Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.006
Filter
1.
CNS Neurosci Ther ; 30(7): e14823, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38992870

ABSTRACT

BACKGROUND: Caloric restriction (CR) might be effective for alleviating/preventing Alzheimer's disease (AD), but the biological mechanisms remain unclear. In the current study, we explored whether CR caused an alteration of gut microbiome and resulted in the attenuation of cognitive impairment of AD animal model. METHODS: Thirty-week-old male APP/PS1 transgenic mice were used as AD models (AD mouse). CR was achieved by 30% reduction of daily free feeding (ad libitum, AL) amount. The mice were fed with CR protocol or AL protocol for six consecutive weeks. RESULTS: We found that with CR treatment, AD mice showed improved ability of learning and spatial memory, and lower levels of Aß40, Aß42, IL-1ß, TNF-α, and ROS in the brain. By sequencing 16S rDNA, we found that CR treatment resulted in significant diversity in composition and abundance of gut flora. At the phylum level, Deferribacteres (0.04%), Patescibacteria (0.14%), Tenericutes (0.03%), and Verrucomicrobia (0.5%) were significantly decreased in CR-treated AD mice; at the genus level, Dubosiella (10.04%), Faecalibaculum (0.04%), and Coriobacteriaceae UCG-002 (0.01%) were significantly increased in CR-treated AD mice by comparing with AL diet. CONCLUSIONS: Our results demonstrate that the attenuation of AD following CR treatment in APP/PS1 mice may result from alterations in the gut microbiome. Thus, gut flora could be a new target for AD prevention and therapy.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Caloric Restriction , Gastrointestinal Microbiome , Mice, Transgenic , Animals , Gastrointestinal Microbiome/physiology , Caloric Restriction/methods , Alzheimer Disease/microbiology , Alzheimer Disease/diet therapy , Alzheimer Disease/prevention & control , Male , Mice , Amyloid beta-Protein Precursor/genetics , Presenilin-1/genetics , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Maze Learning/physiology , Brain/metabolism , Mice, Inbred C57BL
2.
Nature ; 630(8018): 935-942, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867049

ABSTRACT

Memories benefit from sleep1, and the reactivation and replay of waking experiences during hippocampal sharp-wave ripples (SWRs) are considered to be crucial for this process2. However, little is known about how these patterns are impacted by sleep loss. Here we recorded CA1 neuronal activity over 12 h in rats across maze exploration, sleep and sleep deprivation, followed by recovery sleep. We found that SWRs showed sustained or higher rates during sleep deprivation but with lower power and higher frequency ripples. Pyramidal cells exhibited sustained firing during sleep deprivation and reduced firing during sleep, yet their firing rates were comparable during SWRs regardless of sleep state. Despite the robust firing and abundance of SWRs during sleep deprivation, we found that the reactivation and replay of neuronal firing patterns was diminished during these periods and, in some cases, completely abolished compared to ad libitum sleep. Reactivation partially rebounded after recovery sleep but failed to reach the levels found in natural sleep. These results delineate the adverse consequences of sleep loss on hippocampal function at the network level and reveal a dissociation between the many SWRs elicited during sleep deprivation and the few reactivations and replays that occur during these events.


Subject(s)
Hippocampus , Sleep Deprivation , Sleep, Slow-Wave , Animals , Female , Male , Rats , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/physiopathology , Maze Learning/physiology , Memory/physiology , Pyramidal Cells/physiology , Rats, Long-Evans , Sleep Deprivation/physiopathology , Sleep, Slow-Wave/physiology , Wakefulness/physiology , Time Factors , Hippocampus/cytology , Hippocampus/physiology , Hippocampus/physiopathology
3.
Cell Mol Life Sci ; 81(1): 273, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900294

ABSTRACT

Long-term memory formation requires de novo RNA and protein synthesis. Using differential display PCR, we found that the NCoR1 cDNA fragment is differentially expressed between fast learners and slow learners, with fast learners showing a lower expression level than slow learners in the water maze learning task. Fast learners also show lower NCoR1 mRNA and protein expression levels. In addition, spatial training decreases both NCoR1 mRNA and protein expression, whereas NCoR1 conditional knockout (cKO) mice show enhanced spatial memory. In studying the molecular mechanism, we found that spatial training decreases the association between NCoR1 and DEC2. Both NCoR1 and DEC2 suppress the expression of BDNF, integrin α3 and SGK1 through C/EBPα binding to their DNA promoters, but overexpression of DEC2 in NCoR1 cKO mice rescues the decreased expression of these proteins compared with NCoR1 loxP mice overexpressing DEC2. Further, spatial training decreases DEC2 expression. Spatial training also enhances C/EBPα binding to Bdnf, Itga3 and Sgk1 promoters, an effect also observed in fast learners, and both NCoR1 and DEC2 control C/EBPα activity. Whereas knockdown of BDNF, integrin α3 or SGK1 expression impairs spatial learning and memory, it does not affect Y-maze performance, suggesting that BDNF, integrin α3 and SGK1 are involved in long-term memory formation, but not short-term memory formation. Moreover, NCoR1 expression is regulated by the JNK/c-Jun signaling pathway. Collectively, our findings identify DEC2 as a novel interacting protein of NCoR1 and elucidate the novel roles and mechanisms of NCoR1 and DEC2 in negative regulation of spatial memory formation.


Subject(s)
Maze Learning , Mice, Knockout , Nuclear Receptor Co-Repressor 1 , Spatial Memory , Animals , Spatial Memory/physiology , Mice , Nuclear Receptor Co-Repressor 1/metabolism , Nuclear Receptor Co-Repressor 1/genetics , Maze Learning/physiology , Male , Mice, Inbred C57BL , Promoter Regions, Genetic , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Protein Serine-Threonine Kinases , Immediate-Early Proteins
4.
J Neuroinflammation ; 21(1): 149, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840141

ABSTRACT

Uncontrolled neuroinflammation mediates traumatic brain injury (TBI) pathology and impairs recovery. Interleukin-6 (IL-6), a pleiotropic inflammatory regulator, is associated with poor clinical TBI outcomes. IL-6 operates via classical-signaling through membrane-bound IL-6 receptor (IL-6R) and trans-signaling through soluble IL-6 receptor (s)IL-6R. IL-6 trans-signaling specifically contributes to neuropathology, making it a potential precision therapeutic TBI target. Soluble glycoprotein 130 (sgp130) prevents IL-6 trans-signaling, sparing classical signaling, thus is a possible treatment. Mice received either controlled cortical impact (CCI) (6.0 ± 0.2 m/s; 2 mm; 50-60ms) or sham procedures. Vehicle (VEH) or sgp130-Fc was subcutaneously administered to sham (VEH or 1 µg) and CCI (VEH, 0.25 µg or 1 µg) mice on days 1, 4, 7, 10 and 13 post-surgery to assess effects on cognition [Morris Water Maze (MWM)] and ipsilateral hemisphere IL-6 related biomarkers (day 21 post-surgery). CCI + sgp130-Fc groups (0.25 µg and 1 µg) were combined for analysis given similar behavior/biomarker outcomes. CCI + VEH mice had longer latencies and path lengths to the platform and increased peripheral zone time versus Sham + VEH and Sham + sgp130-Fc mice, suggesting injury-induced impairments in learning and anxiety. CCI + sgp130-Fc mice had shorter platform latencies and path lengths and had decreased peripheral zone time, indicating a therapeutic benefit of sgp130-Fc after injury on learning and anxiety. Interestingly, Sham + sgp130-Fc mice had shorter platform latencies, path lengths and peripheral zone times than Sham + VEH mice, suggesting a beneficial effect of sgp130-Fc, independent of injury. CCI + VEH mice had increased brain IL-6 and decreased sgp130 levels versus Sham + VEH and Sham + sgp130-Fc mice. There was no treatment effect on IL-6, sIL6-R or sgp130 in Sham + VEH versus Sham + sgp130-Fc mice. There was also no treatment effect on IL-6 in CCI + VEH versus CCI + sgp130-Fc mice. However, CCI + sgp130-Fc mice had increased sIL-6R and sgp130 versus CCI + VEH mice, demonstrating sgp130-Fc treatment effects on brain biomarkers. Inflammatory chemokines (MIP-1ß, IP-10, MIG) were increased in CCI + VEH mice versus Sham + VEH and Sham + sgp130-Fc mice. However, CCI + sgp130-Fc mice had decreased chemokine levels versus CCI + VEH mice. IL-6 positively correlated, while sgp130 negatively correlated, with chemokine levels. Overall, we found that systemic sgp130-Fc treatment after CCI improved learning, decreased anxiety and reduced CCI-induced brain chemokines. Future studies will explore sex-specific dosing and treatment mechanisms for sgp130-Fc therapy.


Subject(s)
Brain Injuries, Traumatic , Cytokine Receptor gp130 , Disease Models, Animal , Maze Learning , Mice, Inbred C57BL , Animals , Brain Injuries, Traumatic/drug therapy , Mice , Male , Cytokine Receptor gp130/metabolism , Maze Learning/drug effects , Maze Learning/physiology , Chemokines/metabolism , Interleukin-6/metabolism , Cognition/drug effects , Cognition/physiology
5.
Neurochem Res ; 49(8): 2165-2178, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824460

ABSTRACT

Patients suffering from hepatic ischemia-reperfusion injury (HIRI) frequently exhibit postoperative cognitive deficits. Our previous observations have emphasized the diurnal variation in hepatic ischemia-reperfusion injury-induced cognitive impairment, in which gut microbiota-associated hippocampal lipid metabolism plays an important role. Herein, we further investigated the molecular mechanisms involved in the process. Hepatic ischemia-reperfusion surgery was performed under morning (ZT0, 08:00) and evening (ZT12, 20:00). Fecal microbiota transplantation was used to associate HIRI model with pseudo-germ-free mice. The novel object recognition test and Y-maze test were used to assess cognitive function. 16S rRNA gene sequencing and analysis were used for microbial analysis. Western blotting was used for hippocampal protein analysis. Compared with the ZT0-HIRI group, ZT12-HIRI mice showed learning and short term memory impairment, accompanied by down-regulated expression of hippocampal CB1R, but not CB2R. Both gut microbiota composition and microbiota metabolites were significantly different in ZT12-HIRI mice compared with ZT0-HIRI. Fecal microbiota transplantation from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior and down-regulated hippocampal CB1R and ß-arrestin1. Intraperitoneal administration of CB1R inhibitor AM251 (1 mg/kg) down-regulated hippocampal CB1R and caused cognitive impairment in ZT0-HIRI mice. And intraperitoneal administration of CB1R agonist WIN 55,212-2 (1 mg/kg) up-regulated hippocampal CB1R and improved cognitive impairment in ZT12-HIRI mice. In summary, the results suggest that gut microbiota may regulate the diurnal variation of HIRI-induced cognitive function by interfering with hippocampal CB1R.


Subject(s)
Cognitive Dysfunction , Gastrointestinal Microbiome , Hippocampus , Receptor, Cannabinoid, CB1 , Reperfusion Injury , Animals , Gastrointestinal Microbiome/physiology , Hippocampus/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Reperfusion Injury/metabolism , Receptor, Cannabinoid, CB1/metabolism , Male , Mice , Mice, Inbred C57BL , Circadian Rhythm/physiology , Liver/metabolism , Fecal Microbiota Transplantation , Maze Learning/physiology
6.
Exp Brain Res ; 242(8): 1871-1879, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38864869

ABSTRACT

This study aimed to compare the effects of High-Intensity Interval Training (HIIT) performed in a single session(1xHIIT) versus three daily sessions (3xHIIT) on fitness level and behavior of aged rats. Eighteen-month-old Wistar rats were assigned to Untrained (UN), 1xHIIT, or 3xHIIT (n = 12/group). Both groups, 1xHIIT and 3xHIIT, performed 15 min of a treadmill running HIIT protocol during 8 weeks. 1xHIIT protocol consisted of a single daily session of 15 min, while the 3xHIIT performed three daily sessions of 5 min with a 4 h interval between the sessions. Morris Water Maze (MWM) task was used to evaluate spatial learning and memory. Splash test, Forced Swim test, and Elevated Plus Maze task (EPM) were used to evaluate anhedonic, depressive-like, and anxious behaviors, respectively. Rats were euthanized, and the hippocampus was harvested for western blot analyses (CaMKII and BDNF). Both HIIT protocols improved VO2max and spatial memory. Notably, only the 3xHIIT protocol attenuated anxious and depressive-like behaviors. Western blot analyses of the hippocampus revealed that both HIIT protocols increased BDNF levels. BDNF levels were higher in the 3xHIIT when compared with 1xHIIT group, and we observed increasement of the CamKII levels just in the 3x HIIT group. Therefore, this study provides evidence indicating that accumulated HIIT sessions is more effective than traditional daily HIIT sessions in improving fitness level, cognitive function, memory, inhibiting the development of mood disorders, and enhancing BDNF and CaMKII levels in the hippocampus of aged rats.


Subject(s)
Aging , Anxiety , Brain-Derived Neurotrophic Factor , Depression , High-Intensity Interval Training , Hippocampus , Rats, Wistar , Animals , Hippocampus/metabolism , Rats , Depression/metabolism , Depression/therapy , Depression/physiopathology , Aging/physiology , Aging/metabolism , Anxiety/metabolism , Anxiety/therapy , Anxiety/physiopathology , High-Intensity Interval Training/methods , Male , Brain-Derived Neurotrophic Factor/metabolism , Cognition/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Maze Learning/physiology , Physical Conditioning, Animal/physiology , Spatial Memory/physiology
7.
Elife ; 122024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899521

ABSTRACT

Animals can use a repertoire of strategies to navigate in an environment, and it remains an intriguing question how these strategies are selected based on the nature and familiarity of environments. To investigate this question, we developed a fully automated variant of the Barnes maze, characterized by 24 vestibules distributed along the periphery of a circular arena, and monitored the trajectories of mice over 15 days as they learned to navigate towards a goal vestibule from a random start vestibule. We show that the patterns of vestibule visits can be reproduced by the combination of three stochastic processes reminiscent of random, serial, and spatial strategies. The processes randomly selected vestibules based on either uniform (random) or biased (serial and spatial) probability distributions. They closely matched experimental data across a range of statistical distributions characterizing the length, distribution, step size, direction, and stereotypy of vestibule sequences, revealing a shift from random to spatial and serial strategies over time, with a strategy switch occurring approximately every six vestibule visits. Our study provides a novel apparatus and analysis toolset for tracking the repertoire of navigation strategies and demonstrates that a set of stochastic processes can largely account for exploration patterns in the Barnes maze.


Subject(s)
Maze Learning , Stochastic Processes , Animals , Maze Learning/physiology , Mice , Spatial Navigation/physiology , Mice, Inbred C57BL , Male
8.
Neuropharmacology ; 257: 110045, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885736

ABSTRACT

The endocannabinoid system (ECS) regulates neurotransmission linked to synaptic plasticity, cognition, and emotion. While it has been demonstrated that dysregulation of the ECS in adulthood is relevant not only to central nervous system (CNS) disorders such as autism spectrum disorder, cognitive dysfunction, and depression but also to brain function, there are few studies on how dysregulation of the ECS in the neonatal period affects the manifestation and pathophysiology of CNS disorders later in life. In this study, DO34, a diacylglycerol lipase alpha (DAGLα) inhibitor affecting endocannabinoid 2-AG production, was injected into C57BL/6N male mice from postnatal day (PND) 7 to PND 10, inducing dysregulation of the ECS in the neonatal period. Subsequently, we examined whether it affects neuronal function in adulthood through electrophysiological and behavioral evaluation. DO34-injected mice showed significantly decreased cognitive functions, attributed to impairment of hippocampal synaptic plasticity. The findings suggest that regulation of ECS activity in the neonatal period may induce enduring effects on adult brain function.


Subject(s)
Animals, Newborn , Arachidonic Acids , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Animals , Endocannabinoids/metabolism , Arachidonic Acids/metabolism , Glycerides/metabolism , Male , Mice , Brain/metabolism , Brain/drug effects , Brain/growth & development , Lipoprotein Lipase/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Maze Learning/drug effects , Maze Learning/physiology , Cyclohexanones
9.
Cognition ; 250: 105859, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38896998

ABSTRACT

Narrative episodic memory of movie clips can be retroactively impaired by presenting unrelated stimuli coinciding with event boundaries. This effect has been linked with rapid hippocampal processes triggered by the offset of the event, that are alternatively related either to memory consolidation or with working memory processes. Here we tested whether this effect extended to spatial memory, the temporal specificity and extent of the interference, and its effect on working- vs long-term memory. In three computerized adaptations of the Morris Water Maze, participants learned the location of an invisible target over three trials each. A second spatial navigation task was presented either immediately after finding the target, after a 10-s delay, or no second task was presented (control condition). A recall session, in which participants indicated the learned target location with 10 'pin-drop' trials for each condition, was performed after a 1-h or a 24-h break. Spatial memory was measured by the mean distance between pins and the true location. Results indicated that the immediate presentation of the second task led to worse memory performance, for both break durations, compared to the delayed condition. There was no difference in performance between the delayed presentation and the control condition. Despite this long-term memory effect, we found no difference in the rate of performance improvement during the learning session, indicating no effect of the second task on working memory. Our findings are in line with a rapid process, linked to the offset of an event, that is involved in the early stages of memory consolidation.


Subject(s)
Memory, Long-Term , Memory, Short-Term , Spatial Memory , Humans , Memory, Short-Term/physiology , Male , Adult , Young Adult , Memory, Long-Term/physiology , Female , Spatial Memory/physiology , Mental Recall/physiology , Maze Learning/physiology , Adolescent , Virtual Reality
10.
CNS Neurosci Ther ; 30(6): e14750, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898731

ABSTRACT

BACKGROUND: Tooth loss is closely related to cognitive impairment, especially affecting cognitive functions involving hippocampus. The most well-known function of the hippocampus is learning and memory, and the mechanism behind is neuroplasticity, which strongly depends on the level of brain-derived neurotrophic factor (BDNF). While research has delved into the possible mechanisms behind the loss of teeth leading to cognitive dysfunction, there are few studies on the plasticity of sensory neural pathway after tooth loss, and the changes in related indicators of synaptic plasticity still need to be further explored. METHODS: In this study, the bilateral maxillary molars were extracted in Sprague-Dawley rats of two age ranges (young and middle age) to establish occlusal support loss model; then, the spatial cognition was tested by Morris Water Maze (MWM). Quantitative real-time PCR (qPCR) and Western Blotting (WB) were used to detect BDNF, AKT, and functional proteins (viz., PSD95 and NMDAR) of hippocampal synapses. Golgi staining was used to observe changes in ascending nerve pathway. IF was used to confirm the location of BDNF and AKT expressed in hippocampus. RESULTS: MWM showed that the spatial cognitive level of rats dropped after occlusal support loss. qPCR, WB, and IF suggested that the BDNF/AKT pathway was down-regulated in the hippocampus. Golgi staining showed the neurons of ascending sensory pathway decreased in numbers. CONCLUSION: Occlusal support loss caused plastic changes in ascending nerve pathway and induced cognitive impairment in rats by down-regulating BDNF and synaptic plasticity.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Hippocampus , Neuronal Plasticity , Rats, Sprague-Dawley , Animals , Neuronal Plasticity/physiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Rats , Male , Hippocampus/metabolism , Maze Learning/physiology , Tooth Loss , Proto-Oncogene Proteins c-akt/metabolism , Disks Large Homolog 4 Protein/metabolism
11.
Peptides ; 178: 171244, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38788901

ABSTRACT

The neuropeptide relaxin-3 and its cognate receptor, relaxin family peptide-3 receptors (RXFP3), have been implicated in modulating learning and memory processes, but their specific roles remain unclear. This study utilized behavioral and molecular approaches to investigate the effects of putatively reversible blockade of RXFP3 in the ventral dentate gyrus (vDG) of the hippocampus on spatial and fear memory formation in rats. Male Wistar rats received bilateral vDG cannula implantation and injections of the RXFP3 antagonist, R3(BΔ23-27)R/I5 (400 ng/0.5 µL per side), or vehicle at specific time points before acquisition, consolidation, or retrieval phases of the Morris water maze and passive avoidance learning tasks. RXFP3 inhibition impaired acquisition in the passive avoidance task but not the spatial learning task. However, both memory consolidation and retrieval were disrupted in both tasks following RXFP3 antagonism. Ventral hippocampal levels of the consolidation-related kinase p70-S6 kinase (p70S6K) were reduced RXFP3 blockade. These findings highlight a key role for ventral hippocampal RXFP3 signaling in the acquisition, consolidation, and retrieval of spatial and emotional memories, extending previous work implicating this neuropeptide system in hippocampal memory processing.


Subject(s)
Dentate Gyrus , Fear , Rats, Wistar , Receptors, G-Protein-Coupled , Animals , Dentate Gyrus/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Male , Fear/physiology , Avoidance Learning/physiology , Avoidance Learning/drug effects , Memory/physiology , Relaxin/metabolism , Spatial Memory/physiology , Spatial Memory/drug effects , Maze Learning/physiology , Maze Learning/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Receptors, Peptide/metabolism
12.
Brain Res ; 1839: 149007, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38763505

ABSTRACT

Alzheimer's disease (AD) is a common neurodegenerative disease. Previous studies have identified the critical role of astrocytes in the progression of AD. The focus of this study revolves around clarifying the regulatory mechanism of the STAT3/EZH2/BAI1 axis in astrocytes in AD. We successfully developed a rat model of AD, and measured the learning and cognitive ability of the rats by Morris water maze experiment. HE and Nissl's staining were used for histomorphological identification of the rat hippocampus. Meanwhile, immunofluorescence and immunohistochemistry were used to detect astrocyte activation and brain-specific angiogenesis inhibitor-1 (BAI1) expression in rat hippocampal tissue, respectively. The role of STAT3/EZH2/BAI1 regulating axis in astrocyte activation and neuronal cell apoptosis was verified by establishing the co-culture system of astrocytes and neuronal cells in vitro. Western Blot (WB) was used to detect the expression of associated proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect astrocyte neurotrophic factor secretion. Hochest/PI staining and flow cytometry were used to observe neuronal apoptosis. Compared with the sham group, AD rats showed significantly decreased cognitive and learning abilities, noticeable hippocampal tissue damage, and significantly low levels of BAI1 expression. In in vitro models, BAI1 was found to inhibit astrocyte activation and enhance the secretion of neurotrophins, resulting in decrease of neurone apoptosis. The regulation of BAI1 by the STAT3/EZH2 axis was shown to affect astrocyte activation and neuronal cell apoptosis. In conclusion, this study represents the pioneering discovery that regulated by the STAT3/EZH2 axis, BAI1 suppresses astrocyte activation, thus reducing neuronal apoptosis.


Subject(s)
Alzheimer Disease , Apoptosis , Astrocytes , Enhancer of Zeste Homolog 2 Protein , Hippocampus , Neurons , Rats, Sprague-Dawley , STAT3 Transcription Factor , Animals , Astrocytes/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Apoptosis/physiology , STAT3 Transcription Factor/metabolism , Rats , Neurons/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Enhancer of Zeste Homolog 2 Protein/metabolism , Male , Disease Models, Animal , Angiogenic Proteins/metabolism , Maze Learning/physiology , Coculture Techniques , Signal Transduction/physiology
13.
Exp Neurol ; 378: 114838, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801989

ABSTRACT

OBJECTIVE: Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis results in chronic epilepsy and permanent cognitive impairment. One of the possible causes of cognitive impairment in anti-NMDAR could be aberrant neurogenesis, an established contributor to memory loss in idiopathic drug-resistant epilepsy. We developed a mouse model of anti-NMDAR encephalitis and showed that mice exposed to patient anti-NMDAR antibodies for 2 weeks developed seizures and memory loss. In the present study, we assessed the delayed effects of patient-derived antibodies on cognitive phenotype and examined the corresponding changes in hippocampal neurogenesis. METHODS: Monoclonal anti-NMDAR antibodies or control antibodies were continuously infused into the lateral ventricle of male C56BL/6J mice (8-12 weeks) via osmotic minipumps for 2 weeks. The motor and anxiety phenotypes were assessed using the open field paradigm, and hippocampal memory and learning were assessed using the object location, Y maze, and Barnes maze paradigms during weeks 1 and 3-4 of antibody washout. The numbers of newly matured granule neurons (Prox-1+) and immature progenitor cells (DCX+) as well as their spatial distribution within the hippocampus were assessed at these time points. Bromodeoxyuridine (BrdU, 50 mg/kg, i.p., daily) was injected on days 2-12 of the infusion, and proliferating cell immunoreactivity was compared in antibody-treated mice and control mice during week 4 of the washout. RESULTS: Mice infused with anti-NMDAR antibodies demonstrated spatial memory impairment during week 1 of antibody washout (p = 0.02, t-test; n = 9-11). Histological analysis of hippocampal sections from these mice revealed an increased ectopic displacement of Prox-1+ cells in the dentate hilus compared to the control-antibody-treated mice (p = 0.01; t-test). Mice exposed to anti-NMDAR antibodies also had an impairment of spatial memory and learning during weeks 3-4 of antibody washout (object location: p = 0.009; t-test; Y maze: p = 0.006, t-test; Barnes maze: p = 0.008, ANOVA; n = 8-10). These mice showed increased ratios of the low proliferating (bright) to fast proliferating (faint) BrdU+ cell counts and decreased number of DCX+ cells in the hippocampal dentate gyrus (p = 0.006 and p = 0.04, respectively; t-tests) suggesting ectopic migration and delayed cell proliferation. SIGNIFICANCE: These findings suggest that memory and learning impairments induced by patient anti-NMDAR antibodies are sustained upon removal of antibodies and are accompanied by aberrant hippocampal neurogenesis. Interventions directed at the manipulation of neuronal plasticity in patients with encephalitis and cognitive loss may be protective and therapeutically relevant.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Doublecortin Protein , Hippocampus , Maze Learning , Memory Disorders , Neurogenesis , Animals , Humans , Male , Mice , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Autoantibodies/immunology , Disease Models, Animal , Hippocampus/pathology , Maze Learning/physiology , Maze Learning/drug effects , Memory Disorders/etiology , Mice, Inbred C57BL , Neurogenesis/drug effects , Neurogenesis/physiology , Receptors, N-Methyl-D-Aspartate/immunology , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Neuroscience ; 549: 55-64, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38718917

ABSTRACT

The present research study aimed to investigate the role of Ascorbic acid (AA) on synaptic plasticity, learning, and memory impairment induced by unpredicted chronic mild stress (CUMS) in adolescent male rats. Adolescent male rats were divided into: 1) vehicle, 2) CUMS, 3-5) CUMS plus various doses of AA by oral gavage (CUMS-10/100/400 mg/kg), and 6) AA400 mg/kg by oral gavage. In Morris Water Maze, the time latency decreased, while the time spent in the target quadrant increased in CUMS group treated with AA at the dose of 400 mg/kg. In passive avoidance, the latency of entering into the dark chamber decreased in CUMS group treated with AA (400 mg/kg). In biochemical test results, nitrite and MDA significantly decreased, while thiol content, SOD, and catalase activity in CUMS group that received AA400mg/kg was increased. IL-10, BDNF and Ki67 increased, while TNF-a and AChE activity were decreased in CUMS group treated with AA simultaneously. The results of our study showed that chronic stress during adolescence could cause learning and memory disorders as well as synaptic plasticity. In addition, we showed that AA can prevent this problem by reducing oxidative stress, inflammation, increasing the amount of BDNF, and neurogenesis.


Subject(s)
Ascorbic Acid , Cognitive Dysfunction , Neuronal Plasticity , Oxidative Stress , Stress, Psychological , Animals , Male , Ascorbic Acid/pharmacology , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Rats , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Antioxidants/pharmacology , Hippocampus/drug effects , Hippocampus/metabolism , Rats, Wistar , Dietary Supplements , Brain-Derived Neurotrophic Factor/metabolism , Maze Learning/drug effects , Maze Learning/physiology , Avoidance Learning/drug effects
15.
J Neuroinflammation ; 21(1): 141, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807149

ABSTRACT

The lectin pathway (LP) of complement mediates inflammatory processes linked to tissue damage and loss of function following traumatic brain injury (TBI). LP activation triggers a cascade of proteolytic events initiated by LP specific enzymes called MASPs (for Mannan-binding lectin Associated Serine Proteases). Elevated serum and brain levels of MASP-2, the effector enzyme of the LP, were previously reported to be associated with the severity of tissue injury and poor outcomes in patients with TBI. To evaluate the therapeutic potential of LP inhibition in TBI, we first conducted a pilot study testing the effect of an inhibitory MASP-2 antibody (α-MASP-2), administered systemically at 4 and 24 h post-TBI in a mouse model of controlled cortical impact (CCI). Treatment with α-MASP-2 reduced sensorimotor and cognitive deficits for up to 5 weeks post-TBI. As previous studies by others postulated a critical role of MASP-1 in LP activation, we conducted an additional study that also assessed treatment with an inhibitory MASP-1 antibody (α-MASP-1). A total of 78 mice were treated intraperitoneally with either α-MASP-2, or α-MASP-1, or an isotype control antibody 4 h and 24 h after TBI or sham injury. An amelioration of the cognitive deficits assessed by Barnes Maze, prespecified as the primary study endpoint, was exclusively observed in the α-MASP-2-treated group. The behavioral data were paralleled by a reduction of the lesion size when evaluated histologically and by reduced systemic LP activity. Our data suggest that inhibition of the LP effector enzyme MASP-2 is a promising treatment strategy to limit neurological deficits and tissue loss following TBI. Our work has translational value because a MASP-2 antibody has already completed multiple late-stage clinical trials in other indications and we used a clinically relevant treatment protocol testing the therapeutic mechanism of MASP-2 inhibition in TBI.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Mannose-Binding Protein-Associated Serine Proteases , Mice, Inbred C57BL , Animals , Mannose-Binding Protein-Associated Serine Proteases/antagonists & inhibitors , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/psychology , Mice , Male , Cognition Disorders/etiology , Cognition Disorders/drug therapy , Maze Learning/drug effects , Maze Learning/physiology
16.
Exp Brain Res ; 242(6): 1507-1515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719948

ABSTRACT

Alzheimer's disease is a progressive neurodegenerative disorder characterized by impairments in synaptic plasticity and cognitive performance. Current treatments are unable to achieve satisfactory therapeutic effects or reverse the progression of the disease. Calcineurin has been implicated as part of a critical signaling pathway for learning and memory, and neuronal calcineurin may be hyperactivated in AD. To investigate the effects and underlying mechanisms of FK506, a calcineurin inhibitor, on Alzheimer-like behavior and synaptic dysfunction in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease, we investigated the effect of FK506 on cognitive function and synaptic plasticity in the 3 × Tg-AD transgenic mouse model of Alzheimer's disease. The results showed that FK506 treatment ameliorated cognitive deficits, as indicated by the decreased latency in the water maze, and attenuated tau hyperphosphorylation in 3 × Tg-AD mice. Treatment with FK506 also reduced the levels of certain markers of postsynaptic deficits, including PSD-95 and NR2B, and reversed the long-term potentiation deficiency and dendritic spine impairments in 3 × Tg-AD mice. These findings suggest that treatment with calcineurin inhibitors such as FK506 can be an effective therapeutic strategy to rescue synaptic deficit and cognitive impairment in familial Alzheimer's disease and related tauopathies.


Subject(s)
Alzheimer Disease , Calcineurin Inhibitors , Disease Models, Animal , Mice, Transgenic , Tacrolimus , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Tacrolimus/pharmacology , Calcineurin Inhibitors/pharmacology , Mice , Maze Learning/drug effects , Maze Learning/physiology , Calcineurin/metabolism , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , tau Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Male , Synapses/drug effects , Synapses/metabolism , Disks Large Homolog 4 Protein/metabolism
17.
Exp Brain Res ; 242(7): 1709-1719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806710

ABSTRACT

Exercise can induce beneficial improvements in cognition. However, the effects of different modes and intensities of exercise have yet to be explored in detail. This study aimed to identify the effects of different exercise modes (aerobic and resistance) and intensities (low and high) on cognitive performance, adult hippocampal neurogenesis and synaptic plasticity in mice. A total of 40 C57BL/6J mice were randomised into 5 groups (n = 8 mice per group): control, low-intensity aerobic exercise, high-intensity aerobic exercise, low-intensity resistance exercise, and high-intensity resistance exercise. The aerobic exercise groups underwent treadmill training, while the resistance exercise groups underwent ladder climbing training. At the end of the exercise period, cognitive performance was assessed by the Y-maze and Barnes maze. In addition, adult hippocampal neurogenesis was evaluated immunohistochemically by 5-bromo-2'-deoxyuridine (BrdU)/ neuronal nuclei (NeuN) co-labeling. The levels of synaptic plasticity-related proteins in the hippocampus, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95), were analyzed by western blotting. Our results showed no significant differences in cognitive performance among the groups. However, high-intensity aerobic exercise significantly increased hippocampal adult neurogenesis relative to the control. A trend towards increased adult neurogenesis was observed in the low-intensity aerobic group compared to the control group. No significant changes in synaptic plasticity were observed among all groups. Our results indicate that high-intensity aerobic exercise may be the most potent stimulator of adult hippocampal neurogenesis.


Subject(s)
Cognition , Hippocampus , Mice, Inbred C57BL , Neurogenesis , Neuronal Plasticity , Physical Conditioning, Animal , Synaptophysin , Animals , Neurogenesis/physiology , Neuronal Plasticity/physiology , Hippocampus/physiology , Physical Conditioning, Animal/physiology , Mice , Male , Cognition/physiology , Synaptophysin/metabolism , Maze Learning/physiology , Disks Large Homolog 4 Protein/metabolism
18.
CNS Neurosci Ther ; 30(5): e14719, 2024 May.
Article in English | MEDLINE | ID: mdl-38783536

ABSTRACT

BACKGROUND: Methamphetamine (METH) is a psychostimulant substance with highly addictive and neurotoxic effects, but no ideal treatment option exists to improve METH-induced neurocognitive deficits. Recently, mesenchymal stem cells (MSCs)-derived exosomes have raised many hopes for treating neurodegenerative sequela of brain disorders. This study aimed to determine the therapeutic potential of MSCs-derived exosomes on cognitive function and neurogenesis of METH-addicted rodents. METHODS: Male BALB/c mice were subjected to chronic METH addiction, followed by intravenous administration of bone marrow MSCs-derived exosomes. Then, the spatial memory and recognition memory of animals were assessed by the Barnes maze and the novel object recognition test (NORT). The neurogenesis-related factors, including NeuN and DCX, and the expression of Iba-1, a microglial activation marker, were assessed in the hippocampus by immunofluorescence staining. Also, the expression of inflammatory cytokines, including TNF-α and NF-κB, were evaluated by western blotting. RESULTS: The results showed that BMSCs-exosomes improved the time spent in the target quadrant and correct-to-wrong relative time in the Barnes maze. Also, NORT's discrimination index (DI) and recognition index (RI) were improved following exosome therapy. Additionally, exosome therapy significantly increased the expression of NeuN and DCX in the hippocampus while decreasing the expression of inflammatory cytokines, including TNF-α and NF-κB. Besides, BMSC-exosomes down-regulated the expression of Iba-1. CONCLUSION: Our findings indicate that BMSC-exosomes mitigated METH-caused cognitive dysfunction by improving neurogenesis and inhibiting neuroinflammation in the hippocampus.


Subject(s)
Amphetamine-Related Disorders , Doublecortin Protein , Exosomes , Hippocampus , Mesenchymal Stem Cells , Methamphetamine , Mice, Inbred BALB C , Neurogenesis , Animals , Exosomes/metabolism , Male , Neurogenesis/drug effects , Neurogenesis/physiology , Mice , Methamphetamine/toxicity , Amphetamine-Related Disorders/therapy , Amphetamine-Related Disorders/psychology , Amphetamine-Related Disorders/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Cognition/drug effects , Cognition/physiology , Maze Learning/drug effects , Maze Learning/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Nerve Tissue Proteins/metabolism , Central Nervous System Stimulants/toxicity , Spatial Memory/drug effects , Spatial Memory/physiology , Microfilament Proteins/metabolism , Mesenchymal Stem Cell Transplantation/methods , Calcium-Binding Proteins , DNA-Binding Proteins
19.
Physiol Behav ; 283: 114595, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38810714

ABSTRACT

Isolation of sex differences as a key characteristic underlying neurobehavioral differentiation is an essential component of studies in neuroscience. The current study sought to address this concern by observing behavioral differences using an automated home cage system for neurobehavioral assessment, a method rapidly increasing in use due to advances in technology and advantages such as reduced handling stress and cross-lab variability. Sex differences in C57BL/6 mice arose for motor activity and circadian-linked behavior, with females being more active compared to males, and males having a stronger anticipatory increase in activity leading up to the onset of the light phase compared to females. These activity differences were observed not only across the lifespan, but also in different genetic background mouse strains across different testing sites showing the generalizability and robustness of these observed effects. Activity differences were also observed in performance on a spatial learning and reversal task with females making more responses and receiving a corresponding elevation in reward pellets. Notably, there were no sex differences in learning nor achieved accuracy, suggesting these observed effects were predominantly in activity. The outcomes of this study align with previous reports showcasing differences in activity between males and females. The comparison across strains and testing sites showed robust and reproducible differences in behavior between female and male mice that are relevant to consider when designing behavioral studies. Furthermore, the observed sex differences in performance on the learning and reversal procedure raise concern for interpretation of behavior differences between sexes due to the attribution of these differences to motor activity rather than cognition.


Subject(s)
Cognition , Mice, Inbred C57BL , Motor Activity , Sex Characteristics , Animals , Female , Male , Motor Activity/physiology , Cognition/physiology , Mice , Circadian Rhythm/physiology , Behavior, Animal/physiology , Reversal Learning/physiology , Spatial Learning/physiology , Maze Learning/physiology
20.
Hippocampus ; 34(7): 357-377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38770779

ABSTRACT

The hippocampus (HPC) and retrosplenial cortex (RSC) are key components of the brain's memory and navigation systems. Lesions of either region produce profound deficits in spatial cognition and HPC neurons exhibit well-known spatial firing patterns (place fields). Recent studies have also identified an array of navigation-related firing patterns in the RSC. However, there has been little work comparing the response properties and information coding mechanisms of these two brain regions. In the present study, we examined the firing patterns of HPC and RSC neurons in two tasks which are commonly used to study spatial cognition in rodents, open field foraging with an environmental context manipulation and continuous T-maze alternation. We found striking similarities in the kinds of spatial and contextual information encoded by these two brain regions. Neurons in both regions carried information about the rat's current spatial location, trajectories and goal locations, and both regions reliably differentiated the contexts. However, we also found several key differences. For example, information about head direction was a prominent component of RSC representations but was only weakly encoded in the HPC. The two regions also used different coding schemes, even when they encoded the same kind of information. As expected, the HPC employed a sparse coding scheme characterized by compact, high contrast place fields, and information about spatial location was the dominant component of HPC representations. RSC firing patterns were more consistent with a distributed coding scheme. Instead of compact place fields, RSC neurons exhibited broad, but reliable, spatial and directional tuning, and they typically carried information about multiple navigational variables. The observed similarities highlight the closely related functions of the HPC and RSC, whereas the differences in information types and coding schemes suggest that these two regions likely make somewhat different contributions to spatial cognition.


Subject(s)
Hippocampus , Neurons , Rats, Long-Evans , Animals , Hippocampus/physiology , Hippocampus/cytology , Male , Neurons/physiology , Action Potentials/physiology , Rats , Space Perception/physiology , Maze Learning/physiology , Spatial Navigation/physiology , Cerebral Cortex/physiology , Cerebral Cortex/cytology
SELECTION OF CITATIONS
SEARCH DETAIL