Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.553
Filter
1.
Sci Rep ; 14(1): 13901, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886454

ABSTRACT

Eucommia ulmoides is a traditional Chinese herbal medicine, with pharmacological effects such as lowering blood pressure and enhancing immune function. The effects of dietary Eucommia ulmoides polysaccharide (EUP) on immune function and meat quality were studied in Songliao Black Pigs. Blood lymphocyte counts and percentage, concentrations of serum total protein and of albumin increased, whereas those of urea nitrogen and triglyceride decreased. White blood cell and lymphocyte counts, and serum IgA, IgE, IgG2 a and IFN-γ increased. Average daily weight gain, slaughter weight, lean meat rate and cooked meat rate increased, whereas pH24, feed-weight ratio, fat rate, yellowness (b#) and centrifugal dehydration rate decreased. Transcriptome sequencing of longissimus dorsi muscle detected 32 differentially expressed genes (DEGs), of which 26 were up-regulated and 6 down-regulated. A total of 19 genes were differentially expressed in the four groups, 18 of which were up-regulated. The DEGs included ADAMTS4, PER1, STAC, SERPINE1, FASN, THRSP, SP7 and KRT80 and the protein interaction network showed 20 up-regulated nodes, three down-regulated nodes and 14 DEGs. GO functional annotation and enrichment analysis showed that 34 items were significantly enriched, including transferase activity, actin binding, acetyl coenzyme A, acyl coenzyme A metabolism, adipose tissue development and acyl glycerol homeostasis. KEGG pathway analysis showed that the AMPK and PPAR signaling pathways were enriched. Dietary Eucommia polysaccharide enhanced immune function in Songliao Black Pigs, improved growth and carcass performance, increased the expression of genes related to meat quality traits and improved meat quality.


Subject(s)
Eucommiaceae , Polysaccharides , Animals , Polysaccharides/pharmacology , Eucommiaceae/chemistry , Swine , Animal Feed/analysis , Meat/analysis , Transcriptome , Dietary Supplements , Pork Meat/analysis , Gene Expression Profiling , Diet/veterinary
2.
Int J Mol Sci ; 25(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892012

ABSTRACT

A key element for the cost-effective development of cultured meat is a cell line culturable in serum-free conditions to reduce production costs. Heme supplementation in cultured meat mimics the original meat flavor and color. This study introduced a bacterial extract generated from Corynebacterium that was selected for high-heme expression by directed evolution. A normal porcine cell line, PK15, was used to apply the bacterial heme extract as a supplement. Consistent with prior research, we observed the cytotoxicity of PK15 to the heme extract at 10 mM or higher. However, after long-term exposure, PK15 adapted to tolerate up to 40 mM of heme. An RNA-seq analysis of these heme-adapted PK15 cells (PK15H) revealed a set of altered genes, mainly involved in cell proliferation, metabolism, and inflammation. We found that cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), lactoperoxidase (LPO), and glutathione peroxidase 5 (GPX5) were upregulated in the PK15H heme dose dependently. When we reduced serum serially from 2% to serum free, we derived the PK15H subpopulation that was transiently maintained with 5-10 mM heme extract. Altogether, our study reports a porcine cell culturable in high-heme media that can be maintained in serum-free conditions and proposes a marker gene that plays a critical role in this adaptation process.


Subject(s)
Heme , Animals , Swine , Heme/metabolism , Cell Line , Culture Media, Serum-Free , Cell Proliferation/drug effects , Meat/analysis , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Cell Culture Techniques/methods , In Vitro Meat
3.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892214

ABSTRACT

Jeryak is the F1 generation of the cross between Gannan yak and Jersey cattle, which has the advantages of fast growth and high adaptability. The growth and development of skeletal muscle is closely linked to meat production and the quality of meat. However, the molecular regulatory mechanisms of muscle growth differences between Gannan yak and Jeryak analyzed from the perspective of chromatin opening have not been reported. In this study, ATAC-seq was used to analyze the difference of chromatin openness in longissimus muscle of Gannan yak and Jeryak. It was found that chromatin accessibility was more enriched in Jeryak compared to Gannan yak, especially in the range of the transcription start site (TSS) ± 2 kb. GO and KEGG enrichment analysis indicate that differential peak-associated genes are involved in the negative regulation of muscle adaptation and the Hippo signaling pathway. Integration analysis of ATAC-seq and RNA-seq revealed overlapping genes were significantly enriched during skeletal muscle cell differentiation and muscle organ morphogenesis. At the same time, we screened FOXO1, ZBED6, CRY2 and CFL2 for possible involvement in skeletal muscle development, constructed a genes and transcription factors network map, and found that some transcription factors (TFs), including YY1, KLF4, KLF5 and Bach1, were involved in skeletal muscle development. Overall, we have gained a comprehensive understanding of the key factors that impact skeletal muscle development in various breeds of cattle, providing new insights for future analysis of the molecular regulatory mechanisms involved in muscle growth and development.


Subject(s)
Muscle, Skeletal , RNA-Seq , Animals , Cattle/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Chromatin Immunoprecipitation Sequencing , Muscle Development/genetics , Chromatin/genetics , Chromatin/metabolism , Meat/analysis , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Food Chem ; 454: 139645, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38833823

ABSTRACT

Herein, we investigated the potential of REIMS analysis for classifying muscle composition and meat sensory quality. The study utilized 116 samples from 29 crossbred Angus × Salers, across three muscle types. Prediction models were developed combining REIMS fingerprints and meat quality metrics. Varying efficacy was observed across REIMS discriminations - muscle type (71 %), marbling level (32 %), untrained consumer evaluated tenderness (36 %), flavor liking (99 %) and juiciness (99 %). Notably, REIMS demonstrated the ability to classify 116 beef across four Meat Standards Australia grades with an overall accuracy of 37 %. Specifically, "premium" beef could be differentiated from "unsatisfactory", "good everyday" and "better than everyday" grades with accuracies of 99 %, 84 %, and 62 %, respectively. Limited efficacy was observed however, in classifying trained panel evaluated sensory quality and fatty acid composition. Additionally, key predictive features were tentatively identified from the REIMS fingerprints primarily comprised of molecular ions present in lipids, phospholipids, and amino acids.


Subject(s)
Taste , Cattle , Animals , Humans , Mass Spectrometry , Australia , Fatty Acids/analysis , Fatty Acids/chemistry , Muscle, Skeletal/chemistry , Meat/analysis , Amino Acids/analysis , Amino Acids/chemistry
5.
Food Res Int ; 188: 114465, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823862

ABSTRACT

Plant-based meat alternatives (PBMAs) are increasingly popular and may contribute towards reduction of negative environmental impacts associated with the meat industry. Inferior sensory characteristics of PBMAs, compared to conventional meat products, remain a barrier for uptake of these products. This study aimed to profile a wide range of PBMAs for perceived similarity to meat, consumer liking, emotional response and sensory experience, and to determine consumer drivers of liking for this product category. Twenty-one PBMAs, spanning a broad range of product types (burger patties, sausages, meatball alternatives, chicken/beef pieces, bacon alternative, turkey roast alternative) and main protein ingredients (extruded plant proteins, tofu, or legumes/vegetables) representative of PBMAs available to Aotearoa New Zealand consumers, were tasted and evaluated by 140 Aotearoa New Zealand residents. Samples ranged widely in their perceived similarity to meat (median value range: 1.0-4.0 on a 5-point-scale) and overall liking ratings (mean ± SD, range: 35.1 ± 1.2--77.7 ± 17.4 on a 100-point hedonic scale). Overall liking ratings were driven mostly by liking for flavour, followed by texture, and less so by appearance. Sensorially, sample differentiation was mostly associated with variation in meat-related flavours and textures, or vegetable-related attributes. Notably meat flavour was the main driver of liking, and a very strong relationship (r = 0.92) was observed between perceived similarity to meat and overall sample liking ratings. Meat-like samples were also associated with positive emotional terms, whereas samples made from wholefoods were associated with negative emotional terms. Textural terms ('gluey/slimy', 'pasty/doughy') associated with wholefood products were also negative drivers for liking, and should be avoided in future PBMA products. In conclusion, the general population maintains a strong preference for PBMAs that are similar to meat, validating ongoing efforts to improve the meat-like properties of new and emerging products. PBMAs made from wholefoods require extensive product development to achieve consumer satisfaction across the category.


Subject(s)
Consumer Behavior , Food Preferences , Meat Products , Taste , Humans , Adult , Male , Female , Middle Aged , Young Adult , Meat Products/analysis , New Zealand , Adolescent , Aged , Meat/analysis , Emotions , Meat Substitutes
6.
Anim Sci J ; 95(1): e13967, 2024.
Article in English | MEDLINE | ID: mdl-38924234

ABSTRACT

In Japan, the promotion of effective use of many wild deer as food resource has been conducted. However, they are not necessarily utilized effectively. Thus, we focused physiologically functional compounds to find characteristics of Sika deer meats (commercially available) obtained from different regions such as Hokkaido, Wakayama, Tokushima, and Miyazaki prefectures in Japan, making it a valuable resource for future studies and applications. The amount of carnosine, anserine, and balenine in muscle of deer from Wakayama prefecture was significantly lower than that in muscle of deer from other prefectures. The differences of amount of imidazole dipeptides in different prefectures seems to be caused by feed, rearing environment, and breed. The amount of carnitine in deer meat from Hokkaido was significantly lower than that in muscle of deer from other prefectures, while the amount of acetyl-carnitine in deer meat from Miyazaki prefectures was significantly higher than that from other prefectures. The amounts of glutamine, ornithine, and 3-methylhistidine in muscles of deer from Wakayama prefectures were significantly higher than those in muscle of deer from other prefectures. These results might be caused by differences in feeding habits, habitat, the muscle types, and subspecies of deer obtained from four regions in Japan.


Subject(s)
Carnosine , Deer , Meat , Animals , Japan , Meat/analysis , Carnosine/analysis , Carnosine/metabolism , Carnitine/analysis , Ornithine/analysis , Glutamine/analysis , Glutamine/metabolism , Histidine/analysis , Histidine/metabolism , Anserine/analysis , Feeding Behavior , Muscle, Skeletal/metabolism , Muscle, Skeletal/chemistry , Food Analysis
7.
Sensors (Basel) ; 24(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38931722

ABSTRACT

This study aimed to fabricate and characterize a novel colorimetric indicator designed to detect ammonia (NH3) and monitor meat freshness. The sensing platform was constructed using electrospun nanofibers made from polylactic acid (PLA), which were then impregnated with anthocyanins as a natural pH-sensitive dye, extracted from red cabbage. This research involved investigating the relationship between the various concentrations of anthocyanins and the colorimetric platform's efficiency when exposed to ammonia vapor. Scanning electron microscope (SEM) results were used to examine the morphology and structure of the nanofiber mats before and after the dip-coating process. The study also delved into the selectivity of the indicator when exposed to various volatile organic compounds (VOCs) and their stability under extreme humidity levels. Furthermore, the platform's sensitivity was evaluated as it encountered ammonia (NH3) in concentrations ranging from 1 to 100 ppm, with varying dye concentrations. The developed indicator demonstrated an exceptional detection limit of 1 ppm of MH3 within just 30 min, making it highly sensitive to subtle changes in gas concentration. The indicator proved effective in assessing meat freshness by detecting spoilage levels in beef over time. It reliably identified spoilage after 10 h and 7 days, corresponding to bacterial growth thresholds (107 CFU/mL), both at room temperature and in refrigerated environments, respectively. With its simple visual detection mechanism, the platform offered a straightforward and user-friendly solution for consumers and industry professionals alike to monitor packaged beef freshness, enhancing food safety and quality assurance.


Subject(s)
Ammonia , Colorimetry , Food Packaging , Red Meat , Colorimetry/methods , Food Packaging/methods , Ammonia/chemistry , Ammonia/analysis , Cattle , Red Meat/analysis , Red Meat/microbiology , Animals , Nanofibers/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Polyesters/chemistry , Anthocyanins/chemistry , Meat/analysis , Meat/microbiology
8.
Biosens Bioelectron ; 261: 116498, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38878697

ABSTRACT

The World Anti-Doping Agency (WADA) has prohibited the use of clenbuterol (CLN) because it induces anabolic muscle growth while potentially causing adverse effects such as palpitations, anxiety, and muscle tremors. Thus, it is vital to assess meat quality because, athletes might have positive test for CLN even after consuming very low quantity of CLN contaminated meat. Numerous materials applied for CLN monitoring faced potential challenges like sluggish ion transport, non-uniform ion/molecule movement, and inadequate electrode surface binding. To overcome these shortcomings, herein we engineered bimetallic zeolitic imidazole framework (BM-ZIF) derived N-doped porous carbon embedded Co nanoparticles (CN-CoNPs), dispersed on conductive cellulose acetate-polyaniline (CP) electrospun nanofibers for sensitive electrochemical monitoring of CLN. Interestingly, the smartly designed CN-CoNPs wrapped CP (CN-CoNPs-CP) electrospun nanofibers offers rapid diffusion of CLN molecules to the sensing interface through amine and imine groups of CP, thus minimizing the inhomogeneous ion transportation and inadequate electrode surface binding. Additionally, to synchronize experiments, machine learning (ML) algorithms were applied to optimize, predict, and validate voltametric current responses. The ML-trained sensor demonstrated high selectivity, even amidst interfering substances, with notable sensitivity (4.7527 µA/µM/cm2), a broad linear range (0.002-8 µM), and a low limit of detection (1.14 nM). Furthermore, the electrode exhibited robust stability, retaining 98.07% of its initial current over a 12-h period. This ML-powered sensing approach was successfully employed to evaluate meat quality in terms of CLN level. To the best of our knowledge, this is the first study of using ML powered system for electrochemical sensing of CLN.


Subject(s)
Biosensing Techniques , Cellulose , Clenbuterol , Cobalt , Machine Learning , Nanofibers , Clenbuterol/analysis , Nanofibers/chemistry , Biosensing Techniques/methods , Cellulose/chemistry , Cellulose/analogs & derivatives , Cobalt/chemistry , Animals , Meat/analysis , Metal Nanoparticles/chemistry , Aniline Compounds/chemistry , Electrochemical Techniques/methods , Food Contamination/analysis , Food Analysis/methods , Food Analysis/instrumentation , Limit of Detection , Carbon/chemistry
9.
Food Res Int ; 190: 114566, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945597

ABSTRACT

This study assessed water relaxometry of beef exposed to different ageing techniques by examining the inner and surface regions using time-domain nuclear magnetic resonance (TD-NMR) relaxometry. Beef strip loins were aged under vacuum (Wet), under vacuum using moisture absorbers (Abs), under vacuum using moisture absorbers and with mechanical tenderisation (AbsTend), or without any packaging (Dry). The ageing technique significantly influenced various meat parameters, including dehydration, total loss, and the moisture content of the meat surface. The transverse (T2) relaxation times provided a more sensitive indicator of the changes in meat water relaxometry than the longitudinal (T1) relaxation times. The Dry samples exhibited distinct differences in the T2 signals between the surface and inner regions of the meat. In particular, for the inner region, there were significant differences in signal areas between the Wet and Dry samples, and the Abs and AbsTend samples were positioned closely together between the Dry and Wet samples. The principal component analysis supported these findings: it indicated some differentiation among the ageing techniques in the score plot, but the differentiation was more pronounced when analysing the surface region. Additionally, there was a strong correlation between dehydration and the T2 values, leading to a clustering of the samples based on the ageing technique. The overlap between the Abs and AbsTend samples, situated between the Dry and Wet samples, suggests the potential of these treatments to produce meat with properties that are intermediate to Wet and Dry meat. Furthermore, tenderisation did not lead to greater dehydration.


Subject(s)
Food Handling , Magnetic Resonance Spectroscopy , Water , Water/chemistry , Animals , Cattle , Magnetic Resonance Spectroscopy/methods , Food Handling/methods , Vacuum , Red Meat/analysis , Time Factors , Meat/analysis , Principal Component Analysis
10.
Food Res Int ; 190: 114581, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945601

ABSTRACT

Microplastics (MPs) pose a significant threat to livestock health. Yet, the roles of polystyrene MPs (PS-MPs) on meat quality and skeletal muscle development in pigs have not been fully determined. To investigate the effect of PS-MPs on skeletal muscle, piglets were given diets supplementation with 0 mg/kg (CON group), 75 mg/kg (75 mg/kg PS-MPs group), and 150 mg/kg PS-MPs (150 mg/kg PS-MPs group), respectively. The results indicated that the average daily gain (ADG) of piglets in the 150 mg/kg PS-MPs group was significantly lower than that in the CON group. No significant differences were observed in the final body weight and ADG between the CON group and the 75 mg/kg PS-MPs group. Piglets in the 150 mg/kg PS-MPs group exhibited decreased meat redness index and type I muscle fiber density. Metabolomic analysis revealed that the contents of meat flavor compounds carnosine, beta-alanine, palmitic acid, and niacinamide in muscle were lower in the 150 mg/kg PS-MPs group than in the CON group. Additionally, piglets subjected to 150 mg/kg PS-MPs exhibited impaired muscle angiogenesis. Further analysis indicated that PS-MPs exposure up-regulated thrombospondin 1 (THBS1) expression by inhibiting THBS1 mRNA and protein degradation, thereby disrupting skeletal muscle angiogenesis. These findings indicate that PS-MPs exposure adversely affects meat quality and hinders skeletal muscle angiogenesis in pigs, providing deeper insights into the detrimental effects of PS-MPs on meat quality and skeletal muscle development.


Subject(s)
Microplastics , Muscle, Skeletal , Polystyrenes , Thrombospondin 1 , Animals , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Thrombospondin 1/metabolism , Swine , Meat/analysis , Neovascularization, Physiologic/drug effects , Carnosine/pharmacology , Animal Feed , Food Quality , Food Contamination/analysis , Male , Angiogenesis
11.
Sci Rep ; 14(1): 14414, 2024 06 22.
Article in English | MEDLINE | ID: mdl-38909163

ABSTRACT

Use of brown seaweed (Ecklonia maxima) as a nutraceutical source in indigenous chicken diets is limited by high dietary fibre levels. Inoculating seaweeds with oyster mushroom (Pleurotus ostreatus) spawn (OMS) could enhance the utility of the spent mushroom substrate (SMS). This study investigated the effect of feeding incremental levels of brown seaweed SMS on growth performance, physiological responses, and meat quality parameters in Boschveld roosters. A total of 324, 4-week-old Boschveld roosters were weighed and randomly allotted to 36 pens (9 birds per pen) to produce six replicates per dietary treatment. The diets were formulated as follows: a standard grower diet (CON); and CON containing 150 g/kg of brown seaweed inoculated with OMS at 0 (SMS0), 20 (SMS20), 30 (SMS30), 40 (SMS40) and 50% (SMS50). Birds fed diet CON had the least feed intake (p < 0.05) than all the other SMS treatment levels in weeks 7, 8, 12, 14 and 15. Diet SMS40 promoted higher (p < 0.05) body weight gain (BWG) than CON in weeks 6, 7, 9 and 14. Gain-to-feed ratio linearly increased in weeks 7 [R2 = 0.288; p = 0.010], 11 [R2 = 0.581, p = 0.0001] and 14 [R2 = 0.389, p = 0.004], respectively. Quadratic responses (p < 0.05) were observed for BWG in week 5, white blood cells, heterophils, platelets, lymphocytes, monocytes, and relative spleen and large intestine weights as OMS levels increased. Linear increases were recorded for slaughter [R2 = 0.197, p = 0.017] and breast weights [R2 = 0.197, p = 0.020] as OMS levels increased. Diet SMS0 promoted higher (p < 0.05) relative caeca weights than the CON and SMS treatment groups. Neither quadratic nor linear responses (p > 0.05) were observed for breast meat quality parameters. In conclusion, feeding brown seaweed SMS improved growth performance and slaughter weight, altered some blood parameters and internal organs, without affecting breast meat quality of Boschveld roosters. Based on the quadratic response for BWG, the optimum OMS level was deduced at 20% in a brown seaweed-based Boschveld rooster diet.


Subject(s)
Animal Feed , Chickens , Meat , Seaweed , Animals , Chickens/growth & development , Meat/analysis , Animal Feed/analysis , Diet/veterinary , Pleurotus/growth & development , Male , Dietary Supplements , Animal Nutritional Physiological Phenomena
12.
Compr Rev Food Sci Food Saf ; 23(4): e13392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38865212

ABSTRACT

Cultured meat, which involves growing meat in a laboratory rather than breeding animals, offers potential benefits in terms of sustainability, health, and animal welfare compared to conventional meat production. However, the cultured meat production process involves several stages, each with potential hazards requiring careful monitoring and control. Microbial contamination risks exist in the initial cell collection from source animals and the surrounding environment. During cell proliferation, hazards may include chemical residues from media components such as antibiotics and growth factors, as well as microbial issues from improper bioreactor sterilization. In the differentiation stage where cells become muscle tissue, potential hazards include residues from scaffolding materials, microcarriers, and media components. Final maturation and harvesting stages risk environmental contamination from nonsterile conditions, equipment, or worker handling if proper aseptic conditions are not maintained. This review examines the key microbiological and chemical hazards that must be monitored and controlled during the manufacturing process for cultured meats. It describes some conventional and emerging novel techniques that could be applied for the detection of microbial and chemical hazards in cultured meat. The review also outlines the current evolving regulatory landscape around cultured meat and explains how thorough detection and characterization of microbiological and chemical hazards through advanced analytical techniques can provide crucial data to help develop robust, evidence-based food safety regulations specifically tailored for the cultured meat industry. Implementing new digital food safety methods is recommended for further research on the sensitive and effective detection of microbiological and chemical hazards in cultured meat.


Subject(s)
Meat , Animals , Meat/microbiology , Meat/analysis , Food Contamination/analysis , Food Microbiology/methods , Food Safety/methods , In Vitro Meat
13.
Nutrients ; 16(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38892581

ABSTRACT

BACKGROUND: The interest in meat alternatives has increased over the years as people embrace more varied food choices because of different reasons. This study aims to analyse the nutritional composition of ready-to-use meat alternatives and compare them with meat (products). METHODS: Nutritional composition values were collected in 2022 of all ready-to-use meat alternatives in Belgian supermarkets, as well as their animal-based counterparts. A one-sample t-test was performed to test the nutritional composition of ready-to-use meat alternatives against norm values, while an independent samples t-test was used to make the comparison with meat. RESULTS: Minced meat and pieces/strips/cubes scored favourably on all norm values. Cheeseburgers/schnitzels, nut/seed burgers and sausages contained more than 10 g/100 g total fat. The saturated fat and salt content was lower than the norm value in each category. Legume burgers/falafel contained less than 10 g/100 g protein. Vegetarian/vegan minced meat and bacon contained fewer calories, total and saturated fat, and more fibre compared to their animal-based counterparts. CONCLUSIONS: Minced meat and pieces/strips/cubes came out as the most favourable categories regarding nutritional composition norm values. Vegetarian/vegan steak came out the least favourable compared to steak, while vegetarian/vegan minced meat and vegetarian/vegan bacon came out the most favourable compared to their animal-based counterparts.


Subject(s)
Nutritive Value , Belgium , Humans , Meat Products/analysis , Fast Foods/analysis , Diet, Vegetarian , Dietary Fats/analysis , Meat/analysis , Animals , Supermarkets , Meat Substitutes
14.
J Hazard Mater ; 475: 134843, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38870859

ABSTRACT

ß-Carboline heterocyclic amines (ß-CHAs), known for their synergistic neurotoxic and carcinogenic effects, are predominantly produced by humans through cigarette smoke and food and are found particularly in meats cooked at high temperatures. Few studies have explored the differences in the mechanisms of accumulation of ß-CHAs in smoked meat and meat processed at high temperatures. In this research, the concentration of ß-CHAs in smoked meats prepared using a variety of wood materials was measured using LCMS/MS. Additionally, key volatile organic compound markers associated with ß-CHAs accumulation in smoke were identified through GCMS and multivariate statistical analysis and subsequently confirmed in a chemical simulation system. Three types of strainers, each with a distinct aperture size, were used to assess the efficacy of particle filtration in reducing ß-CHAs levels in smoked meat. The findings indicated that smoke exposure indeed increases the ß-CHAs content of meat. However, only the strainer capable of filtering PM2.5-sized particles reduced the amount of ß-CHAs present compared to the control group. In contrast, strainers with larger pore sizes facilitated excessive accumulation of ß-CHAs. The presence of aldehydes such as 1 H-pyrrole-2-carboxaldehyde, 5-methylfurfural, benzaldehyde, furfural, and nonanal exhibited a positive correlation with the accumulation of ß-CHAs. Conversely, phenolic compounds, including 2-methoxy-4-vinylphenol, 2-methoxy-5-methylphenol, p-cresol, phenol, 2-methoxy-4-(1-propenyl)-, (Z)-, phenol, 3-ethyl-, and phenol, 4-ethyl-2-methoxy-, showed a negative correlation. Thus, filters made from chelated carbonyl trap materials both chemically and physically disrupt the buildup of ß-CHAs in smoked meats. The use of this approach will not only improve the quality of these products but will also contribute to decreasing the amount of inhalation pollutants released into the environment.


Subject(s)
Carbolines , Smoke , Carbolines/chemistry , Smoke/analysis , Amines/chemistry , Amines/analysis , Animals , Meat/analysis , Meat Products/analysis , Cooking , Wood/chemistry , Particulate Matter/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Heterocyclic Compounds/analysis
15.
Genes (Basel) ; 15(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927682

ABSTRACT

As societal progress elevates living standards, the focus on meat consumption has shifted from quantity to quality. In broiler production, optimizing meat quality has become paramount, prompting efforts to refine various meat attributes. Recent advancements in sequencing technologies have revealed the genome's complexity, surpassing previous conceptions. Through experimentation, numerous genetic elements have been linked to crucial meat quality traits in broiler chickens. This review synthesizes the current understanding of genetic determinants associated with meat quality attributes in broilers. Researchers have unveiled the pivotal insights detailed herein by employing diverse genomic methodologies such as QTL-based investigations, candidate gene studies, single-nucleotide polymorphism screening, genome-wide association studies, and RNA sequencing. These studies have identified numerous genes involved in broiler meat quality traits, including meat lightness (COL1A2 and ACAA2), meat yellowness (BCMO1 and GDPD5), fiber diameter (myostatin and LncIRS1), meat pH (PRDX4), tenderness (CAPN1), and intramuscular fat content (miR-24-3p and ANXA6). Consequently, a comprehensive exploration of these genetic elements is imperative to devise novel molecular markers and potential targets, promising to revolutionize strategies for enhancing broiler meat quality.


Subject(s)
Chickens , Genome-Wide Association Study , Meat , Quantitative Trait Loci , Animals , Chickens/genetics , Meat/analysis , Meat/standards , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Food Quality
16.
Vet Med Sci ; 10(4): e1493, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923740

ABSTRACT

BACKGROUND: The current broilers have been greatly optimized for weight gain and breast yield, which necessitates the provision of nutrients-dense diets for maximum potential. OBJECTIVES: The current study aimed to evaluate the effect of finisher diet nutrients density (ND) on energy and protein efficiency, productive and economic performance and breast meat quality of broilers raised until different slaughter age. METHODS: A total of 600 23-day-old broiler male chicks (Cobb-500) were assigned to 10 treatments with six replicates and 10 birds each. Experimental treatments were included factorial arrangement of five increment (2.5%) levels of finisher diet ND (92.5%, 95%, 97.5%, 100% and 102.5% as strain recommendation) and slaughtered at 38 or 46 days of age. The relative difference in the energy level of experimental diets was used to increase ND levels at the same ratio. RESULTS: Feed intake (FI) and breast meat quality traits exception water holding capacity (WHC) were not affected by finisher diet ND. In response to increasing finisher diet ND, energy and protein efficiency, productive traits, bio-economic index (BEI) and breast relative weight (BRW) linearly improved. However, residual feed intake and breast meat WHC improved with a quadratic trend. By using broken-line regression analysis, the optimum dietary ND was obtained at 97.5%-102% of strain recommendation. Energy and protein efficiency, feed conversion ratio and BEI deteriorated by prolonging rearing period. The BRW, meat lightness (L*), redness (a*), hue angle (h*) and WHC values for the birds slaughtered at 46 days of age were significantly higher, and cooking loss was lower than those slaughtered at 38 days old. CONCLUSIONS: Broilers during the finisher period are not able to regulate their FIs with diet ND. The energy and protein efficiency, productive and economic performance were reduced when broilers were fed diluted diet or the rearing period was prolonged.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Meat , Animals , Chickens/physiology , Chickens/growth & development , Meat/analysis , Meat/economics , Male , Animal Feed/analysis , Animal Feed/economics , Diet/veterinary , Dietary Proteins/analysis , Dietary Proteins/administration & dosage , Energy Metabolism , Age Factors , Nutrients , Random Allocation
17.
Environ Monit Assess ; 196(6): 529, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724861

ABSTRACT

Dioxins and dioxin-like polychlorinated biphenyls are a group of lipophilic compounds classified under persistent environmental pollutants (POPs). Significant sources of dioxin emissions include industrial effluents, open burning practices, and biomedical and municipal waste incinerators. These emissions will enter the food chain and accumulate in animal-origin foods (AOFs). A systematic review was conducted to analyze the global levels of dioxins and dioxin-like PCBs in AOFs using PRISMA guidelines 2020. The data on the dioxin contamination in AOFs were extracted from 53 publications based on their presence in eggs, meat and meat products, milk and dairy products, marine fish and fish products, and freshwater fish and crabs. A gap analysis was conducted based on the systematic review to understand the grey areas to be focused on the  future. No trend of dioxin contamination in AOFs was observed. A significant gap area was found in the need for nationwide data generation in countries without periodic monitoring of AOFs for dioxin contamination. Source apportionment studies need to be explored for the dioxin contamination of AOFs. Large-scale screening tests of AOFs using DR-CALUX based on market surveys are required for data generation. The outcomes of the study will be helpful for stakeholders and policyholders in framing new policies and guidelines for food safety in AOFs.


Subject(s)
Dioxins , Environmental Monitoring , Food Contamination , Polychlorinated Biphenyls , Dioxins/analysis , Polychlorinated Biphenyls/analysis , Animals , Food Contamination/analysis , Environmental Monitoring/methods , Meat/analysis , Environmental Pollutants/analysis , Persistent Organic Pollutants
18.
Int J Food Microbiol ; 419: 110738, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38772219

ABSTRACT

This study investigates the possibility of utilizing drip as a non-destructive method for assessing the freshness and spoilage of chicken meat. The quality parameters [pH, volatile base nitrogen (VBN), and total aerobic bacterial counts (TAB)] of chicken meat were evaluated over a 13-day storage period in vacuum packaging at 4 °C. Simultaneously, the metabolites in the chicken meat and its drip were measured by nuclear magnetic resonance. Correlation (Pearson's and Spearman's rank) and pathway analyses were conducted to select the metabolites for model training. Binary logistic regression (model 1 and model 2) and multiple linear regression models (model 3-1 and model 3-2) were trained using selected metabolites, and their performance was evaluated using receiver operating characteristic (ROC) curves. As a result, the chicken meat was spoiled after 7 days of storage, exceeding 20 mg/100 g VBN and 5.7 log CFU/g TAB. The correlation analysis identified one organic acid, eight free amino acids, and five nucleic acids as highly correlated with chicken meat and its drip during storage. Pathway analysis revealed tyrosine and purine metabolism as metabolic pathways highly correlated with spoilage. Based on these findings, specific metabolites were selected for model training: ATP, glutamine, hypoxanthine, IMP, tyrosine, and tyramine. To predict the freshness and spoilage of chicken meat, model 1, trained using tyramine, ATP, tyrosine, and IMP from chicken meat, achieved a 99.9 % accuracy and had an ROC value of 0.884 when validated using drip metabolites. This model 1 was improved by training with tyramine and IMP from both chicken meat and its drip (model 2), which increased the ROC value for drip metabolites from 0.884 to 0.997. Finally, selected two metabolites (tyramine and IMP) can predict TAB and VBN quantitatively through models 3-1 and 3-2, respectively. Therefore, the model developed using metabolic changes in drip demonstrated the capability to non-destructively predict the freshness and spoilage of chicken meat at 4 °C. To make generic predictions, it is necessary to expand the model's applicability to various conditions, such as different temperatures, and validate its performance across multiple chicken batches.


Subject(s)
Chickens , Food Packaging , Meat , Animals , Meat/microbiology , Meat/analysis , Food Packaging/methods , Food Microbiology , Food Storage , Colony Count, Microbial , Vacuum , Food Contamination/analysis
19.
Food Res Int ; 186: 114351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729699

ABSTRACT

The global demand for high-quality animal protein faces challenges, prompting a surge in interest in plant-based meat analogues (PBMA). PBMA have emerged as a promising solution, although they encounter technological obstacles. This review discusses the technological challenges faced by PBMA from the viewpoint of plant proteins, emphasizing textural, flavor, color, and nutritional aspects. Texturally, PBMA confront issues, such as deficient fibrous structure, chewiness, and juiciness. Addressing meat flavor and mitigating beany flavor in plant protein are imperative. Furthermore, achieving a distinctive red or pink meat color remains a challenge. Plant proteins exhibit a lower content of essential amino acids. Future research directions encompass (1) shaping myofibril fibrous structures through innovative processing; (2) effectively eliminating the beany flavor; (3) developing biotechnological methodologies for leghemoglobin and plant-derived pigments; (4) optimizing amino acid composition to augment the nutritional profiles. These advancements are crucial for utilization of plant proteins in development of high-quality PBMA.


Subject(s)
Plant Proteins , Nutritive Value , Animals , Taste , Meat/analysis , Food Handling/methods , Humans , Color , Meat Substitutes
20.
Int J Biol Macromol ; 270(Pt 2): 132463, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772460

ABSTRACT

To enhance the amine-sensitivity of intelligent films for accurate monitoring of chilled meat freshness, different additions (0, 1, 2, 3 wt%) of MIL-100(Fe) were incorporated into the matrix composed of anthocyanins (ANs) and pectin (P). Results indicated that the tensile strength, thermal stability, barrier performance and absorption capacity of the films with MIL-100(Fe) were improved significantly (p < 0.05). Especially, the film with 2 % MIL-100(Fe) exhibited the best performance due to its compact structure and the highest crystallinity. Additionally, adsorption isotherms of the films with MIL-100(Fe) were fitted on the Langmuir and the Freundlich isotherm, and adsorption kinetics were fitted on the pseudo-second-order model and Elovich model, respectively (R2 > 0.96), suggesting a combined mechanism of chemisorption and intraparticle diffusion. Besides, when the films were exposed in ammonia environment, they changed color from purple to blue-violet, finally to green. Ultimately, film with 2 % MIL-100(Fe) was used to monitor the chilled meat freshness, as expected, similar color variation was observed at three stages of meat freshness (fresh, sub-fresh, and spoiled), which enabled the accurate differentiation of meat freshness. Thus, films with MIL-100(Fe) demonstrated the potential to be amine-sensitive intelligent packaging for monitoring chilled meat freshness in real time.


Subject(s)
Anthocyanins , Pectins , Anthocyanins/chemistry , Pectins/chemistry , Amines/chemistry , Food Packaging/methods , Meat/analysis , Adsorption , Animals , Kinetics , Tensile Strength , Color , Food Preservation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...