Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 709
Filter
1.
ACS Appl Mater Interfaces ; 16(37): 49148-49163, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39240583

ABSTRACT

Intracellular infections are difficult to treat, as pathogens can take advantage of intracellular hiding, evade the immune system, and persist and multiply in host cells. One such intracellular parasite, Leishmania, is the causative agent of leishmaniasis, a neglected tropical disease (NTD), which disproportionately affects the world's most economically disadvantaged. Existing treatments have relied mostly on chemotherapeutic compounds that are becoming increasingly ineffective due to drug resistance, while the development of new therapeutics has been challenging due to the variety of clinical manifestations caused by different Leishmania species. The antimicrobial peptide melittin has been shown to be effective in vitro against a broad spectrum of Leishmania, including species that cause the most common form, cutaneous leishmaniasis, and the most deadly, visceral leishmaniasis. However, melittin's high hemolytic and cytotoxic activity toward host cells has limited its potential for clinical translation. Herein, we report a design strategy for producing a melittin-containing antileishmanial agent that not only enhances melittin's leishmanicidal potency but also abrogates its hemolytic and cytotoxic activity. This therapeutic construct can be directly produced in bacteria, significantly reducing its production cost critical for a NTD therapeutic. The designed melittin-containing fusion crystal incorporates a bioresponsive cathepsin linker that enables it to specifically release melittin in the phagolysosome of infected macrophages. Significantly, this targeted approach has been demonstrated to be efficacious in treating macrophages infected with L. amazonensis and L. donovani in cell-based models and in the corresponding cutaneous and visceral mouse models.


Subject(s)
Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Melitten , Melitten/chemistry , Melitten/pharmacology , Leishmaniasis, Visceral/drug therapy , Animals , Mice , Leishmaniasis, Cutaneous/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Mice, Inbred BALB C , Humans , Leishmania/drug effects , Female , Macrophages/drug effects , Macrophages/parasitology , Macrophages/metabolism
2.
Nat Commun ; 15(1): 7281, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179607

ABSTRACT

Membrane active peptides are known to porate lipid bilayers, but their exact permeabilization mechanism and the structure of the nanoaggregates they form in membranes have often been difficult to determine experimentally. For many sequences at lower peptide concentrations, transient leakage is observed in experiments, suggesting the existence of transient pores. For two well-know peptides, alamethicin and melittin, we show here that molecular mechanics simulations i) can directly distinguish equilibrium poration and non-equilibrium transient leakage processes, and ii) can be used to observe the detailed pore structures and mechanism of permeabilization in both cases. Our results are in very high agreement with numerous experimental evidence for these two peptides. This suggests that molecular simulations can capture key membrane poration phenomena directly and in the future may develop to be a useful tool that can assist experimental peptide design.


Subject(s)
Lipid Bilayers , Melitten , Molecular Dynamics Simulation , Melitten/chemistry , Melitten/metabolism , Lipid Bilayers/metabolism , Lipid Bilayers/chemistry , Alamethicin/chemistry , Alamethicin/metabolism , Cell Membrane Permeability , Permeability
3.
J Phys Chem B ; 128(36): 8737-8752, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39207202

ABSTRACT

Antimicrobial peptides (AMPs) are attractive materials for combating the antimicrobial resistance crisis because they can kill target microbes by directly disrupting cell membranes. Although thousands of AMPs have been discovered, their molecular mechanisms of action are still poorly understood. One broad mechanism for membrane disruption is the formation of membrane-spanning hydrophilic pores which can be stabilized by AMPs. In this study, we use molecular dynamics simulations to investigate the thermodynamics of pore formation in model single-component lipid membranes in the presence of one of three AMPs: aurein 1.2, melittin and magainin 2. To overcome the general challenge of modeling long time scale membrane-related behaviors, including AMP binding, clustering, and pore formation, we develop a generalizable methodology for sampling AMP-induced pore formation. This approach involves the long equilibration of peptides around a pore created with a nucleation collective variable by performing coarse-grained simulations, then backmapping equilibrated AMP-membrane configurations to all-atom resolution. We then perform all-atom simulations to resolve free energy profiles for pore formation while accurately modeling the interplay of lipid-peptide-solvent interactions that dictate pore formation free energies. Using this approach, we quantify free energy barriers for pore formation without direct biases on peptides or whole lipids, allowing us to investigate mechanisms of pore formation for these 3 AMPs that are a consequence of unbiased peptide diffusion and clustering. Further analysis of simulation trajectories then relates variations in pore lining by AMPs, AMP-induced lipid disruptions, and salt bridges between AMPs to the observed pore formation free energies and corresponding mechanisms. This methodology and mechanistic analysis have the potential to generalize beyond the AMPs in this study to improve our understanding of pore formation by AMPs and related antimicrobial materials.


Subject(s)
Antimicrobial Cationic Peptides , Lipid Bilayers , Magainins , Melitten , Molecular Dynamics Simulation , Thermodynamics , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Melitten/chemistry , Melitten/metabolism , Magainins/chemistry , Magainins/pharmacology
4.
J Mol Model ; 30(8): 266, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007951

ABSTRACT

CONTEXT: Molecularly imprinted polymers (MIPs) have promising applications as synthetic antibodies for protein and peptide recognition. A critical aspect of MIP design is the selection of functional monomers and their adequate proportions to achieve materials with high recognition capacity toward their targets. To contribute to this goal, we calibrated a molecular dynamics protocol to reproduce the experimental trends in peptide recognition of 13 pre-polymerization mixtures reported in the literature for the peptide toxin melittin. METHODS: Three simulation conditions were tested for each mixture by changing the box size and the number of monomers and cross-linkers surrounding the template in a solvent-explicit environment. Fully atomistic MD simulations of 350 ns were conducted with the AMBER20 software, with ff19SB parameters for the peptide, gaff2 parameters for the monomers and cross-linkers, and the OPC water model. Template-monomer interaction energies under the LIE approach showed significant differences between high-affinity and low-affinity mixtures. Simulation systems containing 100 monomers plus cross-linkers in a cubic box of 90 Å3 successfully ranked the mixtures according to their experimental performance. Systems with higher monomer densities resulted in non-specific intermolecular contacts that could not account for the experimental trends in melittin recognition. The mixture with the best recognition capacity showed preferential binding to the 13-26-α-helix, suggesting a relevant role for this segment in melittin imprinting and recognition. Our findings provide insightful information to assist the computational design of molecularly imprinted materials with a validated protocol that can be easily extended to other templates.


Subject(s)
Molecular Dynamics Simulation , Peptides , Peptides/chemistry , Melitten/chemistry , Polymerization , Molecularly Imprinted Polymers/chemistry , Molecular Imprinting/methods
5.
J Nanobiotechnology ; 22(1): 432, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39034393

ABSTRACT

Rheumatoid arthritis (RA) involves chronic joint inflammation. Combining acupuncture and medication for RA treatment faces challenges like spatiotemporal variability, limited drug loading in acupuncture needles, and premature or untargeted drug release. Here, we designed a new type of tubular acupuncture needles, with an etched hollow honeycomb-like structure to enable the high loading of therapeutics, integrating the traditional acupuncture and drug repository into an all-in-one therapeutic platform. In these proof-of-concept experiments, we fabricated injectable hollow honeycomb electroacupuncture needles (HC-EA) loaded with melittin hydrogel (MLT-Gel), enabling the combination treatment of acupuncture stimulation and melittin therapy in a spatiotemporally synchronous manner. Since the RA microenvironment is mildly acidic, the acid-responsive chitosan (CS)/sodium beta-glycerophosphate (ß-GP)/ hyaluronic acid (HA) composited hydrogel (CS/GP/HA) was utilized to perform acupuncture stimulation and achieve the targeted release of injected therapeutics into the specific lesion site. Testing our therapeutic platform involved a mouse model of RA and bioinformatics analysis. MLT-Gel@HC-EA treatment restored Th17/Treg-mediated immunity balance, reduced inflammatory factor release (TNF-α, IL-6, IL-1ß), and alleviated inflammation at the lesion site. This novel combination of modified acupuncture needle and medication, specifically melittin hydrogel, holds promise as a therapeutic strategy for RA treatment.


Subject(s)
Acupuncture Therapy , Arthritis, Rheumatoid , Hydrogels , Melitten , Needles , Animals , Melitten/pharmacology , Melitten/chemistry , Mice , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/drug therapy , Hydrogels/chemistry , Acupuncture Therapy/methods , Chitosan/chemistry , Hyaluronic Acid/chemistry , Male , Disease Models, Animal , Mice, Inbred C57BL
6.
Biomolecules ; 14(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927102

ABSTRACT

Leucine residues are commonly found in the hydrophobic face of antimicrobial peptides (AMPs) and are crucial for membrane permeabilization, leading to the cell death of invading pathogens. Melittin, which contains four leucine residues, demonstrates broad-spectrum antimicrobial properties but also significant cytotoxicity against mammalian cells. To enhance the cell selectivity of melittin, this study synthesized five analogs by replacing leucine with its structural isomer, 6-aminohexanoic acid. Among these analogs, Mel-LX3 exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria. Importantly, Mel-LX3 displayed significantly reduced hemolytic and cytotoxic effects compared to melittin. Mechanistic studies, including membrane depolarization, SYTOX green uptake, FACScan analysis, and inner/outer membrane permeation assays, demonstrated that Mel-LX3 effectively permeabilized bacterial membranes similar to melittin. Notably, Mel-LX3 showed robust antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Furthermore, Mel-LX3 effectively inhibited biofilm formation and eradicated existing biofilms of MDRPA. With its improved selective antimicrobial and antibiofilm activities, Mel-LX3 emerges as a promising candidate for the development of novel antimicrobial agents. We propose that the substitution of leucine with 6-aminohexanoic acid in AMPs represents a significant strategy for combating resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Biofilms , Melitten , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Melitten/pharmacology , Melitten/chemistry , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Methicillin-Resistant Staphylococcus aureus/drug effects , Humans , Hemolysis/drug effects , Aminocaproic Acid/chemistry , Aminocaproic Acid/pharmacology , Gram-Negative Bacteria/drug effects , Animals
7.
ACS Nano ; 18(24): 15831-15844, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38844421

ABSTRACT

We have evolved the nanopore-forming macrolittin peptides from the bee venom peptide melittin using successive generations of synthetic molecular evolution. Despite their sequence similarity to the broadly membrane permeabilizing cytolytic melittin, the macrolittins have potent membrane selectivity. They form nanopores in synthetic bilayers made from 1-palmitoyl, 2-oleoyl-phosphatidylcholine (POPC) at extremely low peptide concentrations and yet have essentially no cytolytic activity against any cell membrane, even at high concentration. Here, we explore the structural determinants of macrolittin nanopore stability in POPC bilayers using atomistic molecular dynamics simulations and experiments on macrolittins and single-site variants. Simulations of macrolittin nanopores in POPC bilayers show that they are stabilized by an extensive, cooperative hydrogen bond network comprised of the many charged and polar side chains interacting with each other via bridges of water molecules and lipid headgroups. Lipid molecules with unusual conformations participate in the H-bond network and are an integral part of the nanopore structure. To explore the role of this H-bond network on membrane selectivity, we swapped three critical polar residues with the nonpolar residues found in melittin. All variants have potency, membrane selectivity, and cytotoxicity that were intermediate between a cytotoxic melittin variant called MelP5 and the macrolittins. Simulations showed that the variants had less organized H-bond networks of waters and lipids with unusual structures. The membrane-spanning, cooperative H-bond network is a critical determinant of macrolittin nanopore stability and membrane selectivity. The results described here will help guide the future design and optimization of peptide nanopore-based applications.


Subject(s)
Melitten , Molecular Dynamics Simulation , Nanopores , Phosphatidylcholines , Melitten/chemistry , Phosphatidylcholines/chemistry , Lipid Bilayers/chemistry , Hydrogen Bonding , Peptides/chemistry , Humans
8.
J Mater Chem B ; 12(22): 5431-5438, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38726737

ABSTRACT

Despite exhibiting potent anticancer activity, the strong hemolytic properties of melittin (MEL) significantly restrict its delivery efficiency and clinical applications. To address this issue, we have devised a strategy wherein homologous dopamine (DA), an essential component of bee venom, is harnessed as a vehicle for the synthesis of MEL-polydopamine (PDA) nanoparticles (MP NPs). The ingenious approach lies in the fact that MEL is a basic polypeptide, and the polymerization of DA is also conducted under alkaline conditions, indicating the distinctive advantages of PDA in MEL encapsulation. Furthermore, MP NPs are modified with folic acid to fabricate tumor-targeted nanomedicine (MPF NPs). MPF NPs can ameliorate the hemolysis of MEL in drug delivery and undergo degradation triggered by high levels of reactive oxygen species (ROS) within solid tumors, thereby facilitating MEL release and subsequent restoration of anticancer activity. After cellular uptake, MPF NPs induce cell apoptosis through the PI3K/Akt-mediated p53 signaling pathway. The tumor growth inhibitory rate of MPF NPs in FA receptor-positive 4T1 and CT26 xenograft mice reached 78.04% and 81.66%, which was significantly higher compared to that in FA receptor-negative HepG2 xenograft mice (45.79%). Homologous vehicles provide a new perspective for nanomedicine design.


Subject(s)
Antineoplastic Agents , Hemolysis , Indoles , Melitten , Polymers , Melitten/chemistry , Melitten/pharmacology , Animals , Humans , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Polymers/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice , Hemolysis/drug effects , Nanoparticles/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Drug Screening Assays, Antitumor , Mice, Nude , Particle Size
9.
J Mater Chem B ; 12(22): 5465-5478, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38742364

ABSTRACT

Melittin (Mel) is considered a promising candidate drug for the treatment of triple negative breast cancer (TNBC) due to its various antitumor effects. However, its clinical application is hampered by notable limitations, including hemolytic activity, rapid clearance, and a lack of tumor selectivity. Here, we designed novel biomimetic nanoparticles based on homologous tumor cell membranes and poly(lactic-co-glycolic acid) (PLGA)/poly(beta-aminoester) (PBAE), denoted MDM@TPP, which efficiently coloaded the cytolytic peptide Mel and the photosensitizer mTHPC. Both in vitro and in vivo, the MDM@TPP nanoparticles effectively mitigated the acute toxicity of melittin and exhibited strong TNBC targeting ability due to the homologous targeting effect of the tumor cell membrane. Under laser irradiation, the MDM@TPP nanoparticles showed excellent photodynamic performance and thus accelerated the release of Mel by disrupting cell membrane integrity. Moreover, Mel combined with photodynamic therapy (PDT) can synergistically kill tumor cells and induce significant immunogenic cell death, thereby stimulating the maturation of dendritic cells (DCs). In 4T1 tumor-bearing mice, MDM@TPP nanoparticles effectively inhibited the growth and metastasis of primary tumors and finally prevented tumor recurrence by improving the immune response.


Subject(s)
Melitten , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Triple Negative Breast Neoplasms , Melitten/chemistry , Melitten/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Nanoparticles/chemistry , Animals , Mice , Female , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Mice, Inbred BALB C , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cell Proliferation/drug effects , Cell Line, Tumor , Drug Screening Assays, Antitumor
10.
Nucl Med Biol ; 132-133: 108905, 2024.
Article in English | MEDLINE | ID: mdl-38555651

ABSTRACT

DOTATATE is a somatostatin peptide analog used in the clinic to detect somatostatin receptors which are highly expressed on neuroendocrine tumors. Somatostatin receptors are found naturally in the intestines, pancreas, lungs, and brain (mainly cortex). In vivo measurement of the somatostatin receptors in the cortex has been challenging because available tracers cannot cross the blood-brain barrier (BBB) due to their intrinsic polarity. A peptide called melittin, a main component of honeybee venom, has been shown to disrupt plasma membranes and increase the permeability of biological membranes. In this study, we assessed the feasibility of using melittin to facilitate the passage of [64Cu]Cu-DOTATATE through the BBB and its binding to somatostatin receptors in the cortex. Evaluation included in vitro autoradiography on Long Evans rat brains to estimate the binding affinity of [64Cu]Cu-DOTATATE to the somatostatin receptors in the cortex and an in vivo evaluation of [64Cu]Cu-DOTATATE binding in NMRI mice after injection of melittin. This study found an in vitro Bmax = 89 ± 4 nM and KD = 4.5 ± 0.6 nM in the cortex, resulting in a theoretical binding potential (BP) calculated as Bmax/KD ≈ 20, which is believed suitable for in vivo brain PET imaging. However, the in vivo results showed no significant difference between the control and melittin injected mice, indicating that the honeybee venom failed to open the BBB. Additional experiments, potentially involving faster injection rates are required to verify that melittin can increase brain uptake of non-BBB permeable PET tracers. Furthermore, an evaluation of whether a venom with a narrow therapeutic range can be used for clinical purposes needs to be considered.


Subject(s)
Blood-Brain Barrier , Feasibility Studies , Melitten , Organometallic Compounds , Positron-Emission Tomography , Receptors, Somatostatin , Animals , Receptors, Somatostatin/metabolism , Melitten/chemistry , Melitten/metabolism , Rats , Positron-Emission Tomography/methods , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Organometallic Compounds/pharmacokinetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/diagnostic imaging , Male , Mice , Copper Radioisotopes , Octreotide/analogs & derivatives
11.
Mol Pharm ; 21(5): 2148-2162, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38536949

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer for which effective therapies are lacking. Targeted remodeling of the immunosuppressive tumor microenvironment (TME) and activation of the body's immune system to fight tumors with well-designed nanoparticles have emerged as pivotal breakthroughs in tumor treatment. To simultaneously remodel the immunosuppressive TME and trigger immune responses, we designed two potential therapeutic nanodelivery systems to inhibit TNBC. First, the bromodomain-containing protein 4 (BRD4) inhibitor JQ1 and the cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) were coloaded into chondroitin sulfate (CS) to obtain CS@JQ1/CXB nanoparticles (NPs). Then, the biomimetic nanosystem MM@P3 was prepared by coating branched polymer poly(ß-amino ester) self-assembled NPs with melittin embedded macrophage membranes (MM). Both in vitro and in vivo, the CS@JQ1/CXB and MM@P3 NPs showed excellent immune activation efficiencies. Combination treatment exhibited synergistic cytotoxicity, antimigration ability, and apoptosis-inducing and immune activation effects on TNBC cells and effectively suppressed tumor growth and metastasis in TNBC tumor-bearing mice by activating the tumor immune response and inhibiting angiogenesis. In summary, this study offers a novel combinatorial immunotherapeutic strategy for the clinical TNBC treatment.


Subject(s)
Azepines , Celecoxib , Triazoles , Triple Negative Breast Neoplasms , Tumor Microenvironment , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/drug effects , Animals , Female , Mice , Humans , Celecoxib/administration & dosage , Cell Line, Tumor , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/administration & dosage , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Melitten/administration & dosage , Melitten/chemistry , Apoptosis/drug effects , Nanoparticle Drug Delivery System/chemistry , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Cyclooxygenase 2 Inhibitors/administration & dosage , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/therapeutic use , Polymers/chemistry , Mice, Nude , Drug Delivery Systems/methods
12.
Front Immunol ; 15: 1326033, 2024.
Article in English | MEDLINE | ID: mdl-38318188

ABSTRACT

Melittin, a main component of bee venom, is a cationic amphiphilic peptide with a linear α-helix structure. It has been reported that melittin can exert pharmacological effects, such as antitumor, antiviral and anti-inflammatory effects in vitro and in vivo. In particular, melittin may be beneficial for the treatment of diseases for which no specific clinical therapeutic agents exist. Melittin can effectively enhance the therapeutic properties of some first-line drugs. Elucidating the mechanism underlying melittin-mediated biological function can provide valuable insights for the application of melittin in disease intervention. However, in melittin, the positively charged amino acids enables it to directly punching holes in cell membranes. The hemolysis in red cells and the cytotoxicity triggered by melittin limit its applications. Melittin-based nanomodification, immuno-conjugation, structural regulation and gene technology strategies have been demonstrated to enhance the specificity, reduce the cytotoxicity and limit the off-target cytolysis of melittin, which suggests the potential of melittin to be used clinically. This article summarizes research progress on antiviral, antitumor and anti-inflammatory properties of melittin, and discusses the strategies of melittin-modification for its future potential clinical applications in preventing drug resistance, enhancing the selectivity to target cells and alleviating cytotoxic effects to normal cells.


Subject(s)
Bee Venoms , Melitten , Melitten/pharmacology , Melitten/chemistry , Melitten/metabolism , Antimicrobial Peptides , Bee Venoms/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents
13.
J Toxicol Environ Health B Crit Rev ; 27(2): 73-90, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38247328

ABSTRACT

Africanized bees have spread across the Americas since 1956 and consequently resulted in human and animal deaths attributed to massive attacks related to exposure from Argentina to the USA. In Brazil, more than 100,000 accidents were registered in the last 5 years with a total of 303 deaths. To treat such massive attacks, Brazilian researchers developed the first specific antivenom against Africanized honey bee sting exposure. This unique product, the first of its kind in the world, has been safely tested in 20 patients during a Phase 2 clinical trial. To develop the antivenom, a standardized process was undertaken to extract primary venom antigens from the Africanized bees for immunization of serum-producing horses. This process involved extracting, purifying, fractionating, characterizing, and identifying the venom (apitoxin) employing mass spectrometry to generate standardized antigen for hyperimmunization of horses using the major toxins (melittin and its isoforms and phospholipase A2). The current guide describes standardization of the entire production chain of venom antigens in compliance with good manufacturing practices (GMP) required by regulatory agencies. Emphasis is placed upon the welfare of bees and horses during this process, as well as the development of a new biopharmaceutical to ultimately save lives.


Subject(s)
Bee Venoms , Insect Bites and Stings , Bees , Humans , Animals , Antivenins/therapeutic use , Insect Bites and Stings/drug therapy , Bee Venoms/analysis , Bee Venoms/chemistry , Melitten/analysis , Melitten/chemistry , Phospholipases A2 , Antigens
14.
Arch Pharm (Weinheim) ; 357(4): e2300569, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38251938

ABSTRACT

Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.


Subject(s)
Bee Venoms , Neoplasms , Humans , Melitten/pharmacology , Melitten/chemistry , Melitten/metabolism , Structure-Activity Relationship , Bee Venoms/pharmacology , Bee Venoms/therapeutic use , Neoplasms/drug therapy , Peptides/chemistry
15.
ACS Infect Dis ; 10(2): 763-778, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38259029

ABSTRACT

Gram-negative bacteria possess a complex structural cell envelope that constitutes a barrier for antimicrobial peptides that neutralize the microbes by disrupting their cell membranes. Computational and experimental approaches were used to study a model outer membrane interaction with an antimicrobial peptide, melittin. The investigated membrane included di[3-deoxy-d-manno-octulosonyl]-lipid A (KLA) in the outer leaflet and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in the inner leaflet. Molecular dynamics simulations revealed that the positively charged helical C-terminus of melittin anchors rapidly into the hydrophilic headgroup region of KLA, while the flexible N-terminus makes contacts with the phosphate groups of KLA, supporting melittin penetration into the boundary between the hydrophilic and hydrophobic regions of the lipids. Electrochemical techniques confirmed the binding of melittin to the model membrane. To probe the peptide conformation and orientation during interaction with the membrane, polarization modulation infrared reflection absorption spectroscopy was used. The measurements revealed conformational changes in the peptide, accompanied by reorientation and translocation of the peptide at the membrane surface. The study suggests that melittin insertion into the outer membrane affects its permeability and capacitance but does not disturb the membrane's bilayer structure, indicating a distinct mechanism of the peptide action on the outer membrane of Gram-negative bacteria.


Subject(s)
Antimicrobial Peptides , Lipopolysaccharides , Lipopolysaccharides/chemistry , Melitten/chemistry , Peptides/chemistry , Gram-Negative Bacteria/metabolism
16.
J Pept Sci ; 30(2): e3543, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37734745

ABSTRACT

The standard GAFF2 force field parameterization has been refined for the fluorinated alcohols 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and 1,1,1,3,3,3-hexafluoropropan-2-one (HFA), which are commonly used to study proteins and peptides in biomimetic media. The structural and dynamic properties of both proteins and peptides are significantly influenced by the biomimetic environment created by the presence of these cosolvents in aqueous solutions. Quantum mechanical calculations on stable conformers were used to parameterize the atomic charges. Different systems, such as pure liquids, aqueous solutions, and systems formed by melittin protein and cosolvent/water solutions, have been used to validate the new models. The calculated macroscopic and structural properties are in agreement with experimental findings, supporting the validity of the newly proposed models.


Subject(s)
Alcohols , Melitten , Melitten/chemistry , Solvents/chemistry , Alcohols/chemistry , Peptides/chemistry , Proteins/chemistry , Water/chemistry , Trifluoroethanol/chemistry
17.
J Control Release ; 365: 802-817, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092255

ABSTRACT

Melittin (M) has attracted increasing attention for its significant antitumor effects and various immunomodulatory effects. However, various obstacles such as the short plasma half-life and adverse reactions restrict its application. This study aimed to systematically investigate the self-assembly mechanism, components of the protein corona, targeting behavior, and anti-4 T1 tumor effect of vitamin E-succinic acid-(glutamate)n /melittin nanoparticles with varying amounts of glutamic acid. Here, we present a new vitamin E-succinic acid-(glutamate)5 (E5), vitamin E-succinic acid-(glutamate)10 (E10) or vitamin E-succinic acid-(glutamate)15 (E15), and their co-assembly system with positively charged melittin in water. The molecular dynamics simulations demonstrated that the electrostatic energy and van der Waals force in the system decreased significantly with the increase in the amount of glutamic acid. The melittin and E15 system exhibited the optimal stability for nanoparticle self-assembly. When nanoparticles derived from different self-assembly systems were co-incubated with plasma from patients with breast cancer, the protein corona showed heterogeneity. In vivo imaging demonstrated that an increase in the number of glutamic acid residues enhanced circulation duration and tumor-targeting effects. Both in vitro and in vivo antitumor evaluation indicated a significant increase in the antitumor effect with the addition of glutamic acid. According to our research findings, the number of glutamic acid residues plays a crucial role in the targeted delivery of melittin for immunomodulation and inhibition of 4 T1 breast cancer. Due to the self-assembly capabilities of vitamin E-succinic acid-(glutamate)n in water, these nanoparticles carry significant potential for delivering cationic peptides such as melittin.


Subject(s)
Breast Neoplasms , Nanoparticles , Protein Corona , Humans , Female , Glutamic Acid , Melitten/chemistry , Melitten/pharmacology , Succinic Acid , Vitamin E , Breast Neoplasms/pathology , Nanoparticles/chemistry , Water
18.
Probiotics Antimicrob Proteins ; 16(2): 490-500, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36988897

ABSTRACT

The low stability and nonspecific toxicity are the main limiting factors for the clinical applications of melittin (MLT). This study aimed to design and synthesize new analogs of MLT to increase stability, reduce toxicity, and retain their antimicrobial properties against bacterial pathogens. At first, peptide analogs were designed computationally by inducing single mutations in MLT peptides and evaluating their physicochemical properties. The stability of the analogs with the highest scores was determined by Gromacs software. In vitro assays were performed to examine the antimicrobial activity and toxicity of the selected analogs. Two peptide analogs, M1 and M2, were selected based on the SVM score in cell PPD. The M1 analog was created by replacing alanine with leucine on the 15th. The M2 analog was designed by substituting alanine with leucine and isoleucine with arginine at the 15th and 17th positions. According to the Gromacs results, the M2 peptide indicated more stability. RMSD and RMSF results showed no undesirable fluctuations during the 200 ns MD simulation. The MIC and MBC values for the M1 peptide were calculated in a range of 8-128 µg/ml, while the M2 peptide limited the bacterial growth to 32-128 µg/mL. Both peptides indicated less toxicity than natural MLT, based on MTT assay results. The hemolytic activity of the M1 analog was more than M2 at 16 µg/mL concentration. M1 peptide displayed the highest selectivity index against S. aureus and A. baumannii, which were approximately 5.27-fold improvements compared to MLT. In conclusion, we introduced two analogs of MLT with low toxicity, low hemolytic activity, and higher stability, along with retaining antimicrobial properties against gram-negative and positive bacteria.


Subject(s)
Anti-Infective Agents , Melitten , Melitten/pharmacology , Melitten/chemistry , Antimicrobial Peptides , Antimicrobial Cationic Peptides/pharmacology , Leucine , Staphylococcus aureus , Amino Acid Sequence , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Bacteria , Alanine , Anti-Bacterial Agents/pharmacology
19.
Mol Biol (Mosk) ; 57(6): 1077-1083, 2023.
Article in Russian | MEDLINE | ID: mdl-38062961

ABSTRACT

Melittin, a peptide from bee venom, was found to be able to interact with many proteins, including calmodulin target proteins and ion-transporting P-type ATPases. It is assumed that melittin mimics a protein module involved in protein-protein interactions within cells. Previously, a Na^(+)/K^(+)-ATPase containing the α1 isoform of the catalytic subunit was found to co-precipitate with a protein with a molecular weight of about 70 κDa that interacts with antibodies against melittin by cross immunoprecipitation. In the presence of a specific Na^(+)/K^(+)-ATPase inhibitor (ouabain), the amount of protein with a molecular weight of 70 κDa interacting with Na^(+)/K^(+)-ATPase increases. In order to identify melittin-like protein from murine kidney homogenate, a fraction of melittin-like proteins with a molecular weight of approximately 70 κDa was obtained using affinity chromatography with immobilized antibodies specific to melittin. By mass spectrometry analysis, the obtained protein fraction was found to contain three molecular chaperones of Hsp70 superfamily: mitochondrial mtHsp70 (mortalin), Hsp73, Grp78 (BiP) of endoplasmic reticulum. These data suggest that chaperones from the HSP-70 superfamily contain a melittin-like module.


Subject(s)
Melitten , Sodium-Potassium-Exchanging ATPase , Mice , Animals , Melitten/chemistry , Melitten/metabolism , Melitten/pharmacology , Sodium-Potassium-Exchanging ATPase/chemistry , Molecular Weight , Ouabain/pharmacology , Peptides/metabolism , Molecular Chaperones/metabolism
20.
J Cancer Res Clin Oncol ; 149(19): 17709-17726, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37919474

ABSTRACT

BACKGROUND: Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE: This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS: We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION: In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Melitten/pharmacology , Melitten/chemistry , Melitten/genetics , Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Cell Culture Techniques , Models, Animal , Cell Proliferation
SELECTION OF CITATIONS
SEARCH DETAIL