in the entire ectoderm. The identity of ectodermal cells in Pl-Coup-TF morphant embryos, was probed for expression of the ventral marker Pl-Gsc which was over-expressed and dorsal markers, Pl-IrxA and Pl-Hox7, which were silent. Therefore, we propose that maternal Pl-Coup-TF is essential for correct dissemination of the early embryonic signaling along both animal/vegetal and ventral/dorsal axes. Limiting Pl-Coup-TF's quantity, results in an embryo without digestive and nervous systems, skeleton and ciliary band that cannot survive past the initial 48 h of development.


Body Patterning/genetics , COUP Transcription Factors/metabolism , Paracentrotus/embryology , Animals , Blastula/metabolism , COUP Transcription Factors/genetics , COUP Transcription Factors/physiology , Cell Differentiation/genetics , Ectoderm/metabolism , Embryo, Nonmammalian/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Mating Factor/genetics , Mating Factor/metabolism , Neural Plate/metabolism , Paracentrotus/genetics , Sea Urchins/embryology , Sea Urchins/metabolism , Signal Transduction/physiology
10.
PLoS Biol ; 19(1): e3001067, 2021 01.
Article En | MEDLINE | ID: mdl-33406066

To ensure genome stability, sexually reproducing organisms require that mating brings together exactly 2 haploid gametes and that meiosis occurs only in diploid zygotes. In the fission yeast Schizosaccharomyces pombe, fertilization triggers the Mei3-Pat1-Mei2 signaling cascade, which represses subsequent mating and initiates meiosis. Here, we establish a degron system to specifically degrade proteins postfusion and demonstrate that mating blocks not only safeguard zygote ploidy but also prevent lysis caused by aberrant fusion attempts. Using long-term imaging and flow-cytometry approaches, we identify previously unrecognized and independent roles for Mei3 and Mei2 in zygotes. We show that Mei3 promotes premeiotic S-phase independently of Mei2 and that cell cycle progression is both necessary and sufficient to reduce zygotic mating behaviors. Mei2 not only imposes the meiotic program and promotes the meiotic cycle, but also blocks mating behaviors independently of Mei3 and cell cycle progression. Thus, we find that fungi preserve zygote ploidy and survival by at least 2 mechanisms where the zygotic fate imposed by Mei2 and the cell cycle reentry triggered by Mei3 synergize to prevent zygotic mating.


Cell Cycle/physiology , Mating Factor/physiology , Meiosis/physiology , Zygote/physiology , Cell Cycle/genetics , Cell Cycle Proteins/physiology , Fungal Proteins/physiology , Genes, Fungal/physiology , Mating Factor/genetics , Mating Factor/metabolism , Meiosis/genetics , Organisms, Genetically Modified , Ploidies , RNA-Binding Proteins/physiology , Recombination, Genetic/physiology , Schizosaccharomyces/physiology , Schizosaccharomyces pombe Proteins/physiology , Zygote/growth & development , Zygote/metabolism
11.
Microb Cell Fact ; 19(1): 199, 2020 Oct 29.
Article En | MEDLINE | ID: mdl-33121493

BACKGROUND: The methylotrophic yeast, Pichia pastoris has been widely used for the production of human therapeutics, but production of granulocyte colony-stimulating factor (G-CSF) in this yeast is low.The work reported here aimed to improve the extracellular production of G-CSF by introducing mutations in the leader sequence and using a codon optimized copy of G-CSF. Bioinformatic analysis was carried out to propose an explanation for observed effect of mutations on extracellular G-CSF production. RESULTS: Mutations in the pro-region of the α-mating type (MAT) secretory signal, when placed next to a codon optimized (CO)-GCSF copy, specifically, the Δ57-70 type, led to highest G-CSF titre of 39.4 ± 1.4 mg/L. The enhanced effect of this deletion was also observed when it preceded the WT copy of the gene. Deletion of the 30-43 amino acids in the pro-peptide, fused with the wild type (WT)-GCSF copy, completely diminished G-CSF secretion, while no effect was observed when this deletion was in front of the CO-GCSF construct. Also, Matα:Δ47-49 deletion preceding the WT-GCSF dampened the secretion of this protein, while no effect was seen when this deletion preceded the CO-GCSF copy of the gene. This indicated that faster rates of translation (as achieved through codon optimization) could overcome the control exercised by these segments. The loss of secretion occurring due to Δ30-43 in the WT-GCSF was partially restored (by 60%) when the Δ57-70 was added. The effect of Δ47-49 segment in the WT-GCSF could also be partially restored (by 60%) by addition of Δ57-70 indicating the importance of the 47-49 region. A stimulatory effect of Δ57-70 was confirmed in the double deletion (Matα:Δ57-70;47-49) construct preceding the CO-GCSF. Secondary and tertiary structures, when predicted using I-TASSER, allowed to understand the relationship between structural changes and their impact on G-CSF secretion. The Δ57-70 amino acids form a major part of 3rd alpha-helix in the pre-pro peptide and its distortion increased the flexibility of the loop, thereby promoting its interaction with the cargo protein. A minimum loop length was found to be necessary for secretion. The strict control in the process of secretion appeared to be overcome by changing the secondary structures in the signal peptides. Such fine tuning can allow enhanced secretion of other therapeutics in this expression system. CONCLUSIONS: Among the different truncations (Matα:Δ57-70, Matα:Δ47-49, Matα:Δ30-43, Matα:Δ57-70;30-43, Matα:Δ57-70;47-49) in pro-peptide of α-MAT secretion signal, Matα:Δ57-70 fused to CO-GCSF, led to highest G-CSF titre as compared to other Matα truncations. On the other hand, Matα:Δ30-43 and Matα:Δ47-49 fused to the WT-GCSF dampened the secretion of this protein indicating important role of these segments in the secretion of the cargo protein.


Codon/genetics , Granulocyte Colony-Stimulating Factor/biosynthesis , Mating Factor/genetics , Pichia/metabolism , 5' Untranslated Regions/genetics , Computational Biology , Humans , Mutation , Pichia/genetics , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Saccharomyces cerevisiae/genetics
12.
FEMS Yeast Res ; 20(3)2020 05 01.
Article En | MEDLINE | ID: mdl-32374383

Yeast mating pheromones are small secreted peptides required for efficient mating between cells of opposite mating type. Pheromone gradients allow the cells to detect potential mating partners. Secreted pheromone degrading proteases steepen local gradients and allow fast recovery from the pheromone signal. The methylotrophic yeast Komagataella phaffii is a preferentially haploid species. Only under nitrogen starvation, mating genes are activated and the cells are able to undergo a full sexual cycle of mating and sporulation. It has been shown that, similar to other yeasts, K. phaffii requires the mating pheromone and pheromone surface receptor genes for efficient mating. The analysis of so far uncharacterized mating-type-specific genes allowed us to identify the K. phaffii α-factor protease gene YPS1-5. It encodes an aspartic protease of the yapsin family and is upregulated only in a-type cells under mating conditions. The phenotype of K. phaffiia-type strains with a deletion in the protease gene was found to be highly similar to the phenotype of Saccharomyces cerevisiae α-factor protease BAR1 deletion strains. They are highly sensitive to α-factor pheromone in pheromone sensitivity assays and were found to mate with reduced efficiency. Based on our results, we propose to rename the gene into K. phaffii BAR1.


Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Mating Factor/genetics , Pheromones/metabolism , Saccharomycetales/enzymology , Saccharomycetales/genetics , Mutation , Phenotype , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
13.
Elife ; 82019 10 17.
Article En | MEDLINE | ID: mdl-31621584

In the fungus Ustilago maydis, sexual pheromones elicit mating resulting in an infective filament able to infect corn plants. Along this process a G2 cell cycle arrest is mandatory. Such as cell cycle arrest is initiated upon the pheromone recognition in each mating partner, and sustained once cell fusion occurred until the fungus enter the plant tissue. We describe that the initial cell cycle arrest resulted from inhibition of the nuclear transport of the mitotic inducer Cdc25 by targeting its importin, Kap123. Near cell fusion to take place, the increase on pheromone signaling promotes Cdc25 degradation, which seems to be important to ensure the maintenance of the G2 cell cycle arrest to lead the formation of the infective filament. This way, premating cell cycle arrest is linked to the subsequent steps required for establishment of the infection. Disabling this connection resulted in the inability of fungal cells to infect plants.


Fungal Proteins/genetics , G2 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Fungal , Mating Factor/genetics , Ustilago/genetics , beta Karyopherins/genetics , cdc25 Phosphatases/genetics , Active Transport, Cell Nucleus , Cell Fusion , Fungal Proteins/metabolism , Genes, Mating Type, Fungal , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mating Factor/metabolism , Mitosis , Plant Diseases/microbiology , Proteolysis , Ustilago/metabolism , Ustilago/pathogenicity , Zea mays/microbiology , beta Karyopherins/metabolism , cdc25 Phosphatases/metabolism , Red Fluorescent Protein
14.
J Proteomics ; 207: 103467, 2019 09 15.
Article En | MEDLINE | ID: mdl-31351147

The mating-specific yeast Gα controls pheromone signaling by sequestering Gßγ and by regulating the Fus3 MAP kinase. Disrupting Gα-Fus3 interaction leads to severe defects in chemotropism. Because Gα concentrates at the chemotropic growth site where Fus3 is required for the phosphorylation of two known targets, we screened for additional proteins whose phosphorylation depends on pheromone stimulation and Gα-Fus3 interaction. Using a mutant form of Gα severely defective in Fus3-binding, GαDSD, and quantitative mass spectrometry, fourteen proteins were identified as potential targets of Gα-recruited Fus3, ten of which were previously implicated in cell polarity and morphogenesis. To explore the biological relevance of these findings, we focused on the Spa2 polarisome protein, which was hypophosphorylated on multiple serine residues in pheromone-treated GαDSD cells. Six sites were mutagenized to create the Spa26XSA mutant protein. Spa26XSA exhibited increased affinity for Fus3, consistent with a kinase-substrate interaction, and Spa26XSA cells exhibited dramatic defects in gradient sensing and zygote formation. These results suggest that Gα promotes the phosphorylation of Spa2 by Fus3 at the cortex of pheromone-stimulated cells, and that this mechanism plays a role in chemotropism. How the Gα-Fus3 signaling hub affects the other putative targets identified here has yet to be determined. SIGNIFICANCE: Previously, interaction between the G alpha protein, Gpa1, and the MAPK of the pheromone response pathway, Fus3, was shown to be important for efficient sensing of the pheromone gradient and for the maintenance of cell polarity during mating. Here we show that the underlying molecular mechanisms involve the phosphorylation of specific cortical targets of Gpa1/Fus3. These have been identified by quantitative phosphoproteomics using a mutant of Gpa1, which is defective in interacting with Fus3. One of these targets is the polarisome protein Spa2. Alanine substitution of the Spa2 phosphorylation sites targeted by Gpa1/Fus3 lead to a dramatic defect in pheromone gradient sensing and zygote formation. These results reveal how the G alpha protein and the MAPK control cell polarity in a prototypical model system. Our results have wider significance as similar mechanisms exist in higher eukaryotes and are involved in important biological such as neuron development, immunity, and cancer cell metastasis.


GTP-Binding Protein alpha Subunits/metabolism , MAP Kinase Signaling System , Mating Factor/metabolism , Mitogen-Activated Protein Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Substitution , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , GTP-Binding Protein alpha Subunits/genetics , Mating Factor/genetics , Mitogen-Activated Protein Kinases/genetics , Mutation, Missense , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
15.
BMC Genomics ; 20(1): 64, 2019 Jan 18.
Article En | MEDLINE | ID: mdl-30658568

BACKGROUND: Many small peptides regulate eukaryotic cell biology. In fungi, some of these peptides are produced after KEX2 protease activity on proteins displaying repetitions of identical or nearly identical motifs. Following this endoprotease activity, peptides are released in the extracellular space. This type of protein maturation is involved in the production of the α-type sexual pheromone in Ascomycota. In other cases, this processing allows the production of secreted peptides regulating fungal cell wall structure or acting as mycotoxins. In this work, we report for the first time a genome-wide search of KEX2-processed repeat proteins that we call KEPs. We screened the secreted proteins of 250 fungal species to compare their KEP repertoires with regard to their lifestyle, morphology or lineage. RESULTS: Our analysis points out that nearly all fungi display putative KEPs, suggesting an ancestral origin common to all opisthokonts. As expected, our pipeline identifies mycotoxins but also α-type sexual pheromones in Ascomycota that have not been explored so far, and unravels KEP-derived secreted peptides of unknown functions. Some species display an expansion of this class of proteins. Interestingly, we identified conserved KEPs in pathogenic fungi, suggesting a role in virulence. We also identified KEPs in Basidiomycota with striking similarities to Ascomycota α-type sexual pheromones, suggesting they may also play alternative roles in unknown signalling processes. CONCLUSIONS: We identified putative, new, unexpected secreted peptides that fall into different functional categories: mycotoxins, hormones, sexual pheromones, or effectors that promote colonization during host-microbe interactions. This wide survey will open new avenues in the field of small-secreted peptides in fungi that are critical regulators of their intimate biology and modulators of their interaction with the environment.


Fungal Proteins/genetics , Fungi/genetics , Genome, Fungal/genetics , Protein Sorting Signals/genetics , Amino Acid Sequence , Ascomycota/classification , Ascomycota/genetics , Ascomycota/metabolism , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/metabolism , Fungal Proteins/metabolism , Fungi/classification , Fungi/metabolism , Mating Factor/genetics , Mating Factor/metabolism , Phylogeny
16.
Cell ; 175(3): 877-886.e10, 2018 10 18.
Article En | MEDLINE | ID: mdl-30340045

Biological signaling networks use feedback control to dynamically adjust their operation in real time. Traditional static genetic methods such as gene knockouts or rescue experiments can often identify the existence of feedback interactions but are unable to determine what feedback dynamics are required. Here, we implement a new strategy, closed-loop optogenetic compensation (CLOC), to address this problem. Using a custom-built hardware and software infrastructure, CLOC monitors, in real time, the output of a pathway deleted for a feedback regulator. A minimal model uses these measurements to calculate and deliver-on the fly-an optogenetically enabled transcriptional input designed to compensate for the effects of the feedback deletion. Application of CLOC to the yeast pheromone response pathway revealed surprisingly distinct dynamic requirements for three well-studied feedback regulators. CLOC, a marriage of control theory and traditional genetics, presents a broadly applicable methodology for defining the dynamic function of biological feedback regulators.


Feedback, Physiological , Gene Expression Regulation, Fungal , Optogenetics/methods , Genetic Complementation Test/methods , Mating Factor/genetics , Mating Factor/metabolism , Saccharomyces cerevisiae/genetics , Software , Transcriptional Activation
17.
Mol Microbiol ; 110(6): 1045-1065, 2018 12.
Article En | MEDLINE | ID: mdl-30240513

In the human pathogenic mold Aspergillus fumigatus, sexual identity is determined by the mating-type idiomorphs MAT1-1 and MAT1-2 residing at the MAT locus. Upon crossing of compatible partners, a heterothallic mating is executed to eventually form cleistothecia that contain recombinant ascospores. Given that the MAT1 gene products are DNA binding master regulators that govern this complex developmental process, we monitored the MAT1-driven transcriptomes of A. fumigatus by conditional overexpression of either MAT1 gene followed by RNA-seq analyses. Numerous genes related to the process of mating were found to be under transcriptional control, such as pheromone production and recognition. Substantial differences between the MAT1-1- and MAT1-2-driven transcriptomes could be detected by functional categorization of differentially expressed genes. Moreover, a significant and distinct impact on expression of genetic clusters of secondary metabolism became apparent, which could be verified on the product level. Unexpectedly, specific cross-regulation of the fumagillin/pseurotin supercluster was evident, thereby uncoupling its co-regulatory characteristic. These insights imply a tight interconnection of sexual development accompanied by ascosporogenesis with secondary metabolite production of a pathogenic fungus and impose evolutionary constraints that link these two fundamental aspects of the fungal lifestyle.


Aspergillus fumigatus , Cyclohexanes , Fatty Acids, Unsaturated , Mating Factor , Pyrrolidinones , Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Cyclohexanes/metabolism , Fatty Acids, Unsaturated/genetics , Fatty Acids, Unsaturated/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genes, Mating Type, Fungal , Mating Factor/genetics , Mating Factor/metabolism , Multigene Family , Pyrrolidinones/metabolism , Secondary Metabolism/genetics , Sesquiterpenes/metabolism
18.
Nucleic Acids Res ; 46(18): 9550-9562, 2018 10 12.
Article En | MEDLINE | ID: mdl-30165457

In the ciliate Paramecium tetraurelia, functional genes are reconstituted during development of the somatic macronucleus through the precise excision of ∼45 000 single-copy Internal Eliminated Sequences (IESs), thought to be the degenerate remnants of ancient transposon insertions. Like introns, IESs are marked only by a weak consensus at their ends. How such a diverse set of sequences is faithfully recognized and precisely excised remains unclear: specialized small RNAs have been implicated, but in their absence up to ∼60% of IESs are still correctly excised. To get further insight, we designed a mutagenesis screen based on the hypersensitivity of a specific excision event in the mtA gene, which determines mating types. Unlike most IES-containing genes, the active form of mtA is the unexcised one, allowing the recovery of hypomorphic alleles of essential IES recognition/excision factors. Such is the case of one mutation recovered in the Piwi gene PTIWI09, a key player in small RNA-mediated IES recognition. Another mutation identified a novel protein with a C2H2 zinc finger, mtGa, which is required for excision of a small subset of IESs characterized by enrichment in a 5-bp motif. The unexpected implication of a sequence-specific factor establishes a new paradigm for IES recognition and/or excision.


DNA Repair/genetics , Mating Factor/genetics , Mutagenesis/genetics , Reproduction/genetics , Zinc Fingers/genetics , Alleles , DNA Transposable Elements/genetics , DNA, Protozoan/genetics , Gene Rearrangement/genetics , Introns/genetics , Macronucleus/genetics , Macronucleus/physiology , Paramecium tetraurelia/genetics , Paramecium tetraurelia/physiology , RNA, Small Interfering/genetics
19.
FEMS Yeast Res ; 18(5)2018 08 01.
Article En | MEDLINE | ID: mdl-29718186

The methylotrophic yeast Komagataella phaffii (Pichia pastoris) is a haploid yeast that is able to form diploid cells by mating once nitrogen becomes limiting. Activation of the mating response requires the secretion of a- and α-factor pheromones, which bind to G-protein coupled receptors on cells of opposite mating type. In K. phaffii, the genes coding for the α-factor (MFα), the pheromone surface receptors and the conserved a-factor biogenesis pathway have been annotated previously. Initial homology-based search failed to identify potential a-factor genes (MFA). By using transcriptome data of heterothallic strains under mating conditions, we found two K. phaffiia-factor genes. Deletion of both MFA genes prevented mating of a-type cells. MFA single mutants were still able to mate and activate the mating response pathway in α-type cells. A reporter assay was used to confirm the biological activity of synthetic a- and α-factor peptides. The identification of the a-factor genes enabled the first characterization of the role and regulation of the mating pheromone genes and the response of K. phaffii to synthetic pheromones and will help to gain a better understanding of the mating behavior of K. phaffii.


Genes, Mating Type, Fungal , Mating Factor/genetics , Pichia/genetics , DNA, Fungal/genetics , Fungal Proteins/genetics , Gene Deletion , Mutation , Phenotype , Pichia/drug effects , Transcriptome
20.
Antonie Van Leeuwenhoek ; 111(10): 1935-1953, 2018 Oct.
Article En | MEDLINE | ID: mdl-29651688

Genes involved in mating type determination and recognition were examined in Metschnikowia and related species, to gather insights on factors affecting mating compatibility patterns among haplontic, heterothallic yeast species of the genus. We confirmed the universality of the special mating locus organisation found in Clavispora lusitaniae across and exclusive to the family Metschnikowiaceae (i.e., Metschnikowia and Clavispora). Timing of the divergence between idiomorphs was confirmed to coincide with the origin of the larger (CUG-ser) clade comprising the Debaryomycetaceae and the Metschnikowiaceae, exclusive of Cephaloascus fragrans. The sequence of the a mating pheromone is highly conserved within the large-spored Metschnikowia species, including Metschnikowia orientalis and Metschnikowia hawaiiana, but not Metschnikowia drosophilae or Metschnikowia torresii, which have a pattern of their own, as do other clades in the genus. In contrast, variation in α pheromones shows a more continuous, although imperfect correlation with phylogenetic distance as well as with in vivo mating compatibility.


Genes, Mating Type, Fungal , Genome, Fungal , Genomics , Mating Factor/genetics , Metschnikowia/physiology , Amino Acid Sequence , Genetic Variation , Genomics/methods , Metschnikowia/classification , Metschnikowia/ultrastructure , Pheromones/chemistry , Pheromones/genetics , Pheromones/metabolism , Phylogeny , Quantitative Trait Loci , Quantitative Trait, Heritable , Sequence Analysis, DNA , Spores, Fungal
...